1
|
Sun F, Zang J, Hou Z, Tian X, Zhu R, Zheng Y, Wang Y, Dong L. Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting. J Colloid Interface Sci 2025; 684:355-366. [PMID: 39798431 DOI: 10.1016/j.jcis.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel-iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (Fe2P-Ni2P@NFF-L). This novel method of substrate filling enhanced space utilization, while the presence of micropores and mesopores on the nanosheet surfaces facilitated electrolyte infiltration and ion diffusion, thereby significantly increasing the specific surface area. The formation of a two-phase heterointerface accelerated electron transmission and transfer, enhancing water dissociation and the adsorption of hydrogen adatoms (Had). In addition, under anodic oxidation conditions, the dynamic surface reconstruction facilitated a synergistic interaction between the highly active β-NiOOH and α-FeOOH phases, which significantly contributed to the catalyst's exceptional intrinsic activity for the oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Fanjia Sun
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Hou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xueqing Tian
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Rui Zhu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Youbin Zheng
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Liang Dong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
2
|
Fu Y, Ji Z, Li X, Guo A, Gao Z, Yang W. Zeolite Imidazole Framework-Derived Hollow Nickel-Cobalt Layered Double Hydroxide Intercalated with Metalloporphyrin for Enhanced Oxygen Evolution Reaction. Inorg Chem 2025; 64:3213-3222. [PMID: 39924873 DOI: 10.1021/acs.inorgchem.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The design of highly efficient, stable, and nonprecious-metal-based electrocatalysts for the oxygen evolution reaction (OER) has been a major research topic in the field of hydrogen production from electrolytic water splitting. In this work, a novel hierarchical hollow NiCo layered double hydroxide (NiCo LDH) with Cu-TCPP (TCPP = tetrakis(4-carboxyphenyl)-porphyrin) intercalation (denoted as X-CT/LR, where X is the amount of Cu-TCPP addition) was successfully fabricated by using zeolite imidazole framework-67 (ZIF-67) as a template. Among them, 1-CT/LR has superior OER activity and stability, requiring only a low overpotential of 204 mV to reach a current density of 10 mA/cm2. The experimental results show that the introduced Cu-TCPP, in addition to being an active center itself, also acts as an electron transfer medium in the interlayer to enhance the conductivity of the material. Meanwhile, the hierarchical hollow structure and interlayer domain-limiting effect of NiCo LDH also ensure the dispersion and stabilization of Cu-TCPP, which is favorable to give full play to the synergistic catalytic effect of the two components. This work provides a facile strategy to obtain a nonprecious-metal-based OER electrocatalyst for water splitting.
Collapse
Affiliation(s)
- Yajun Fu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhengkun Ji
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinhao Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Abing Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zichao Gao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weijun Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Engineering Research Center of Advanced Catalysis, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Hu X, Tian W, Wu Z, Li X, Li Y, Wang H. Synthesis of Zr 2ON 2 via a urea-glass route to modulate the bifunctional catalytic activity of NiFe layered double hydroxide in a rechargeable zinc-air battery. J Colloid Interface Sci 2024; 672:610-617. [PMID: 38861848 DOI: 10.1016/j.jcis.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The development of a highly efficient, stable, and low-cost bifunctional catalyst is imperative for facilitating the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, significant challenges are involved in extending its applications to rechargeable zinc-air batteries. This study presents a bifunctional catalyst, Zr2ON2@NiFe layered double hydroxide (LDH), that was developed by utilizing a urea-glass route for synthesizing the Zr2ON2 precursor, followed by riveting NiFe LDH nanosheets using a hydrothermal method. Specifically, the vertical distribution of NiFe LDH on the Zr2ON2 surface ensures the maximization of the number of accessible active sites and interfacial catalysis of NiFe LDH. Notably, Zr2ON2@NiFe LDH demonstrates ORR and OER bifunctional electrocatalytic behavior and high stability owing to its heterostructure and composition. Furthermore, a rechargeable zinc-air battery using a Zr2ON2@NiFe LDH electrocatalyst as the air cathode demonstrated a high peak power density (172 mW cm-2) and galvanostatic charge-discharge cycle stability (5 mA cm-2 over 443 h). Thus, this study presents an efficient and cost-effective strategy for the design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China.
