1
|
Zhao Y, Wang Q, Liu T, Wang P, Makarov IS, Khan MR, Guo J, Zhu W, Xiao H, Song J. A sustainable and efficient emulsifier for vegetable oil-pickering emulsion based on cellulose nanoribbons. Food Res Int 2025; 211:116479. [PMID: 40356138 DOI: 10.1016/j.foodres.2025.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/11/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
An emulsion stabilization technique based on molecularly thin cellulose nanoribbons (CR) is described, demonstrating superior emulsifying capability at concentrations as low as 0.05 %. The results show that CR enables the stabilization of oil-in-water emulsions that remain stable for over 60 days, even at high oil-to-water ratios. Rheological assessment reveals a shear-thinning profile and dominance of storage modulus (G') over loss modulus (G"), signifying the emulsions' viscoelastic nature and resistance to structural breakdown. In particular, emulsions containing 0.5 % CR presented exceptional centrifugal stability at 8000 rpm without oil leakage or emulsion breakage. In contrast, emulsions stabilized by cellulose nanocrystals (CNC) and nanofibrils (CNF) exhibited significantly reduced stability and viscosity. This study underscores CR's potential in creating eco-friendly, high-performance food-grade emulsions that meet the burgeoning demands for environmentally friendly and healthy foods.
Collapse
Affiliation(s)
- Yang Zhao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Qingcheng Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Yibin Grace Technology Innovation Co., Ltd, Yibin 644000, China
| | - Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Igor S Makarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Koshani R, Yeh SL, Kheirabadi S, He Z, Park MJ, LeConey S, Read AF, Sheikhi A. Zwitterionic Molecularly Imprinted Hairy Cellulose Nanocrystals Enable Selective Vancomycin Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8554-8564. [PMID: 40162629 DOI: 10.1021/acs.langmuir.4c04813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Access to free, off-target, and nontherapeutic doses of antibiotics is a key driving factor in the emergence of antimicrobial resistance (AMR). Intravenously (IV) administered vancomycin (VAN) is among the last-line antibiotics for treating infections caused by multidrug-resistant Gram-positive bacteria. A fraction of the total IV dose unwantedly reaches the gastrointestinal tract, driving AMR. Selective VAN removal from the complex intestinal fluid may reduce the probability of AMR emergence; however, it remains a significant challenge due to the competitive adsorption of other species. Here, we engineer novel VAN-imprinted polymerized zwitterionic hairy cellulose nanocrystals (ViPZ-HCNC) that selectively capture VAN with a removal capacity of ∼ 235 mg g-1 at an imprinting factor of ∼ 7.5. ViPZ-HCNC provide the first nanocellulose-based material with an excellent selectivity for VAN against lysine, lysozyme, and bovine serum albumin, which efficiently remove VAN from calcium ion-containing solutions and simulated intestinal fluids. Additionally, ViPZ-HCNC are not toxic against NIH/3T3 murine fibroblast cells. We envision that ViPZ-HCNC may pave the way for developing soft materials that selectively remove off-target VAN from a broad range of media, preventing VAN resistance evolution. This research is a step forward in addressing the long-lasting AMR challenge using a biobased platform.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shang-Lin Yeh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zeming He
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Min Ju Park
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sean LeConey
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrew F Read
- Department of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
3
|
Yuan T, Wu J, Luo H, Sun Q, Wang K, Zhang X, Xu Y, Tong X, Chen X, Guo D, Zhao H, Zhai S, Sha L. Bifunctional performance of cellulose nanofibers grafted with polyhexamethylene guanidine in Pickering emulsion: Antibacterial activity and interfacial stability. Int J Biol Macromol 2025; 301:140384. [PMID: 39880270 DOI: 10.1016/j.ijbiomac.2025.140384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
This study developed the multifunctional cellulose nanofibers (CNFs) as emulsifier for preparation of antibacterial, ultrastable and non-toxic emulsion. To achieve these properties, CNFs were oxidated using sodium periodate to introduce aldehyde groups, which served as Schiff-base reaction sites for amino groups of polyhexamethylene guanidine (PHMG), yielding PHMG-grafted CNFs (PCNFs). The modified CNFs retained good emulsification ability while acquiring antibacterial properties. PCNFs were irreversibly absorbed onto the droplet surface, forming dense covering layers that prevented coalescence. Their strong entanglement and bridging flocculation capacities bonded adjacent droplets, creating stable droplet-fiber network structures. This enabled a creaming index of 90 % with only 4.0 % PCNFs. Emulsion stabilized by PCNFs achieved over 99 % antibacterial rate and 99 % cell viability, confirming their effective inactivation of bacteria and good biocompatibility. These findings showed the potential of PCNFs for developing antibacterial, ultrastable, and non-toxic emulsions for daily and biomedical applications.
