1
|
Liu F, Yuan M, Feng P, Yu S, Hu Z, Xiang H, Zhu M. Synthesis of nitrogen-doped carbon nanotubes from biomass polysaccharides and lignin in waste corn stalk as host materials for lithium-sulfur batteries. Int J Biol Macromol 2025; 304:140813. [PMID: 39923599 DOI: 10.1016/j.ijbiomac.2025.140813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Utilizing biomass corn stalks as the raw material to manufacture high-value carbon materials is a promising method for mitigating environmental impact while fostering economic growth. In this study, polysaccharides and lignin in biomass corn stalks were successfully converted into N-doped multi-walled carbon nanotubes (N-CNTs) using the catalytic chemical vapor deposition method, with FeCl3 as the catalyst precursor and melamine as the nitrogen doping source. The incorporation of nitrogen doping and the formation of oxygen-containing functional groups introduced defects in the N-CNTs walls. The interpenetrating network of N-CNTs facilitates rapid electron transport and provides sufficient space to accommodate sulfur. Compared to the biomass carbon synthesized from stalk powder, biomass N-CNTs exhibit a higher specific surface area of 49.861 m2 g-1. When used as host materials for lithium‑sulfur (LiS) batteries, these N-CNTs/S cathodes demonstrate better cycling stability and rate capability. After 700 cycles at 1.0C, the N-CNTs/S cathodes still maintained a specific discharge capacity of around 574.6 mAh g-1 and nearly 100 % coulombic efficiency. The use of the chemical vapor deposition (CVD) method combined with biomass precursors for CNTs production is expected to lower production costs and improve the sustainability of energy storage systems.
Collapse
Affiliation(s)
- Fuyao Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Key Laboratory of Functional Textile Material and Product of the Ministry of Education, School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Meng Yuan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Feng
- Institute for Technical and Environmental Chemistry, Friedrich-Schiller-Universität Jena, Jena 07743, Germany; Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena 07743, Germany.
| | - Senlong Yu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Wu S, Li Y, Yang W, Liu Z, Zhang Y, Fan H. Multiple heteroatoms co-doped carbon layers coupled with Janus sulfides (CoS 2@NPSC@MoS 2) for super Na +/K + storage. J Colloid Interface Sci 2025; 678:477-486. [PMID: 39260296 DOI: 10.1016/j.jcis.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
As the most promising anodes for Na+/K+ batteries (SIBs/PIBs), transitional metal sulfides present the advantages of high capacity, straightforwardly-controlled morphology and abundant redox reaction sites. However, maintaining the structural integrity of the electrode materials during cycling and improving the cycle life still face great challenges. Herein, CoS2@NPSC@MoS2 nano-spindle heterostructure with multiple heteroatoms co-doped carbon layers coupled with Janus metal sulfides (CoS2 and MoS2) were successfully fabricated via the successive organic coating, gas-phase phosphorization and the final hydrothermal reaction processes. Benefiting from the uniformly dispersed CoS2 nanocrystals in the interior of carbon layer and the MoS2 nanosheets arrays in the exterior, Na+/K+ diffusion distances are remarkedly shortened and the reaction kinetics are greatly improved, which also provide more active sites on the surface for exposure to the electrolyte. The presence of heterogeneous atomic N/P/S co-doped carbon layer greatly improves the electrochemical conductivity of the heterostructure and provide additional buffer space for volume changes, which is conducive to retaining the integrity of the electrode structure during the cycling processes. When used as the anode material for SIBs/PIBs, it reached the reversible specific capacity of 340.44 mAh g-1 at 5.0 A g-1 after 1000 cycles for SIBs and 37.53 mAh g-1 at 5.0 A g-1 after 800 cycles for PIBs. This work demonstrates a reliable and simple strategy for the rational design of Janus metal sulfides heterostructures for high performance Na+/K+ storage application.
