1
|
Xu W, Li M, Hu H, Hasan WU, Li C, Deng Q, Meng Z, Peng X. Hierarchical NiGa-LDH/Ti 3C 2T x MXene composites for enhanced capacitance in alkaline all-solid-state energy storage. J Colloid Interface Sci 2025; 690:137341. [PMID: 40107056 DOI: 10.1016/j.jcis.2025.137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
In recent years, the rapid advancement of safe energy storage devices with high energy and power densities has generated significant interest in all-solid-state supercapacitors (SCs). MXene-based nanomaterials have emerged as promising candidates for energy storage owing to their exceptional redox properties, extensive surface area, and high metallic conductivity. Additionally, layered double hydroxides (LDHs), distinguished by their distinct nanostructures, and efficient ion channels, with elevated specific capacitance, have attracted interest. Consequently, a novel all-solid-state supercapacitor(AASCs) was fabricated by employing a hydrothermal method to integrate NiGa-LDH nanosheets with Ti3C2Tx MXene, resulting in enhanced energy storage properties. The NiGa-LDH/Ti3C2Tx MXene exhibits excellent properties, including a specific capacitance of 618.66 F g-1 at 1 mA cm-2 and 93.75 % capacitance retention after 5,000 cycles at 1 mA cm-2. The all-solid-state NiGa-LDH/Ti3C2Tx MXene//activated carbon(AC) asymmetric supercapacitor (AASCs) demonstrates an impressive energy density of 20 Wh kg-1 and a high power density of 400 W kg-1. Density-functional theory (DFT) studies show that NiGa-LDH/Ti3C2Tx MXene has a high density of states (DOS) around the Fermi level and possesses a potassium ion adsorption energy of -2.36 eV. This study provides technical and theoretical insights into the design of intricate nanostructures utilizing MXene-based nanomaterials for all-solid-state energy storage device.
Collapse
Affiliation(s)
- Wendong Xu
- College of Science, Donghua University, Shanghai 201620, China
| | - Mai Li
- College of Science, Donghua University, Shanghai 201620, China.
| | - Haotian Hu
- College of Science, Donghua University, Shanghai 201620, China
| | - Waqar Ul Hasan
- College of Science, Donghua University, Shanghai 201620, China
| | - Chenxi Li
- College of Science, Donghua University, Shanghai 201620, China
| | - Qinglin Deng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science, Donghua University, Shanghai 201620, China
| | - Xiang Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
2
|
Sadavar SP, Mulik SV, Koyale PA, Sadavar SV, Delekar SD. Advances in anion-intercalated layered double hydroxides for supercapacitors: study of chemical modifications and classifications. MATERIALS HORIZONS 2025. [PMID: 40261361 DOI: 10.1039/d4mh01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Hybrid material-based electrochemical supercapacitors (SCs) possessing improved energy density (ED), enhanced stability, high porosity, and a large accessible surface area have attracted attention as promising energy storage devices. SCs also demonstrate excellent specific capacitance (Cs) across various current densities, increased capacitance, and high cell voltages, all contributing to improved ED. Layered double hydroxides (LDHs), with their anionic exchange capabilities and laminar structures, offer significant potential for boosting charge transfer in SCs. This review provides a comprehensive overview of the recent advances in anion-based LDHs, discussing their storage mechanisms, chemical modifications, and classification based on interlayer anions. The roles of different anions, including monovalent, divalent, and polyoxometalates, in enhancing storage properties are examined. In addition, the challenges, future research directions, and practical perspectives of anion-storing LDHs are presented. Hence, this review provides a concise overview of anion-based LDHs for SCs, highlighting their potential significance in energy storage applications.
