1
|
Su T, Su X, Sun Z, Li Y, Li L, Shi J, Geng R, Li H. Facile synthesis of ATTM@ZIF-8 modified pullulan hydrogels for enhanced adsorption of Congo red and malachite green. Int J Biol Macromol 2024; 279:135465. [PMID: 39250990 DOI: 10.1016/j.ijbiomac.2024.135465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Efficient capture of dyes from wastewater is of great importance for environmental remediation. Yet constructing adsorbents with satisfactory adsorption efficiency and low cost remains a major challenge. This work reports a simple and scalable method for the fabrication of functionalized porous pullulan hydrogel adsorbent decorated with ATTM@ZIF-8 for the adsorption of congo red (CR) and malachite green (MG). The embedding of ammonium tetrathiomolybdate (ATTM) into the ZIF-8 nanoclusters offered additional adsorption sites and enlarged the pore size of the resulting ATTM@ZIF-8. The homogeneous dispersion of the nanoparticles in the three-dimensional network of polysaccharide gels prevents their agglomeration and thus improves the affinity for dye molecules. The resulting adsorbent AZP-20 at optimized composite ratios exhibits high activity, selectivity, interference resistance, reusability and cytocompatibility in dye adsorption applications, and possesses high removal rate of dye in real water systems. Batch experiments demonstrated that the adsorption rate of AZP-20 for MG and CR was 1645.28 mg g-1 and 680.33 mg g-1, and would be influenced by pH conditions. Adsorption kinetics followed pseudo-second-order model. Adsorption isotherms followed Langmuir model for MG and Freundlich model for CR. The adsorption of dye molecules primarily relied on electrostatic interaction (MG) and π-π stacking interaction (CR). Conclusively, the prepared AZPs adsorbent illuminated good application prospects in the treatment of complex component dye wastewater.
Collapse
Affiliation(s)
- Ting Su
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang 236037, China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Xinru Su
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Zhixian Sun
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yuehan Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Linwen Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Jian Shi
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| | - Renyong Geng
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang 236037, China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| | - Huiquan Li
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang 236037, China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| |
Collapse
|
2
|
Zhang F, Ma M, Li S, Zhou Y, Zeng J, Huang M, Sun Q, Le T. Development of Recoverable Magnetic Bimetallic ZIF-67 (Co/Cu) Adsorbent and Its Enhanced Selective Adsorption of Organic Dyes in Wastewater. Molecules 2024; 29:4860. [PMID: 39459228 PMCID: PMC11510015 DOI: 10.3390/molecules29204860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
In the critical domain of wastewater treatment, the development of cost-effective, durable, and recyclable adsorbents with high adsorption capacities remains a significant challenge. This study introduces a novel magnetic bimetallic Metal-Organic Framework (MOF) adsorbent, MZIF-67-Co/Cu, doped with copper ions. The MZIF-67-Co/Cu adsorbent was successfully synthesized and structurally characterized, demonstrating remarkable selectivity for removing methyl orange (MO) from water. This high selectivity is attributed to the adsorbent's high porosity and Lewis base properties at the coordinating metal ion center. The incorporation of Cu ions significantly enhances the porous architecture and increases the number of metal adsorption sites, leading to an impressive maximum MO adsorption capacity of 39.02 mg/g under optimized conditions (0.5 g/L adsorbent concentration, pH 3.0, 250 rpm agitation speed, adsorption time > 10 min). The adsorption kinetics closely follow the pseudo-second-order model, and the isotherm data fit well with the Langmuir model. The primary adsorption mechanisms involve electrostatic attraction and mesoporous interaction. This study highlights MZIF-67-Co/Cu as a highly efficient adsorbent with magnetic recovery capabilities, positioning it as a promising candidate for addressing critical issues in wastewater treatment.
Collapse
Affiliation(s)
- Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Miaomiao Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jian Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Meiqi Huang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
3
|
Yang X, Guo Q, Liu X, Ma J. Integrated Solution for As(III) Contamination in Water Based on Crystalline Porous Organic Salts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403539. [PMID: 38923305 PMCID: PMC11348186 DOI: 10.1002/advs.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
A stable crystalline organic porous salt (CPOSs-NXU-1) with 1D apertures has been assembled by the solvothermal method, which shows high-sensitivity "turn-on" fluorescence detection and large-capacity adsorption of As(III) ions in water. The detection limits, saturated adsorption capacity, and removal rate of CPOSs-NXU-1 for As(III) ions in an aqueous solution can reach 74.34 nm (5.57 ppb), 451.01 mg g-1, and 99.6%, respectively, at pH = 7 and room temperature. With the aid of XPS, IR, Raman, and DFT theoretical calculations, it is determined that CPOSs-NXU-1 adsorbed As(III) ions in the form of H2AsO3 - and H3AsO3 through hydrogen bonding between the host and guest. The mechanism for fluorescence sensitization of As(III) ions to CPOSs-NXU-1 is mainly to increase the energy level difference between the ground state and excited state investigated by UV-vis absorption spectra, UV-vis diffuse reflectance spectra, and theoretical calculations. By constructing fluorescent CPOSs, an integrated solution has been achieved to treating As(III) contamination in the water that is equipped with detection and removal. These results blaze a promising path for addressing trivalent arsenic contamination in water efficiently, rapidly, and economically.