Collapse
Affiliation(s)
- Shimei Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yining Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Wei Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Xia P, Peng X, Yuan L, Li S, Jing S, Lu S, Zhang Y, Fan H. Core-shell Ru@Co 2P synergistic catalyst as polysulfides adsorption-catalytic conversion mediator with enhanced redox kinetics in lithium-sulfur batteries. J Colloid Interface Sci 2025; 678:619-629. [PMID: 39265334 DOI: 10.1016/j.jcis.2024.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/12/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Lithium-sulfur batteries (LSBs) have emerged as the research hotspot due to their compelling merits, including high specific capacity (1675 mAh g-1), theoretical energy density (2600 Wh kg-1), environmental friendliness, and economic advantages. However, challenges still exist for further application due to their inherent issues such as the natural insulation, shuttle effect, and volume expansion of sulfur cathode during the continuous cycle processes. These factors obstruct the lithium ions (Li+) transfer process and sulfur utilization, resulting in significant impedance and inducing inferior battery performance. Herein, the core-shell nanocube anchoring ruthenium atoms and dicobalt phosphate (Ru@Co2P@NC) were fabricated as the effective catalyst and inhibited barrier for LSBs. On the one hand, the core-shell structure offers numerous channels to expedite Li+ diffusion. On the other hand, ruthenium (Ru) and dicobalt phosphate (Co2P) active sites facilitate the chemical capture of lithium polysulfides (LiPSs), accelerating sluggish kinetics. Ru@Co2P@NC modified cells not only exhibited a high initial specific capacity (1609.35 mAh g-1) at 0.5C and enduring stability with high specific capacity retention of 906.60 mAh g-1 at 0.5C after 400 cycles but also possessed low capacity attenuation rate of 0.07 % per cycle after 600 cycles (1C, Sulfur loading: 1.2 mg). Interestingly, the modified cells demonstrated a high specific capacity and long-cycle stability with high sulfur loading (from 1.984 to 3.137 mg), which provides a promising research approach for high-performance LSBs.
Collapse
Affiliation(s)
- Peng Xia
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoli Peng
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Long Yuan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Shilan Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Shengdong Jing
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Guo X, Wan P, Xia P, Jin X, Lu S, Zhang Y, Fan H. Accelerating catalytic conversion and chemisorption of polysulfides for advanced Li-S batteries from incorporating Fe 0.64Ni 0.36@Co 5.47N hetero-nanocrystals into boron carbonitride nanotubes. J Colloid Interface Sci 2025; 678:393-406. [PMID: 39213992 DOI: 10.1016/j.jcis.2024.08.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
With the rapid development of large-scale clean energy, lithium-sulfur (Li-S) batteries are considered to be one of the most promising energy storage devices. In this manuscript, the polymetallic hetero-nanocrystal of iron nickel@cobalt nitride encapsulating into boron carbonitride nanotubes (Fe0.64Ni0.36@Co5.47N@BCN) was designed and optimized for use as a modified material for commercial polypropylene (PP) separators. The prepared Fe0.64Ni0.36@Co5.47N@BCN-12 hybrid material presents strong chemisorption and catalytic conversion capabilities, which endows the Fe0.64Ni0.36@Co5.47N@BCN-12//PP separator with enhanced polysulfide shuttling inhibition. The assembled Li-S cells with Fe0.64Ni0.36@Co5.47N@BCN-12//PP separators have minimized charge transfer resistance and faster redox kinetics. Additionally, cells with Fe0.64Ni0.36@Co5.47N@BCN-12//PP separator provide high reversible capacity of 674 mAh/g for 400 cycles at 0.5C and excellent cyclability for 1000 cycles at 2C with a low decay rate of 0.05 % per cycle. Therefore, this study provides a feasible functionalization route for improving the electrochemical performance of Li-S batteries through separator modification.