Collapse
Affiliation(s)
- Sonali P Sadavar
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
| | - Swapnajit V Mulik
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
- Department of Chemistry, Dattajirao Kadam Arts, Science and Commerce, College, Ichalkaranji, Maharashtra, 416 115, India
| | - Pramod A Koyale
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Shrikant V Sadavar
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sagar D Delekar
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
| |
Collapse
|
3
|
Li Y, Zhou Q, Lian Y. Zeolitic Imidazolate Framework-67-Derived NiCoMn-Layered Double Hydroxides Nanosheets Dispersedly Grown on the Conductive Networks of Single-Walled Carbon Nanotubes for High-Performance Hybrid Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:481. [PMID: 40214527 PMCID: PMC11990305 DOI: 10.3390/nano15070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
A supercapacitor's energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by their large aggregation tendency and poor electrical conductivity. Herein, a novel NiCoMn-LDH/SWCNTs (single-walled carbon nanotubes) composite electrode material, with ultrathin NiCoMn-LDH nanosheets dispersedly grown among the highly conductive networks of SWCNTs, was prepared via a facile zeolitic imidazolate framework-67 (ZIF-67)-derived in situ etching and deposition procedure. The NiCoMn-LDH/SWCNTs electrode demonstrates a specific capacitance as large as 1704.3 F g-1 at 1 A g-1, which is ascribed to its exposure of more active sites than NiCoMn-LDH. Moreover, the assembled NiCoMn-LDH/SWCNTs//BGA (boron-doped graphene aerogel) hybrid supercapacitor exhibits a superior capacitance of 167.9 F g-1 at 1.0 A g-1, an excellent energy density of 45.7 Wh kg-1 with a power density of 700 W kg-1, and an outstanding cyclic stability with 82.3% incipient capacitance maintained when subjected to 5000 charge and discharge cycles at the current density of 10 A g-1, suggesting the significant potential of NiCoMn-LDH/SWCNTs as the electrode material applicable in supercapacitors.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
- School of Food Engineering, Harbin University, Harbin 150086, China
| | - Qin Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yongfu Lian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
4
|
Caroline SC, Ravindran A, Ghosh K, Batabyal SK. Growth of Succulent Shaped Fluorine Incorporated Ni─Co LDH (F-NiCo(OH) 2): Elevating Supercapacitor Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411641. [PMID: 40103434 DOI: 10.1002/smll.202411641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Indexed: 03/20/2025]
Abstract
The unparalleled morphological tuning of layered double hydroxides (LDHs), specifically NiCo(OH)2, through fluorine doping, is systematically investigated. The unique morphological tuning is achieved by precisely modulating the fluorine dopant concentration using a straightforward solvothermal approach. Field Emission Scanning Electron Microscopy (FESEM) results show distinct succulent-like morphologies in the samples, influencing the surface area and electrochemical performance. Electrochemical studies of the fabricated asymmetric supercapacitor consisting of 2F-NiCo(OH)2|Activated Carbon(AC) electrodes exhibit very high charge storage capacity as high as 402 C g-1. Further, the X-ray photoelectron spectroscopy analysis confirms the incorporation and chemisorption of fluorine within the LDH layers, thereby corroborating its presence influencing the electronic environment and enhancing the electrochemical performance. The device shows an exceptionally high energy density, of 67 Wh kg-1 with power density of 10.6 kW kg-1 while retaining 95% specific capacity after 13 000 cycles at 10 mA cm-2 current density. The practical applicability of the developed supercapacitor is demonstrated by successfully powering an LED and a calculator, underscoring its potential for real-world energy storage solutions.
Collapse
Affiliation(s)
- S Charis Caroline
- Department of Physics, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - Athulya Ravindran
- Department of Physics, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - Kaushik Ghosh
- Institute of Nano Science & Technology, Mohali, Punjab, 140306, India
| | - Sudip K Batabyal
- Department of Physics, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
- Centre of Excellence in Advanced Materials and Green Technologies, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| |
Collapse
|
5
|
Yang B, Cheng B, Li H, Wang T, Xie M. Mg xCo 1-x(OH) 2@C as an electrode for supercapacitors: effect of doping level on energy storage capability. Dalton Trans 2025; 54:2503-2511. [PMID: 39751014 DOI: 10.1039/d4dt02949f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Incorporating non-electrochemically active elements (such as Zn and Mg) into the framework of active components can enhance structural stability, leading to improved cycling performance. However, limited research has been conducted on the impact of varying doping concentrations. In this study, we conducted a comprehensive analysis of how different levels of Mg doping in Co(OH)2 affect the supercapacitor performance. We synthesized a range of cobalt hydroxides with precisely controlled Mg content using a cation ion-exchange reaction method. Our findings suggest that the Mg component can be evenly distributed in the composite material, and when the Co/Mg ratio exceeds 1 : 1, the formation of Mg-O-Co bonds can be observed. When used as an electrode for a supercapacitor, the doped cobalt hydroxides exhibit superior performance than the undoped version and some recently reported cobalt hydroxide-based devices. Particularly, they show a high specific capacitance of 700.2 C g-1@1.0 A g-1versus 448.2 F g-1@1.0 A g-1, a large energy density of 48 W h kg-1@800 W kg-1versus 39 W h kg-1@775 W kg-1, and excellent cycling stability, with only slight fluctuations around 100% capacitance retention after 30 000 cycles of continuous charge and discharge. This research not only offers guidance on the optimal doping level of the redox-active metal hydroxides for improving supercapacitor performance but also presents a novel method for preparing various metal hydroxides/oxides and their composite forms.
