1
|
He Y, Yang S, Liu C, Ouyang Y, Li Y, Zhu H, Yao Y, Yang H, Rui X, Yu Y. Composite Polymer Solid Electrolytes for All-Solid-State Sodium Batteries. SMALL METHODS 2025:e2402220. [PMID: 39906011 DOI: 10.1002/smtd.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Sodium-ion batteries (SIBs) are emerging as a promising alternative to lithium-ion batteries, primarily due to their plentiful raw materials and cost-effectiveness. However, the use of traditional organic liquid electrolytes in sodium battery applications presents significant safety risks, prompting the investigation of solid electrolytes as a more viable solution. Despite their advantages, single solid electrolytes encounter challenges, including low conductivity of sodium ions at room temperature and incompatibility with electrode materials. To overcome these limitations, the researchers develop composite polymer solid electrolytes (CPSEs), which merge the strengths of high ionic conductivity of inorganic solid electrolytes and the flexibility of polymer solid electrolytes. CPSEs are usually composed of inorganic materials dispersed in the polymer matrix. The final performance of CPSEs can be further improved by optimizing the particle size, relative content, and form of inorganic fillers. CPSEs show great advantages in improving ionic conductivity and interface compatibility, making them an important direction for future solid-state sodium battery research. Therefore, this paper summarizes recent advancements in composite solid electrolytes, discusses the impact of their preparation processes on performance, and outlines potential future developments in sodium-ion solid-state batteries.
Collapse
Affiliation(s)
- Yiying He
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoumeng Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Congcong Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yue Ouyang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanni Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hangmin Zhu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Li Y, Wei B, Yu J, Chen D. Multiple Na + transport pathways and interfacial compatibility enable high-capacity, room-temperature quasi-solid sodium batteries. J Colloid Interface Sci 2024; 666:447-456. [PMID: 38608639 DOI: 10.1016/j.jcis.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Sodium-metal batteries (SMBs) are ideal for large-scale energy storage due to their stable operation and high capacity. However, they have safety issues caused by severe dendrite growth and side reactions, particularly when using liquid electrolytes. Therefore, it is critically important to develop electrolytes with high ionic conductivity and improved safety that are non-flammable and resistant to dendrites. Here, we developed polymerized polyethylene glycol diacrylate (PEGDA)-modified poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) electrolytes (PPEs) with highly conductive sodium bis(trifluoromethanesulfonyl)imide and corrosion-inhibitive sodium bis(oxalato)borate salts for SMBs. Well-complexed PEGDA not only increases the amorphicity of the PVDF matrix, but also offers numerous Lewis basic sites through the polar groups of carbonyl and ether groups (i.e., electron donors). The presence of the Lewis basic sites facilitates the dissociation of sodium salt and transportation of Na+ within the PVDF matrix. This results in the generation of additional Na+ transport pathways, which can enhance the performance of the battery. Among PPEs, the optimized PPE-50 exhibits a high ionic conductivity of 3.42 × 10-4 S cm-1 and a mechanical strength of 14.0 MPa. A Na||Na symmetric cell with PPE-50 displays high stability at 0.2 mA cm-2 for 800 h. PPE-50 further displays high capacity, e.g., a Na3V2(PO4)3|PPE-50|Na battery delivers a decent discharge capacity of 101.5 mAh g-1 at 1.0C after 650 cycles. Our work demonstrates the development of high-performance quasi-solid polymer electrolytes with multiple transport pathways suitable for room-temperature SMBs.
Collapse
Affiliation(s)
- Yueqing Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Bixia Wei
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Dengjie Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Wang L, Xie L, Dong L, Wang Z, Li L, Shangguan E, Li J, Gao S. Composite poly(ethylene oxide)-based solid electrolyte with consecutive and fast ion transport channels constructed by upper-dimensional MIL-53(Al) nanofibers. J Colloid Interface Sci 2024; 657:632-643. [PMID: 38071812 DOI: 10.1016/j.jcis.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Novel structural designs for metal organic frameworks (MOFs) are expected to improve ion-transport behavior in composite solid electrolytes. Herein, upper-dimensional MIL-53(Al) nanofibers (MNFs, MIL-53 belongs to the MIL (Material Institute Lavoisier) group) with flower-like nanoflake structures have been designed and constructed via modified hydrothermal coordination. The optimized MNFs with high surface area and porosity can form abundant interfaces with poly(ethylene oxide) (PEO) matrix. The plasticization of MNFs to the PEO matrix will facilitate segmental movement of PEO chains to facilitate Li+ conduction. The unsaturated open metal centers of MNFs can effectively capture bis(trifluoromethanesulfonyl)imide anions (TFSI-) to deliver more free lithium ions for transfer. Moreover, the upper-dimensional nanofiber structure endows lithium ions with a long-range and consecutive transport pathway. The obtained composite solid electrolyte (MNFs@PEO) presents a high ionic conductivity of 4.1 × 10-4 S cm-1 and a great Li+ transference number of 0.4 at 60 °C. The electrolyte also exhibits a stable Li plating/stripping behavior over 1000 h at 0.1 mA cm-1 with inhibited Li dendrite growth. Furthermore, the Li/LiFePO4 and Li/LiNi0.8Mn0.1Co0.1O2 batteries with MNFs@PEO as electrolytes both display great cycling stabilities with high-capacity retention, indicating their potential applications in lithium metal batteries. The study will put forward new inspirations for designing advanced MOF-based composite solid electrolytes.
Collapse
Affiliation(s)
- Liyuan Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Liyuan Xie
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lingli Dong
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shengbo Gao
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
4
|
Hu X, Wang Y, Qiu Y, Yu X, Shi Q, Liu Y, Feng W, Zhao Y. Non-aqueous Liquid Electrolyte Additives for Sodium-Ion Batteries. Chem Asian J 2024; 19:e202300960. [PMID: 38143238 DOI: 10.1002/asia.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/26/2023]
Abstract
Sodium-ion batteries (SIBs) have been recognized as one of the most promising new energy storage devices for their rich sodium resources, low cost and high safety. The electrolyte, as a bridge connecting the cathode and anode electrodes, plays a vital role in determining the performance of SIBs, such as coulombic efficiency, energy density and cycle life. Therefore, the overall performance of SIBs could be significantly improved by adjusting the electrolyte composition or adding a small number of functional additives. In this review, the fundamentals of SIB electrolytes including electrode-electrolyte interface and solvation structure are introduced. Then, the mechanisms of electrolyte additive action on SIBs are discussed, with a focus on film-forming additives, flame-retardant additives and overcharge protection additives. Finally, the future research of electrolytes is prospected from the perspective of scientific concepts and practical applications.
Collapse
Affiliation(s)
- Xinhong Hu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yirong Wang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yi Qiu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuan Yu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qinhao Shi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yiming Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wuliang Feng
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yufeng Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|