Collapse
Affiliation(s)
- Tianzhong Yuan
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junyi Wu
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hanrong Luo
- Hangzhou Honglun Pulp & Paper Co., Ltd, Hangzhou 311407, China
| | - Qianyu Sun
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Kang Wang
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xinyi Zhang
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yinchao Xu
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xin Tong
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaohong Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Huifang Zhao
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Shangru Zhai
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
4
|
Koshani R, Kheirabadi S, Sheikhi A. Nano-enabled dynamically responsive living acellular hydrogels. MATERIALS HORIZONS 2025; 12:103-118. [PMID: 39545831 DOI: 10.1039/d4mh00922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
As a key building block of mammalian tissues, extracellular matrices (ECMs) stiffen under shear deformation and undergo cell-imparted healing after damage, features that regulate cell fate, communication, and survival. The shear-stiffening behavior is attributed to semi-flexible biopolymeric ECM networks. Inspired by the mechanical behavior of ECMs, we develop acellular nanocomposite living hydrogels (LivGels), comprising network-forming biopolymers and anisotropic hairy nanoparticle linkers that mimic the dynamic mechanical properties of living counterparts. We show that a bifunctional dynamic linker nanoparticle (nLinker), bearing semi-flexible aldehyde- and carboxylate-modified cellulose chains attached to rigid cellulose nanocrystals converts bulk hydrogels to ECM-like analogues via ionic and dynamic covalent hydrazone bonds. The nLinker not only enables the manipulation of nonlinear mechanics and stiffness within the biological window, but also imparts self-healing to the LivGels. This work is a step forward in designing living acellular soft materials with complex dynamic properties using bio-based nanotechnology.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Yan S, Yuan Z, Qian H, Dai Y, Sun B, Jiang P, Guo Y, Fang W. Advanced magnetic nanospheres for oil pollutant management: Dual roles in emulsification and demulsification. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136026. [PMID: 39368361 DOI: 10.1016/j.jhazmat.2024.136026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Environmental contamination from oil spills and industrial oily wastewater poses significant ecological risks due to the persistence of harmful organic compounds. To address these challenges, magnetic composite nanospheres (CMNP@CHPEI) are systematically developed, with carboxylated Fe3O4 nanoparticles (CMNP) as the core and amphiphilic hyperbranched polyethyleneimine (CHPEI) as the decorated shell. These novel nanospheres combine the controllable size and magnetic responsiveness of "hard" magnetic nanomaterials with the structural complexity and functional diversity of "soft" hyperbranched polymers. This design allows for switching between emulsification and demulsification behaviors by regulating the size of the nanospheres and the amphiphilicity of CHPEI. Specifically, the nanospheres can form Pickering emulsions with oil droplet sizes smaller than 1 µm, maintaining stability for up to 75 days, and achieve rapid oil-water separation with demulsification efficiencies up to 99.8 %. Even after seven recycling experiments, they still retain significant interfacial activity and applicability. Interfacial characteristic experiments and molecular dynamics simulations reveal that particle size directly affects the film structures formed at oil-water interface, while the amphiphilic functional molecules determine the interaction mode of nanospheres with oil-water phases. These achievements introduce a versatile, environmentally friendly material for removing hazardous oil-based pollutants, with promising applications in oil spill remediation and industrial wastewater treatment.