Collapse
Affiliation(s)
- Beina Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
| | - Bei Cheng
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
| | - Huijuan Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
| | - Tielin Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Mingjiang Xie
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
6
|
Cheng X, Zhang L, Li L, Wu H, Zheng J, Sun J, Li G. One-Step Hydrothermal Synthesis of Glucose-Induced Low Crystallinity NiCo-Based Layered Double Hydroxides for High-Performance Asymmetric Supercapacitors. Chemistry 2025; 31:e202403439. [PMID: 39639803 DOI: 10.1002/chem.202403439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
In order to improve the electrochemical performance of NiCo-based layered double hydroxide (NiCoLDH), the synthesis of low-crystallinity NiCoLDH was induced by the adsorption of glucose and NiCoLDH. The results showed that glucose could not only effectively regulate the pore structure and morphology of NiCoLDH, but also had a regular effect on crystallinity. Pure phase NiCoLDH had higher crystallinity. When the mass of glucose is 0.05 g, the prepared NiCoLDH-0.05 is a short-range ordered structure embedded in the amorphous matrix. The crystallinity of the product decreases further with the further increase of glucose mass. Since the ordered structures have higher electrical conductivity, and amorphous structures have more defects and active sites, the structure of NiCoLDH-0.05 is conducive to achieving the best electrochemical performance. Electrochemical test results show that NiCoLDH-0.05 has a high specific capacitance, about 12 times that of the pure phase NiCoLDH, the mass of glucose is higher than or below 0.05 g, the specific capacitance will be further reduced. NiCoLDH-0.05 and activated carbon assembled into an asymmetric supercapacitor have a power density of 400 W kg-1 at an energy density of 32.7 Wh kg-1. This study provides a new idea for obtaining excellent electrochemical properties by adjusting LDH crystallinity.
Collapse
Affiliation(s)
- Xiaoyang Cheng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Lihua Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Lingyan Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Hao Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Jinfeng Zheng
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Minstry of Education, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Jiao Sun
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Minstry of Education, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Guifang Li
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, People's Republic of China
| |
Collapse
|
7
|
Lu Z, Zhao K, Duan L, Sun H, Xu J, Marquez KP, Zhang J, Liu J. In situ construction of NiCo-layered double hydroxide nanobranches with adjustable layer spacing on micro-sized carbon plate for high-performance supercapacitors. J Colloid Interface Sci 2025; 678:482-493. [PMID: 39303566 DOI: 10.1016/j.jcis.2024.09.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Binary layered double hydroxides (LDHs) are an emerging class of materials for supercapacitors owing to their tunable topological structure and excellent theoretical energy storage capacity. However, aggregation and restacking cause a decrease in the interlayer distance of LDHs, resulting in a considerable drop in real specific capacitance. To address this, large-sized anions are intercalated into the interlayer space. Herein, we constructed 3D top-tangled NiCo-LDH nanobranches in situ on a biomass micro-sized carbon plate (CP). By varying the amount of benzene-1,4-dicarboxylic acid (BDC), we prepared a BDC-intercalated CP/NiCo-LDH composite material with adjustable interlayer spacing. Remarkably, the CP/NiCo-LDH-BDC(0.03) composite exhibited excellent electrochemical properties (1530 F g-1/212.5 mAh/g at 1 A/g). It retained 88.36 % capacity after 5000 charge-discharge cycles. The constructed CP/NiCo-LDH-BDC(0.03)//CP asymmetric supercapacitor showed excellent gravimetric capacitance (123 F g-1/54.7 mAh/g at 1 A/g) and energy density (43.7 Wh kg-1 at 800 W kg-1). Furthermore, two asymmetric capacitors connected in series powered a small lightbulb for 2 min, even in a bent state. These findings show that the fabricated CP and CP/NiCo-LDH-BDC(0.03) electrode materials can be applied in flexible and wearable energy storage systems.