Collapse
Affiliation(s)
- Xincheng Guo
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Pengfei Wan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Peng Xia
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuanyang Jin
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Luo R, Zhao J, Zheng M, Wang Z, Zhang S, Zhang J, Xiao Y, Jiang Y, Cai Z, Cheng N. Built-in Electric Field Within CoSe 2-FeSe 2 Heterostructure for Enhanced Sulfur Reduction Reaction in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406415. [PMID: 39279464 DOI: 10.1002/smll.202406415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
The conversion of Li2S4 to Li2S is the most important and slowest rate-limiting step in the complex sulfur reduction reaction (SRR) for Li-S batteries, the adjustment of which can effectively inhibit the notorious "shuttle effect". Herein, a CoSe2-FeSe2 heterostructure embedded in 3D N-doped nanocage as a modified layer on commercial separator is designed (CoSe2-FeSe2@NC//PP). The CoSe2-FeSe2 heterostructure forms a built-in electric field at the two-phase interface, which leads to the optimized adsorption force on polysulfides and the accelerated reaction kinetics for Li2S4-Li2S evolution. Density functional theory (DFT) calculations and experimental results combine to show that the liquid-solid reaction (Li2S4-Li2S2/Li2S) is significantly enhanced in terms of thermodynamics and electrodynamics. Consequently, the batteries assembled with CoSe2-FeSe2@NC//PP delivered an excellent rate capability (606 mAh g-1 under 8.0 C) and a long cycling lifespan (only 0.056% at 1.0 C after 1000 cycles). In addition, the cells can provide high initial capacity of 887 mAh g-1 at sulfur loading of 5.8 mg cm-2 and 0.1 C. This work would provide valuable insights into binary metal selenide heterostructures for liquid-solid conversion in Li-S batteries.
Collapse
Affiliation(s)
- Ruijian Luo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junzhe Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ming Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shunqiang Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jiancan Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yong Xiao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - YingHui Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhixiong Cai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
6
|
Sun Y, Chen Z, Li C, Duan C, Guo H, Huang X, Zhang T, Lim KH, Li Y, Kawi S. Bismuth oxychloride nanosheets anchored aramid separator with sponge-like structure for improved lithium-ion battery performance. J Colloid Interface Sci 2024; 675:117-129. [PMID: 38968632 DOI: 10.1016/j.jcis.2024.06.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Functional modification of inorganic particles is an effective approach to tackle the issue of Li+ transport and the lithium dendrites formation in lithium-ion batteries (LIBs). In this study, PMIA/BiOCl composite separators are prepared by nonsolvent induce phase separation (NIPS) method using P-type semiconductor bismuth oxychloride (BiOCl) functionalized poly (m-phenylene isophthalamide) (PMIA) separators. Compared with the polypropylene (PP) separator, PMIA has superior thermal stability and the addition of BiOCl further enhances its flame retardancy. And the prepared PMIA/BiOCl separator presents improved porosity (66.47 %), enhanced electrolyte uptake rate (863 %) and higher ionic conductivity (0.49 mS∙cm-1). Besides, the incorporation of BiOCl can anchor PF6- to the three-dimensional network skeleton of the PMIA/BiOCl separators, enabling the desolvation of Li+ and selectively facilitating Li+ transport (the Li+ transfer number is 0.79). Moreover, the uniform porous structure of the PMIA/BiOCl separators and the efficient transport of Li+ uniformly deposite Li+, and minimize the growth of lithium dendrites. Batteries assembled with PMIA/BiOCl separators have a discharge specific capacity of 124.4 mAh∙g-1 and capacity retention of 96.7 % after 200 cycles at 0.2C. Therefore, this work provides an effective route in the design strategy of separators for LIBs.
Collapse
Affiliation(s)
- Yingxue Sun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Zan Chen
- Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| | - Cuijia Duan
- Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China
| | - Hongfei Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Xinyao Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Tongtong Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| | - Yinhui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| |
Collapse
|
7
|
Dong H, Xu D, Ji Y, Yang C, Xiao Y, Chen M, Wang Y, Chou S, Wang R, Chen S. An MXene-supported NH 2CNT and BiOCl composite as a sulfur reservoir for Li-S batteries with high energy density. Chem Commun (Camb) 2024; 60:11080-11083. [PMID: 39291760 DOI: 10.1039/d4cc03855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
To solve the intractable challenges of Li-S batteries, we synthesized MXene-NH2CNT-BiOCl-x to be used as a sulfur host. The M-N-B-10%-S electrode exhibited superior electrochemical performance. In situ XRD measurement confirmed that the M-N-B-10%-S electrode displayed good cycle stability.