Collapse
Affiliation(s)
- Shu Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Zhiyuan Yuan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hehe Qian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yitong Dai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Jiang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Yongsheng Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Yu H, Zhang G, You M, Shi X, Lu S, Tang Z, Yin H, Zhang Y, Chen Q. Herbal small molecule-based low/medium internal phase supramolecular gel emulsion for diabetic wound healing. J Colloid Interface Sci 2024; 671:270-282. [PMID: 38810341 DOI: 10.1016/j.jcis.2024.05.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
It remains a big challenge to fabricate low / medium internal phase gel emulsion for the safe wound dressing with low stimulation to the skin. Herein, utilizing the self-assembly and gelation of amphiphilic herbal small molecule-glycyrrhizic acid (GA) derived from traditional Chinese medicine, a new type of supramolecular gel emulsion (SGE) with antibacterial activity and low / medium internal phase was proposed. In the SGE, the oil droplets were stabilized by the nanofibers self-assembled from GA, and the SGE was formed by the supramolecular assembly of GA nanofibers in the presence of Pickering emulsions. As a result, under low / medium internal phase (φ = 30-50 %), SGEs could be readily prepared. Antibacterial tests demonstrated that the growth of gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) could be effectively inhibited by the SGE. Additionally, compared to high internal phase SGE, SGE with φ = 50 % displayed lower cytotoxicity and a positive impact on the healing process of infectious diabetic wounds. This work provided a novel approach for constructing low / medium internal phase gel emulsion via herbal small molecule-based supramolecular assembly.
Collapse
Affiliation(s)
- Hui Yu
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Guoxin Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min You
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xinlei Shi
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Shaoping Lu
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ziqing Tang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Haiyan Yin
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yitian Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiang Chen
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Su X, Lai H, Chen S, Chen H, Wang X, Shen B, Yue P. Raspberry-liked Pickering emulsions based inulin microparticles for enhanced antibacterial performance of essential oils. Int J Biol Macromol 2024; 271:132224. [PMID: 38821807 DOI: 10.1016/j.ijbiomac.2024.132224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Pickering emulsions seem to be an effective strategy for encapsulation and stabilization of essential oils. In this work, a novel raspberry-liked Pickering emulsion (RPE) loading Mosla chinensis 'Jiangxiangru' essential oil (MJO) was successfully engineered by using ethyl lauroyl arginate (ELA) decorated nanosilica (ELA-NS) as particles emulsifier. And the ELA-NS-stabilized MJO Pickering emulsion (MJO-RPE) was further prepared into inulin-based microparticles (MJO-RPE-IMP) by spray-drying, using inulin as matrix formers. The concentration of ELA-NS could affect the formation and stabilization of MJO-RPE, and the colloidal behavior of ELA-NS could be modulated at the interfaces with concentration of ELA, thus providing unique role on stabilization of MJO-RPE. The results indicated that the MJO-RPE stabilized ELA-NS with 2 % NS modified by 0.1 % ELA had long-term stability. MJO-RPE exhibited a raspberry-liked morphology on the surface, attributed to ELA-NS covered in the droplet surface. The inulin-based matrix formers could effectively prevent MJO-RPE from agglomeration or destruction during spray-drying, and 100 % concentration of inulin based microparticles formed large composite particles with high loading capacity (98.54 ± 1.11 %) and exhibited superior thermal stability and redispersibility of MJO-RPE. The MJO-RPE exhibited strong antibacterial efficacy against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), owing to the adhesion to bacterial membrane dependent on the raspberry-liked surface of MJO-RPE, whose minimum inhibitory concentration (MIC) of the above three bacteria were (0.3, 0.45, and 1.2 μL/mL), respectively, lower than those (0.45, 0.6 and 1.2 μL/mL) of MJO. Therefore, the Pickering emulsion composite microparticles seemed to be a promising strategy for enhancing the stability and antibacterial activity of MJO.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huazhang Lai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
8
|
Xia C, Xu Z, Xu M, Zhang C, Xu B, Liu B, Yan X, Zheng Z, Zhang R. Body temperature responsive capsules templated from Pickering emulsion for thermally triggered release of β-carotene. Int J Biol Macromol 2024; 266:130940. [PMID: 38521331 DOI: 10.1016/j.ijbiomac.2024.130940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
In recent years, functional foods with lipophilic nutraceutical ingredients are gaining more and more attention because of its potential healthy and commercial value, and developing of various bioderived food-grade particles for use in fabrication of Pickering emulsion has attracted great attentions. Herein, the bio-originated sodium caseinate-lysozyme (Cas-Lyz) complex particles were firstly designed to be used as a novel interfacial emulsifier for Pickering emulsions. Pickering emulsions of various food oils were all successfully stabilized by the Cas-Lyz particles without addition of any synthetic surfactants, while the fluorescence microscopy and SEM characterizations clearly evidenced Cas-Lyz particles were attached on the surface of emulsion droplets. Additionally, the Cas-Lyz particles stabilized emulsion can also be used to encapsulate the β-carotene-loaded soybean oil, suggestion a potential method to carry lipophilic bioactive ingredients in an aqueous formulation for food, cosmetic and medical industry. At last, we present a Pickering emulsion strategy that utilizes biocompatible, edible and body temperature-responsive lard oil as the core material in microcapsules, which can achieve hermetic sealing and physiological temperature-triggered release of model nutraceutical ingredient (β-carotene).