Collapse
Affiliation(s)
- Zhongqi Lu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Kai Zhao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Huiru Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Kevinilo P Marquez
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; Institute of Chemistry, University of the Philippines-Los Baños, Laguna 4031, Philippines
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Wang Z, Song Y, Li R, Li R, Jia R, Nie K, Xie H, Xu X, Lin L. Fabrication of oxygen-vacancy abundant NiAl-layered double hydroxides for ultrahigh capacity supercapacitors. Dalton Trans 2025; 54:821-831. [PMID: 39576216 DOI: 10.1039/d4dt02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The manipulation of oxygen vacancies is regarded as a viable approach to enhance the electrochemical properties of electrode materials. Herein, NiAl-LDH nanosheets with rich oxygen vacancies were successfully synthesized on the surface of nickel foam via a conventional hydrothermal and chemical reduction strategy. The oxygen vacancies were introduced and modulated via NaBH4 treatment, significantly enhancing the electrochemical properties. The oxygen-vacancy abundant NiAl-LDH electrode materials show a high capacitance of 4028 mF cm-2 at the current density of 2 mA cm-2 and obtain a high capacity retention of 3000 mF cm-2 even at a current density of up to 20 mA cm-2. In addition, the symmetric SC device achieves a notable energy density of 71.3 W h kg-1 while operating at a power density of 2400 W kg-1. The empirical and theoretical findings demonstrate that the incorporation of oxygen vacancies significantly contributes to the improvement of the electrochemical characteristics of LDH electrode materials. The samples discussed in this work have the potential to serve as advanced electrode materials for supercapacitors in high-capacity energy storage devices.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Yifan Song
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Ruiqi Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Risheng Li
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Runping Jia
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Kunliang Nie
- Sichuan Huachuan Industries Co., Ltd, Chengdu, 610106, PR China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co. Ltd, Hangzhou, 310003, PR China
| | - Xiaowei Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
9
|
Niu J, Wang X, Wu Q, Li J, Wang D, Ran F. Carbon/copper oxide electrode materials with high atomic utilization constructed by in-situ induced growth strategy of nano metal-organic frameworks. J Colloid Interface Sci 2025; 677:68-78. [PMID: 39083893 DOI: 10.1016/j.jcis.2024.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Carbon/metal composites derived from metal-organic frameworks (MOFs) have attracted widespread attention due to their excellent electronic conductivity, adjustable porosity, and outstanding stability. However, traditional synthesis methods are limited by the dense stereo geometry and large crystal grain size of MOFs, resulting in many metals active sites are buried in the carbon matrix. While the common strategy involves incorporating additional dispersed media into material, this leads to a decrease in practical metal content. In this study, nanosized copper-metal-organic frameworks (Cu-MOFs) are in-situ grown on surface of carbon spheres by pre-anchoring copper ions, and the hybrid composite of porous carbon/copper oxide with high copper atom utilization rate is prepared through activation and pyrolysis methods. This strategy effectively addresses the issue of insufficient exposure of metal sites, and the obtained composite material exhibits high effective copper atom utilization rate, large specific surface area (2052.3 m2·g-1), diverse pore structure, outstanding specific capacity (1076.5F·g-1 at 0.5 A·g-1), and excellent cycle stability. Furthermore, this highly atom-economical universal method has positive significance in application fields of catalysis, energy storage, and adsorption.