Collapse
Affiliation(s)
- Hanghang Dong
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Danying Xu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Ying Ji
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Chao Yang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yao Xiao
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Shulei Chou
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Shuangqiang Chen
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| |
Collapse
|
8
|
Wu S, Yang W, Liu Z, Li Y, Fan H, Zhang Y, Zeng L. Organic polymer coating induced multiple heteroatom-doped carbon framework confined Co 1-xS@NPSC core-shell hexapod for advanced sodium/potassium ion batteries. J Colloid Interface Sci 2024; 660:97-105. [PMID: 38241875 DOI: 10.1016/j.jcis.2024.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Synthesis of advanced structure and multiple heteroatom-doped carbon based heterostructure materials are the key to the preparation of high-performance energy storage electrode materials. Herein, the hexapod-shaped Co1-xS@NPSC has been triumphantly prepared using hexapod ZIF-67 as the sacrificial template to prepare Co1-xS inner core and N, P, and S tri-doped carbon (NPSC) as the shell through the carbonization of the organic polymer precursor. When applied as anode for Na+ batteries (SIBs) and K+ batteries (PIBs), Co1-xS@NPSC presents the high reversible specific capability of 747.4 mAh/g at 1.0 A/g after 235 cycles and 387.8 mAh/g at 5.0 A/g after 760 cycles for SIBs, as well as 326.7 mAh/g at 1.0 A/g after 180 cycles for PIBs. The excellent storage capacity and rate capability of Co1-xS@NPSC is ascribed to hexapod structure of ZIF-67 unlike the common dodecahedron, which is constructed with interior porous and exterior framework repository, donating supplemental active sites, and doping of multiple heteroatoms forming organic polymer coating inhibiting the volume expansion and restrains the agglomeration of Co1-xS nanoparticles. This approach has paved a bright avenue to exploit promising anode materials with novel structure and hetero-atom doping for high-performance energy storage devices.
Collapse
Affiliation(s)
- Shimei Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yining Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
9
|
Xu F, Li S, Jing S, Peng X, Yuan L, Lu S, Zhang Y, Fan H. Cobalt-vanadium sulfide yolk-shell nanocages from surface etching and ion-exchange of ZIF-67 for ultra-high rate-capability sodium ion battery. J Colloid Interface Sci 2024; 660:907-915. [PMID: 38280283 DOI: 10.1016/j.jcis.2024.01.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Development of high-performance metal sulfides anode materials is a great challenge for sodium-ion batteries (SIBs). In this work, a cobalt-based imidazolate framework (ZIF-67) were firstly synthesized and applied as precursor. After the successive surface etching, ion exchange and sulfidation processes, the final cobalt-vanadium sulfide yolk-shell nanocages were obtained (CoS2/VS4@NC) with VS4 shell and CoS2 yolk encapsulated into nitrogen doped carbon frameworks. This yolk-shell nanocage structure effectively increases the specific surface area and provides enough space for inhibiting the volume change during charge/discharge processes. Besides, the nitrogen doped carbon skeleton greatly improves the ionic conductivity and facilitates ion transport. When used as the anode materials for SIBs, the yolk-shell nanocages of CoS2/VS4@NC electrode exhibits excellent rate capability and stable cycle performance. Notably, it displays a long-term cycling stability with excellent capacity of 417.28 mA h g-1 after 700 cycles at a high current density of 5 A/g. This developed approach here provides a new route for the design and synthesis of various yolk-shell nanocages nanomaterials from enormous MOFs with multitudinous compositions and morphologies and can be extended to the application into other secondary batteries and energy storage fields.