| | - Wenping Tian
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Zhenkun Wu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Li
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhong Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Xie X, Zhai Z, Cao W, Dong J, Li Y, Hou Q, Du G, Wang J, Tian L, Zhang J, Zhang T, Shang L. Bifunctional ligand Co metal-organic framework derived heterostructured Co-based nanocomposites as oxygen electrocatalysts toward rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 664:319-328. [PMID: 38479268 DOI: 10.1016/j.jcis.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Rational construction of efficient and robust bifunctional oxygen electrocatalysts is key but challenging for the widespread application of rechargeable zinc-air batteries (ZABs). Herein, bifunctional ligand Co metal-organic frameworks were first explored to fabricate a hybrid of heterostructured CoOx/Co nanoparticles anchored on a carbon substrate rich in CoNx sites (CoOx/Co@CoNC) via a one-step pyrolysis method. Such a unique heterostructure provides abundant CoNx and CoOx/Co active sites to drive oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. Besides, their positive synergies facilitate electron transfer and optimize charge/mass transportation. Consequently, the obtained CoOx/Co@CoNC exhibits a superior ORR activity with a higher half-wave potential of 0.88 V than Pt/C (0.83 V vs. RHE), and a comparable OER performance with an overpotential of 346 mV at 10 mA cm-2 to the commercial RuO2. The assembled ZAB using CoOx/Co@CoNC as a cathode catalyst displays a maximum power density of 168.4 mW cm-2, and excellent charge-discharge cyclability over 250 h at 5 mA cm-2. This work highlights the great potential of heterostructures in oxygen electrocatalysis and provides a new pathway for designing efficient bifunctional oxygen catalysts toward rechargeable ZABs.
Collapse
Affiliation(s)
- Xiaoying Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zeyu Zhai
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Weiwei Cao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiamin Dong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yushan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qiusai Hou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Guixiang Du
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiajun Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Li Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Jingbo Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Bi Y, Fan H, Hu C, Wang R, Niu L, Wen G, Qin L. Rational synthesis of 3D coral-like ZnCo 2O 4 nanoclusters with abundant oxygen vacancies for high-performance supercapacitors. RSC Adv 2024; 14:11734-11745. [PMID: 38605898 PMCID: PMC11008428 DOI: 10.1039/d4ra00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Transition metal oxides with high theoretical capacitance are regarded as desired electrode materials for supercapacitors, however, the poor conductivity and sluggish charge transfer kinetics constrain their electrochemical performance. The three-dimensional (3D) coral-like ZnCo2O4 nanomaterials with abundant oxygen vacancies were synthesized through a facile hydrothermal method and chemical reduction approach. The introduced oxygen vacancies can provide more active sites and lower the energy barrier, thereby facilitating the kinetics of surface reactions. Furthermore, the abundant oxygen vacancies in metal oxides can function as shallow donors to facilitate charge carrier diffusion, resulting in a faster ion diffusion rate and superior electrochemical conductivity. The electrochemical performance of ZnCo2O4 was optimized by the introduction of oxygen vacancies. The ZnCo2O4 nanoclusters, reduced by 0.5 M NaBH4 (ZnCo2O4-0.5), exhibit a specific capacitance of 2685.7 F g-1 at 1 A g-1, which is nearly twice that of the pristine ZnCo2O4 (1525.7 F g-1 at 1 A g-1). The ZnCo2O4-0.5 exhibits an excellent rate capacity (81.9% capacitance retention at 10 A g-1) and a long cycling stability (72.6% specific capacitance retention after 10 000 cycles at 3 A g-1). Furthermore, the asymmetric supercapacitor (ASC, ZnCo2O4-0.5 nanoclusters//active carbon) delivers a maximum energy density of 50.2 W h kg-1 at the power density of 493.7 W kg-1 and an excellent cycling stability (75.3% capacitance retention after 3000 cycles at 2 A g-1), surpassing the majority of previously reported ZnCo2O4-based supercapacitors. This work is important for revealing the pivotal role of implementing the defect engineering regulation strategy in achieving optimization of both electrochemical activity and conductivity.
Collapse
Affiliation(s)
- Yanlei Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Huiqing Fan
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Chuansen Hu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Ru Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Lujie Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology Zibo 255000 China
| | - Luchang Qin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill Chapel Hill NC 27599-3255 USA
| |
Collapse
|