Collapse
Affiliation(s)
- Jianzhou Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Xiangya Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Qianghong Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Jinling Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Dahui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China.
| |
Collapse
|
10
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
11
|
K D, Singh AK. Fabrication and characterization of Sb 2O 3-MoS 2nanocomposites for high performance supercapacitor applications. NANOTECHNOLOGY 2024; 35:435402. [PMID: 39084237 DOI: 10.1088/1361-6528/ad6995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Binary nanocomposite-based electrodes have been studied extensively in recent times owing to their multiple oxidation states, excellent physico-chemical features, and combined morphology, which are suitable for increasing the electrochemical performance of supercapacitors. The present work deals with Sb2O3-MoS2nanocomposites electrode for supercapacitor applications. The x-ray diffraction (XRD), Raman, scanning electron microscope (SEM), energy dispersive x-ray (EDX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and x-ray photoelectron spectroscopy (XPS) characterizations have been studied to analyze the phase formation, vibrational modes, morphology, elemental composition and binding energies of the prepared Sb2O3-MoS2nanocomposites electrode material, as well as their electrochemical measurements such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) have been analyzed. The developed Sb2O3-MoS2nanocomposites electrode provides a high specific capacitance of 454.3 F g-1at the current density of 1 A g-1. Further, the hybrid supercapacitor device has been constructed which shows 104.04 F g-1of specific capacitance at 2 A g-1and manifests a good energy density of 24.42 Wh kg-1at a power density of 1299.89 W kg-1. Additionally, the hybrid device Sb2O3-MoS2//AC exhibits a good capacitive retention of 90.6% and a coulombic efficiency of 100.45% at 10 A g-1over 8000 cycles.
Collapse
Affiliation(s)
- Dhamodharan K
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Abhishek Kumar Singh
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
12
|
Guo M, Du J, Liu X, Liu W, Zhao M, Wang J, Li X. Rational Fabrication of Nickel Vanadium Sulfide Encapsulated on Graphene as an Advanced Electrode for High-Performance Supercapacitors. Molecules 2024; 29:3642. [PMID: 39125046 PMCID: PMC11313959 DOI: 10.3390/molecules29153642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Supercapacitors (SCs) are widely recognized as competitive power sources for energy storage. The hierarchical structure of nickel vanadium sulfide nanoparticles encapsulated on graphene nanosheets (NVS/G) was fabricated using a cost-effective and scalable solvothermal process. The reaction contents of the composites were explored and optimized. TEM images displayed the nickel vanadium sulfide nanoparticles (NVS NPs) with 20-30 nm average size anchored to graphene nanosheets. The interconnection of graphene nanosheets encapsulating NVS nanoparticles effectively reduces the ion diffusion path between the electrode and electrolyte, thereby enhancing electrochemical performance. The NVS/G composite demonstrated improved electrochemical performance, achieving a maximum of 1437 F g-1 specific capacitance at 1 A g-1, remarkable rate capability retaining of 1050 F g-1 at 20 A g-1, and exceptional cycle stability with 91.2% capacitance retention following 10,000 cycles. The NVS/G composite was employed as a cathode, and reduced graphene oxide (rGO) was used as an anode material to assemble a device. Importantly, asymmetric SCs using NVS/G//rGO achieved 74.7 W h kg-1 energy density at 0.8 kW kg-1 power density, along with outstanding stability with 88.2% capacitance retention following 10,000 cycles. These superior properties of the NVS/G electrode highlight its significant potential in energy storage applications.