Collapse
Affiliation(s)
- Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Zihui Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Maodong Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Bo Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Benhai Liu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xin Yan
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenan Zheng
- Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
9
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
10
|
Mikhaylov VI, Torlopov MA, Vaseneva IN, Legki PV, Paderin NM, Martakov IS, Sitnikov PA. Anti-Alzheimer Drug Delivery via Pickering Emulsions Stabilized by Plate-like Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11769-11781. [PMID: 37556390 DOI: 10.1021/acs.langmuir.3c01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown. Plate-like cellulose nanocrystals at a concentration of 16 g/L are able to form delamination-resistant emulsions without added electrolytes. The viscosity of pCNC-stabilized emulsions tends to decrease with increasing electrolyte concentration in the system, which is not characteristic of rod-like CNC-stabilized emulsions. This effect in pCNC-stabilized emulsions assumedly can be associated both with weak mechanical engagement between drops due to the shape of stabilizer particles and with an insignificant participation of background electrolyte cations in the formation of interdroplet interactions. Therefore, the resulting aggregates are unstable and easily destroyed, even under weak mechanical stress. As a consequence, the acid-base properties of the pCNC surface are practically independent of the emulsion preparation method (with or without electrolyte) as well as the concentration of the background electrolyte. The reduced viscosity of pCNC-stabilized emulsions in the presence of an electrolyte, coupled with the absence of acute toxicity, allows us to recommend them as a convenient oral delivery system for fat-soluble, biologically active substances. Our emulsions carrying donepezil (an anti-Alzheimer drug) showed better performance than a solution of donepezil hydrochloride in preventing memory impairment tested on laboratory mice.
Collapse
Affiliation(s)
- Vasily I Mikhaylov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Mikhail A Torlopov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Irina N Vaseneva
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Philipp V Legki
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Nikita M Paderin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 50 Pervomayskaya St., 167982 Syktyvkar, Russia
| | - Ilia S Martakov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Petr A Sitnikov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| |
Collapse
|
11
|
Ma Q, Nie C, Bu X, Liu B, Li W, Zhang X, Tan Y, Wu P, Fan G, Wang J. Properties of Pickering emulsions stabilized by cellulose nanocrystals extracted from litchi peels. Int J Biol Macromol 2023; 242:124879. [PMID: 37192711 DOI: 10.1016/j.ijbiomac.2023.124879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The development of Pickering emulsions which are applicable to the food industry still remains challenges due to the limited availability for biocompatible, edible and natural emulsifiers. The purpose of this study was to extract cellulose nanocrystals from litchi peels (LP-CNCs), and evaluate their emulsifying properties. The results showed that the LP-CNCs were needle-like and they possessed high crystallinity (72.34 %) and aspect ratio. When the concentrations of LP-CNCs were >0.7 wt% or the contents of oil were no >0.5, stable Pickering emulsions were obtained. The microstructures of emulsions confirmed that LP-CNCs formed dense interfacial layers on the surface of oil droplets, which functioned as barriers to prevent aggregation and flocculation among droplets. Rheological results showed that the emulsions exhibited typical shear thinning behavior. The elastic of emulsions was dominant, and their gel strength could be enhanced by regulating the contents of emulsifiers or oil. Additionally, the Pickering emulsions stabilized by LP-CNCs showed extremely high pH, ionic strength, and temperature tolerance. This strategy provides an innovative alternative to tackle the dilemma of preparing highly stable Pickering emulsions using natural particles in food products.
Collapse
Affiliation(s)
- Qin Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianpan Bu
- Ankang R&D Center for Se-enriched Products, Ankang, Shaanxi 725000, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weilong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaowan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinfeng Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangsen Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|