1
|
Gouda W, Ahmed AE, Mageed L, Hassan AK, Afify M, Hamimy WI, Ragab HM, Maksoud NAE, Allayeh AK, Abdelmaksoud MDE. Significant role of some miRNAs as biomarkers for the degree of obesity. J Genet Eng Biotechnol 2023; 21:109. [PMID: 37930593 PMCID: PMC10628096 DOI: 10.1186/s43141-023-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Obesity is one of the most serious problems over the world. MicroRNAs have developed as main mediators of metabolic processes, playing significant roles in physiological processes. Thus, the present study aimed to evaluate the expressions of (miR-15a, miR-Let7, miR-344, and miR-365) and its relationship with the different classes in obese patients. METHODS A total of 125 individuals were enrolled in the study and classified into four groups: healthy non-obese controls (n = 50), obese class I (n = 24), obese class II (n = 17), and obese class III (n = 34) concerning body mass index (BMI < 30 kg/m2, BMI 30-34.9 kg/m2, BMI 35-39.9 kg/m2 and BMI ≥ 40 kg/m2, respectively). BMI and the biochemical measurements (fasting glucose, total cholesterol, triglycerides, HDL and LDL, urea, creatinine, AST, and ALT) were determined. The expressions of (miR-15a, miR-Let7, miR-344, and miR-365) were detected through quantitative real-time PCR (RT-qPCR). RESULTS There was a significant difference between different obese classes and controls (P < 0.05) concerning (BMI, TC, TG, HDL, and LDL). In contrast, fasting glucose, kidney, and liver functions had no significant difference. Our data revealed that the expression of miR-15a and miR-365 were significantly associated with different obese classes. But the circulating miR-Let7 and miR-344 were not significantly related to obesity in different classes. CONCLUSION Our study indicated that miR-15a and miR-365 might consider as biomarkers for the obesity development into different obese classes. Thus, the relationship between regulatory microRNAs and disease has been the object of intense investigation.
Collapse
Affiliation(s)
- Weaam Gouda
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt.
| | - Amr E Ahmed
- Department of Biotechnology and Life Science, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Lamiaa Mageed
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Amgad K Hassan
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Mie Afify
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - W I Hamimy
- Anesthesia Department, Obesity, Surgery Unit, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Halla M Ragab
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Nabila Abd El Maksoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Abdou K Allayeh
- Environment and Climate Change Institute, National Research Centre, Giza, Egypt
| | - Mohamed D E Abdelmaksoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Chang YC, Chan MH, Yang YF, Li CH, Hsiao M. Glucose transporter 4: Insulin response mastermind, glycolysis catalyst and treatment direction for cancer progression. Cancer Lett 2023; 563:216179. [PMID: 37061122 DOI: 10.1016/j.canlet.2023.216179] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
The glucose transporter family (GLUT) consists of fourteen members. It is responsible for glucose homeostasis and glucose transport from the extracellular space to the cell cytoplasm to further cascade catalysis. GLUT proteins are encoded by the solute carrier family 2 (SLC2) genes and are members of the major facilitator superfamily of membrane transporters. Moreover, different GLUTs also have their transporter kinetics and distribution, so each GLUT member has its uniqueness and importance to play essential roles in human physiology. Evidence from many studies in the field of diabetes showed that GLUT4 travels between the plasma membrane and intracellular vesicles (GLUT4-storage vesicles, GSVs) and that the PI3K/Akt pathway regulates this activity in an insulin-dependent manner or by the AMPK pathway in response to muscle contraction. Moreover, some published results also pointed out that GLUT4 mediates insulin-dependent glucose uptake. Thus, dysfunction of GLUT4 can induce insulin resistance, metabolic reprogramming in diverse chronic diseases, inflammation, and cancer. In addition to the relationship between GLUT4 and insulin response, recent studies also referred to the potential upstream transcription factors that can bind to the promoter region of GLUT4 to regulating downstream signals. Combined all of the evidence, we conclude that GLUT4 has shown valuable unknown functions and is of clinical significance in cancers, which deserves our in-depth discussion and design compounds by structure basis to achieve therapeutic effects. Thus, we intend to write up a most updated review manuscript to include the most recent and critical research findings elucidating how and why GLUT4 plays an essential role in carcinogenesis, which may have broad interests and impacts on this field.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Khan H, Kaur Grewal A, Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 2022; 66:54-66. [DOI: 10.1016/j.mito.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
|
4
|
Miao Y, Fu C, Liao M, Fang F. Differences in Liver microRNA profiling in pigs with low and high
feed efficiency. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:312-329. [PMID: 35530409 PMCID: PMC9039951 DOI: 10.5187/jast.2022.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022]
Abstract
Feed cost is the main factor affecting the economic benefits of pig industry.