Collapse
Affiliation(s)
- Meng Guo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Jia Du
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Xueguo Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Wentao Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Mingjian Zhao
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Jianqi Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Xuyang Li
- School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
13
|
Li C, Yan C, Yang Q, Huo P. The hierarchical dense structure induced high stability to NiCoB-based electrode for electrochemical energy storage. J Colloid Interface Sci 2024; 667:553-562. [PMID: 38657539 DOI: 10.1016/j.jcis.2024.04.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The construction of stable hierarchical surfaces through structural engineering is the key to improve reactive active sites and cycle stability to achieve high cycle performance of supercapacitors (SCs). In this work, the NiCo-LDH nanoflower as a structure guide agent was used to support NiCoB nanosheets to form a dense and stable hierarchical structure, thereby exposing more active sites and improving cycle stability. Due to the hierarchical stable surface structure, the NiCoB-0.3@NiCo-LDH-30 electrode has an excellent specific capacitance of 2710F g-1 at 1 A/g due to the excellent electrochemical active surface area (1259 mF cm-2), improving the OH- diffusion coefficient (2.4 × 10-9 cm2 s-1) and decreasing ionic diffusion barrier. After 5000 cycles, NiCoB-0.3@NiCo-LDH-30 electrode still has 92.6 % initial specific capacitance. In order to balance the energy density decrease caused by the capacitance imbalance between positive and negative electrodes, the cubed carbon (Co-C) derived from cobalt metal organic frameworks (Co-MOFs) as cathode with a good specific capacitance of 220F g-1 at 1 A/g is prepared. The assembled NiCoB-0.3@NiCo-LDH-30//Co-C hybrid SCs (HSCs), which are assembled with NiCoB-0.3@NiCo-LDH-30 electrode as anode and Co-C electrode as cathode, displays an energy density of 75 Wh kg-1 at a power density of 741 W kg-1.
Collapse
Affiliation(s)
- Chunyan Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chao Yan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Qingjun Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengwei Huo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
14
|
Zheng L, Gao S, Yao S, Huang Y, Zhai S, Hao J, Fu X, An Q, Xiao Z. N-doped porous carbon with ZIF-67-derived CoFe 2O 4-Fe particles for supercapacitors. J Colloid Interface Sci 2024; 674:735-744. [PMID: 38950472 DOI: 10.1016/j.jcis.2024.06.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
The development of novel materials for electrodes with high energy densities is essential to the advancement of energy storage technologies. In this study, N-doped layered porous carbon with ZIF-67-derived binary CoFe2O4-Fe particles was successfully fabricated by the pyrolysis of an Fe-based chitosan (CS) hydrogel mixed with ZIF-67 particles. Various characterization techniques were employed to assess the performance of the prepared porous CoFe2O4-Fe@NC composite. This composite exhibits excellent performance owing to the effective combination of multivalent CoFe2O4-Fe particles derived from ZIF-67 with N-doped porous carbon substances with a high surface area, which helps to accelerate ion and charge transfer. The specific capacitance of the CoFe2O4-Fe@NC composite carbonized at 700 °C reached 3960.9F/g at 1 A/g. When this composite is combined with activated carbon (AC) to construct an asymmetric supercapacitor (ASC), a density of energy of up to 84.9 W h kg-1 is attained at a power capacity of 291.6 W kg-1. Moreover, this composite maintained a capacitance retention of up to 94.9 % after 10,000 cycles. This work offers new perspectives on high-performance supercapacitors and their applications.
Collapse
Affiliation(s)
- Lulu Zheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Siyu Gao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuaikang Yao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yingjie Huang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingai Hao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuemei Fu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
He Y, Xiang T, Ren X, Fang S, Chen C. Plasma-induced, N-doped, and reduced graphene oxide-incorporated NiCo-layered double hydroxide nanowires as a high-capacity redox mediator for sustainable decoupled water electrolysis. J Colloid Interface Sci 2024; 674:39-48. [PMID: 38909593 DOI: 10.1016/j.jcis.2024.06.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Although the recent emergence of decoupled water electrolysis prevents typical H2/O2 mixing, the further development of decoupled water electrolysis has been confined by the lack of reliable redox mediator (RM) electrodes to support sustainable H2 production. As energy storage electrodes, layered double hydroxides (LDHs) possess inherently poor conductivity/stability, which can be improved by growing LDHs on graphene substrates in situ. The proper modification of the graphene surface structure can improve the electron transport and energy storage capacity of composite electrodes, while current methods are usually cumbersome and require high temperatures/chemical reagents. Therefore, in this study, dip coating was adopted to grow graphene oxide (GO) on nickel foam (NF). Then, the GO was reduced using nonthermal plasma (NTP) to reduced GO (rGO) in situ while simultaneously implementing N doping to obtain plasma-assisted N-doped rGO on NF (PNrGO/NF). The uniform conductive substrate ensured the subsequent growth of less-aggregated NiCo-LDH nanowires, which improved the conductivity and energy storage capacity (5.93 C/cm2 at 5 mA/cm2) of the NiCo-LDH@PNrGO/NF. For the decoupled system, the composite RM electrode exhibited a high buffering capacity for 1300 s during the decoupled H2/O2 evolution, and in the conventional coupled system, the necessary input voltage of 1.67 V was separated into two lower ones, 1.42/0.33 V for H2/O2 evolutions, respectively. Simultaneously, the RM possessed outstanding redox reversibility and structural stability during long-term cycling. This work could offer a feasible strategy for using NTP to synthesize excellent RM electrodes for application to decoupled water electrolysis.