Collapse
Affiliation(s)
- Xiaoxia Yang
- State Key Laboratory of High‐Efficiency Coal Utilization and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Qi Guo
- State Key Laboratory of High‐Efficiency Coal Utilization and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Xingman Liu
- State Key Laboratory of High‐Efficiency Coal Utilization and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Jing‐xin Ma
- State Key Laboratory of High‐Efficiency Coal Utilization and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| |
Collapse
|
4
|
Yu P, Xing J, Tang J, Wang Z, Zhang C, Wang Q, Xiao X, Huang W. Polyethyleneimine-modified iron-doped birnessite as a highly stable adsorbent for efficient arsenic removal. J Colloid Interface Sci 2024; 661:164-174. [PMID: 38295698 DOI: 10.1016/j.jcis.2024.01.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Remediation of arsenic contamination is of great importance given the high toxicity and easy mobility of arsenic species in water and soil. This work reports a new and stable adsorbent for efficient elimination of arsenic by coating polyethyleneimine (PEI) molecules onto the surface of iron-doped birnessite (Fe-Bir). Characterization results of surface microstructure and crystalline feature (scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS), etc.) suggest that Fe-Bir/PEI possesses a fine particle structure, inhibiting the agglomeration of birnessite-typed MnO2 and offering abundant active sites for arsenic adsorption. Fe-Bir/PEI is capable of working in a wide pH range from 3 to 11, with an efficient removal capacity of 53.86 mg/g at initial pH (pH0) of 7. Meanwhile, commonly coexisting anions (NO3-, SO42-, and Cl-) and cations (Na+, K+, Ca2+ and Mg2+) pose no effect on the arsenic removal performance of Bir/PEI. Fe-Bir/PEI exhibits a good reusability for arsenic removal with low Mn and Fe ions leaching after 5 cycles. Besides, Fe-Bir/PEI possesses efficient remediation capability in simulated As-contaminated soil. The modification of PEI in Fe-Bir/PEI can adsorb newly formed As(V), which is impossible for the adsorbent without PEI. Further, the arsenic removal mechanism of Fe-Bir/PEI is revealed with redox effect, electrostatic attraction and hydrogen bonding.
Collapse
Affiliation(s)
- Peng Yu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junying Xing
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Zhiguo Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chun Zhang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiongchao Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
5
|
Zhou XY, Chen KW, Gu AT, Yun S, Mao P, Yang Y, Chen J. Bimetallic mutual-doping magnetic aerogels for iodine reduction capture and immobilization. J Colloid Interface Sci 2024; 660:1048-1057. [PMID: 38220495 DOI: 10.1016/j.jcis.2024.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Adsorption is considered to be one of the most effective methods to remove radioiodine from the solution. However, developing highly efficient adsorbents and the rapid recovery of the used adsorbents is still a challenge. Here, a series of Cu/Fe3O4 bimetallic mutual-doping magnetic aerogels (Cu/Fe3O4-BMMA) were synthesized. Based on the in-situ bimetallic co-gelation process, the high dispersion of Cu in the aerogel was realized, providing conditions for the efficient elimination of I2. The Fe3+ in the initial gel was reduced to magnetic Fe3O4 during the preparation process, allowing for the quick recovery of the adsorbent through the application of a magnetic field. The adsorption experiments showed that Cu/Fe3O4-BMMA has good I2 adsorption capacity (631.3 mg/g) and fast capture kinetics (equilibrium time < 30 min). In addition, Cu/Fe3O4-BMMA was able to effectively remove trace I2 in the solution from ppm level (1.0 ppm) down to ppb level (≤30 ppb). The adsorbed I2 was converted into stable CuI, avoiding secondary pollution due to desorption. Overall, this study provides a potentially efficient iodine capture material for long-term decay storage of radioactive iodine.
Collapse
Affiliation(s)
- Xin-Yu Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kai-Wei Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ao-Tian Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shan Yun
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Ping Mao
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jing Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
6
|
Zhang B, Li W, Ke J, Fang S. Effective adsorption of As(V) from aqueous solution by quaternary ammonium and Zn 2+ decorated lignin-based sorbent. Int J Biol Macromol 2024; 261:129883. [PMID: 38309387 DOI: 10.1016/j.ijbiomac.2024.129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Arsenic poses a serious harm to the natural environment and human health. Lignin decorated with quaternary ammonium and metal ion can effectively adsorb arsenic from aqueous solution. Zn2+/quaternary ammonium lignin was synthesized by quaternization and metallization from lignin with 3-Chloro-2-hydroxypropyl trimethylammonium chloride and ZnCl2. The morphology, functional groups and chemical compositions of adsorbent were identified by SEM-EDS, FTIR and XRD. The effects such as pH, initial As(V) concentration, contact time and adsorbent dosage on the adsorption capacity were investigated in batch system. The adsorption mechanism was explored by SEM-EDS, FTIR and XPS. It was shown that the adsorbent was rough and contained a large amount of quaternary ammonium and Zn2+. Zn2+/quaternary ammonium lignin exhibited much strong affinity towards As(V) with the maximum adsorption capacity of 70.38 mg·g-1 at 25 °C, oscillation rate of 180 r·min-1, pH of 5, initial As(V) concentration of 100 mg·L-1, contact time of 30 min and 1 g·L-1 Zn2+/quaternary ammonium lignin. The adsorption could be well described by Langmuir model and quasi-second-order kinetic model, indicating the monolayer homogeneous chemisorption nature. As(V) was adsorbed through electrostatic attraction of Zn2+ and ion exchange between H2AsO4- and Cl-.
Collapse
Affiliation(s)
- Baoping Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| | - Wencan Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Jing Ke
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Shiyuan Fang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| |
Collapse
|