Collapse
Affiliation(s)
- Feng Xu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shilan Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shengdong Jing
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xiaoli Peng
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Long Yuan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Wan P, Peng X, Dong S, Liu X, Lu S, Zhang Y, Fan H. Synergistic enhancement of chemisorption and catalytic conversion in lithium-sulfur batteries via Co 3Fe 7/Co 5.47N separator mediator. J Colloid Interface Sci 2024; 657:757-766. [PMID: 38071824 DOI: 10.1016/j.jcis.2023.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Lithium-sulfur batteries (LSBs) show considerable potential in next-generation high performance batteries, but the heavy shuttle effect and sluggish redox kinetics of polysulfide hinder their further applications. In this paper, to address these shortcomings of LSBs, Co3Fe7/Co5.47N heterostructure were prepared and constructed from their Fe-Co Prussian blue analogue precursors under the condition of high temperature pyrolysis. The obtained Co3Fe7/Co5.47N display excellent immobilization-diffusion-conversion performance for polysulfides by synergistic effect in successfully hindering the shuttle effect of polysulfides. When the Co3Fe7/Co5.47N heterostructure were applied to modify the commercial polypropylene (PP) separator, the batteries displayed fantastic rate capacity and cycling stability. Specifically, the Co3Fe7/Co5.47N-PP batteries exhibit an extremely satisfactory initial specific capacity of 1430 m Ah/g at 0.5C, wonderful rate capacity of around 780 m Ah/g at 3C and superior per cycle decaying rate of 0.08 % for 500 cycles at 0.5C. When the current density reaches to 2C, the batteries still exhibit 501 m Ah/g after 900 cycles with 0.015 % per cycle decay rate. Besides, even in the high loading of sulfur (3.0 mg cm-2) at 0.5C, the superior cycling stability (0.075 % per cycle decay rate after 200 cycles) and high specific capacity (741 mAh/g after 200 cycles) can still be performed. Thus, this work provides a facile method for high-powered and long-life Li-S batteries with eminent entrapping-conversion processes of polysulfides.
Collapse
Affiliation(s)
- Pengfei Wan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoli Peng
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Siyang Dong
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Xinyun Liu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Sun R, Dong S, Guo X, Xia P, Lu S, Zhang Y, Fan H. Construction of 2D sandwich-like Na 2V 6O 16·3H 2O@MXene heterostructure for advanced aqueous zinc ion batteries. J Colloid Interface Sci 2024; 655:226-233. [PMID: 37944370 DOI: 10.1016/j.jcis.2023.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Aqueous zinc ion batteries (AZIBs) have attained enormous attention in the last few years. The cathode materials of aqueous zinc ion batteries play a vital effect in their electrochemical and battery properties. In this manuscript, Sandwich-like MXene@Na2V6O16·3H2O (NVO@MXene) heterostructure was successfully prepared by the combination and cooperation of the layer lattice structure of Na2V6O16·3H2O and the high conductivity of MXene. When used as the cathode material for AZIBs, NVO@MXene demonstrates preeminent rate capability and excellent reversible capacity of 175 mAh/g after 3000 cycles at 5 A/g with a retention rate of 88.9 % of initial discharge capacity. The outstanding battery performance can be attributed to the MXene layers with high conductivity for accelerating the ion diffusion rate and reducing the agglomeration of Na2V6O16·3H2O nanowires during the (dis)charge process. Meanwhile, the stable layered structure of Na16V6O6·3H2O with wide interlamellar spacing (d = 7.9 Å) is also favorable for the s fast intercalation/deintercalation of Zn2+. Finally, ex-situ X-ray diffraction and X-ray photoelectron spectroscopy were applied to study and reveal the energy storage mechanism of this novel material for aqueous zinc ion batteries.
Collapse
Affiliation(s)
- Rui Sun
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Siyang Dong
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Xincheng Guo
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Peng Xia
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Li Y, Wu S, Liu C, Liu Z, Yang W, Zhang Y, Fan H. Topochemical and phase transformation induced Co 9S 8/NC nanosheets for high-performance sodium-ion batteries. Dalton Trans 2023; 52:16519-16524. [PMID: 37877818 DOI: 10.1039/d3dt02449k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
In this paper, a cobalt-based sulfide nanosheet structure (Co9S8/NC) was successfully synthesized by topochemical and phase transformation processes from a dodecahedral cobalt-based imidazole skeleton (ZIF-67) as a self-template. The 2D sheet structure facilitates full contact of electrode materials with the electrolyte and shortens the diffusion distance for electrons and ions. In addition, the nitrogen-doped carbon framework derived from ZIF-67 promotes electron transfer and provides a reliable skeleton to buffer volume expansion during discharging and charging. Finally, Co9S8/NC exhibits excellent rate capability and stable cycling performance for the anode of a sodium ion battery, delivering a specific capacity remaining at 530 mA h g-1 after 130 cycles at a current density of 1 A g-1.
Collapse
Affiliation(s)
- Yining Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Shimei Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Chilin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Wei Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|