Collapse
Affiliation(s)
- Yuan He
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ting Xiang
- Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230023, PR China
| | - Xuemei Ren
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China
| | - Shidong Fang
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China.
| | - Changlun Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
16
|
Chen H, Bao E, Sun H, Ren X, Han X, Wang Y, Zhang Z, Luo C, Xu C. Sonochemical synthesis of CoNi layered double hydroxide as a cathode material for assembling high performance hybrid supercapacitor. J Colloid Interface Sci 2024; 664:117-127. [PMID: 38460377 DOI: 10.1016/j.jcis.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Fabricating battery-type electrode materials with large specific surface area and mesopores is an efficient method for enhancing the electrochemical performance of supercapacitors. This method may provide more active sites for Faradic reactions and shorten the ion-diffusion paths. In this study, the CoNi layered double hydroxides (LDHs) with the morphology of nanoflowers and nanoflakes were prepared in solutions with pH values of 7.5 (CoNi LDH-7.5) and 8.5 (CoNi LDH-8.5) via a simple sonochemical approach. These CoNi LDHs possessed large specific surface areas and favourable electrochemical properties. The CoNi LDH-7.5 delivered a specific capacity of 740.8C/g at a current density of 1 A/g, surpassing CoNi LDH-8.5 with 668.1C/g. The hybrid supercapacitor (HSC) was assembled with activated carbon as the anode and CoNi LDH as the cathode to assess its practical application potential in the field of electrochemical energy storage. The CoNi LDH-7.5//AC HSC achieved the highest energy density of 35.6 W h kg-1 at a power density of 781.1 W kg-1. In addition, both HSCs exhibited little capacity decay over 5,000 cycles at a high current load of 8 A/g. These electrochemical properties of CoNi LDHs make them promising candidates for battery-type electrode materials. The current sonochemical method is simple and can be applied to the preparation of other LDHs-based electrode materials with favourable electrochemical performance.
Collapse
Affiliation(s)
- Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Enhui Bao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Hongyan Sun
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xianglin Ren
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xinxin Han
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yue Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zheyu Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chunwang Luo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chunju Xu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
17
|
Lu Z, Zhao K, Guo H, Duan L, Sun H, Chen K, Liu J. In Situ Construction of NiCoMn-LDH Derived from Zeolitic Imidazolate Framework on Eggshell-Like Carbon Skeleton for High-Performance Flexible Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309814. [PMID: 38155521 DOI: 10.1002/smll.202309814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Active compounds based on LDH (ternary layered double hydroxide) are considered the perfect supercapacitor electrode materials on account of their superior electrochemical qualities and distinct structural characteristics, and flexible supercapacitors are an ideal option as an energy source for wearable electronics. However, the prevalent aggregation effect of LDH materials results in significantly compromised actual specific capacitance, which limits its broad practical applications. In this research, a 3D eggshell-like interconnected porous carbon (IPC) framework with confinement and isolation capability is designed and synthesized by using glucose as the carbon source to disperse the LDH active material and enhance the conductivity of the composite material. Second, by constructing NiCoMn-LDH nanocage structure based on ZIF-67 (zeolitic imidazolate framework-67) at the nanometer scale the obtained IPC/NiCoMn-LDH electrode material can expose more active sites, which allows to achieve excellent specific capacitance (2236 F g-1/ 310.6 mAh g-1 at 1 A g-1), good rate as well as the desired cycle stability (85.9% of the initial capacitance upon 5000 cycles test). The constructed IPC/NiCoMn-LDH//IPC ASC (asymmetric supercapacitor) exhibits superior capacitive property (135 F g-1/60.1 mAh g-1 at 0.5 A g-1) as well as desired energy density (40 Wh kg-1 at 800 W kg-1).