Improving the feed efficiency (FE) can reduce the feed cost and improve the
economic benefits of pig breeding enterprises. Liver is a complex metabolic
organ which affects the distribution of nutrients and regulates the efficiency
of energy conversion from nutrients to muscle or fat, thereby affecting feed
efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed
efficiency through the modulation of gene expression at the post-transcriptional
level. In this study, we analyzed miRNA profiling of liver tissues in High-FE
and Low-FE pigs for the purpose of identifying key miRNAs related to feed
efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel
miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were
co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly
differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of
which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes
and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs
indicated that the target genes of DE miRNAs were significantly enriched in
insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and
mammalian target of rapamycin signaling pathway. To verify the reliability of
sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse
transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs
were confirmed to be consistent with sequencing data. DE miRNA data indicated
that liver-specific miRNAs synergistically acted with mRNAs to improve feed
efficiency. The liver miRNAs expression analysis revealed the metabolic pathways
by which the liver miRNAs regulate pig feed efficiency.
Collapse
Affiliation(s)
- Yuanxin Miao
- College of Bioengineering,Jingchu
University of Technology, Jingmen 448000, Hubei, China
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Fang Fang
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
- National Center for International Research
on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong
Agricultural University, Wuhan 430070, China
- Corresponding author: Fang Fang, Key Laboratory of
Agricultural Animal Genetics, Breeding and Reproduction of Ministry of
Education, Huazhong Agricultural University, Wuhan 430070, China. Tel:
+86-278-728-2091, E-mail:
| |
Collapse
|
5
|
Li X, Ye Y, Wang B, Zhao S. miR-140-5p Aggravates Insulin Resistance via Directly Targeting GYS1 and PPP1CC in Insulin-Resistant HepG2 Cells. Diabetes Metab Syndr Obes 2021; 14:2515-2524. [PMID: 34113143 PMCID: PMC8187005 DOI: 10.2147/dmso.s304055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Much attention has been paid to the regulatory role of microRNA (miRNA) in insulin resistance. Nevertheless, how miR-140-5p regulates insulin resistance remains unclear. In this research, we aim to investigate the roles of miR-140-5p in insulin resistance. METHODS qRT-PCR is used to analyze the expression level of miR-140-5p in insulin-resistant HepG2 cells. Glucose consumption and glucose uptake are detected to study the effect of miR-140-5p knockdown in insulin-resistant HepG2 cells and miR-140-5p overexpression in HepG2 cells. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-140-5p and study the effect of miR-140-5p on the downstream substrates of target genes. Rescue experiments have verified the roles of miR-140-5p and target gene in glucose metabolism. RESULTS The expression level of miR-140-5p was upregulated in insulin-resistant HepG2 cells and was significantly correlated with cellular glucose metabolism. Functionally, miR-140-5p overexpression induced impairment of glucose consumption and glucose uptake. Besides, bioinformatics analysis indicated that glycogen synthetase (GYS1) and protein phosphatase 1 catalytic subunit gamma (PPP1CC) were the target genes of miR-140-5p. Western blotting and qRT-PCR results revealed a negative correlation between GYS1, PPP1CC and miR-140-5p. The glycogen detection results showed that miR140-5p inhibited the production of the downstream substrates of the target gene. Rescue experiments showed that inhibition of GYS1 or PPP1CC partially enhanced the insulin-resistant effects of miR-140-5p knockdown in insulin-resistant HepG2 cells. CONCLUSION miR-140-5p overexpression augments the development of insulin resistance and miR-140-5p may be served as a therapeutic target of metabolic diseases.
Collapse
Affiliation(s)
- Xuemei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
- Correspondence: Xuemei Li; Shujun Zhao NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China Email ;
| | - Yan Ye
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Shujun Zhao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| |
Collapse
|
6
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|