Collapse
Affiliation(s)
- Zhongqi Lu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Kai Zhao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Huiru Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Kuiyong Chen
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong, 276000, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
18
|
Pan L, Wang D, Wang J, Chu Y, Li X, Wang W, Mitsuzaki N, Jia S, Chen Z. Morphological control and performance engineering of Co-based materials for supercapacitors. Phys Chem Chem Phys 2024; 26:9096-9111. [PMID: 38456310 DOI: 10.1039/d3cp06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.
Collapse
Affiliation(s)
- Lin Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaosong Li
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Shuyong Jia
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
19
|
Attia MM, Bahrawy AA, El-Rabiei MM, Mohamed HSH, Khabiri G. Hierarchically crystalline copper borate nanosheets as a freestanding electrode for a hybrid supercapacitor. J Colloid Interface Sci 2024; 655:335-345. [PMID: 37948807 DOI: 10.1016/j.jcis.2023.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this study, we have suggested a straightforward approach to fabricating a binder-free electrode of hierarchically crystalline copper borate (Cu-Bi) nanosheets grown on nickel foam using the Successive Ionic Layer Adsorption Reaction (SILAR) method. The best-performing electrode shows a remarkable specific capacitance (Cs) of 2002 Fg-1 at 1 Ag-1 and Cs retention of 85 % for 10,000 GCD cycles. The assembled CB/NF-2//AC device exhibits high cycling stability and achieves a high energy of 52.2 Whkg-1 at a power density of 2622.4 Wkg-1. Remarkably, it reached 152.7 Fg-1 at 2 Ag-1, and the device still has a high capacitance retention of 85 % for 10,000 cycles. This remarkable electrochemical activity could be attributed to: (i) the inherent defects of the prepared electrode via the existence of borates, providing straightforward interaction between the electrolyte and the active species; (ii) designing the hierarchical architecture that could provide a porous nanosheet structure, which generates accessible active sites for quick ion transport, boosting the Cs; (iii) the formation of crystalline Cu-Bi nanosheets, resulting in high stability and superior electrochemical performance compared to the previous amorphous borides; and (iv) the hybridization between the B 2p state and the multiple d-orbitals of transition metals, increasing the electron flow between the atoms. The current work suggests that the growth of hierarchically crystalline Cu-Bi on Ni foam using a low-cost and simple procedure could provide a practical approach to designing hybrid supercapacitors with outstanding electrochemical performance.
Collapse
Affiliation(s)
- Menna M Attia
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ahmed A Bahrawy
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - M M El-Rabiei
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Hemdan S H Mohamed
- Physics Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Gomaa Khabiri
- Physics Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
20
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Current Trends and Promising Electrode Materials in Micro-Supercapacitor Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6133. [PMID: 37763411 PMCID: PMC10533130 DOI: 10.3390/ma16186133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
The development of scientific and technological foundations for the creation of high-performance energy storage devices is becoming increasingly important due to the rapid development of microelectronics, including flexible and wearable microelectronics. Supercapacitors are indispensable devices for the power supply of systems requiring high power, high charging-discharging rates, cyclic stability, and long service life and a wide range of operating temperatures (from -40 to 70 °C). The use of printing technologies gives an opportunity to move the production of such devices to a new level due to the possibility of the automated formation of micro-supercapacitors (including flexible, stretchable, wearable) with the required type of geometric implementation, to reduce time and labour costs for their creation, and to expand the prospects of their commercialization and widespread use. Within the framework of this review, we have focused on the consideration of the key commonly used supercapacitor electrode materials and highlighted examples of their successful printing in the process of assembling miniature energy storage devices.
Collapse
Affiliation(s)
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (T.L.S.); (P.Y.G.); (E.P.S.); (N.T.K.)
| | | | | | | |
Collapse
|