1
|
Green Phenolic Resins from Oil Palm Empty Fruit Bunch (EFB) Phenolated Lignin and Bio-Oil as Phenol Substitutes for Bonding Plywood. Polymers (Basel) 2023; 15:polym15051258. [PMID: 36904501 PMCID: PMC10007611 DOI: 10.3390/polym15051258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.
Collapse
|
2
|
Khalaj M, Kamali M, Aminabhavi TM, Costa MEV, Dewil R, Appels L, Capela I. Sustainability insights into the synthesis of engineered nanomaterials - Problem formulation and considerations. ENVIRONMENTAL RESEARCH 2023; 220:115249. [PMID: 36632884 DOI: 10.1016/j.envres.2023.115249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.
Collapse
Affiliation(s)
- Mohammadreza Khalaj
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mohammadreza Kamali
- Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, Punjab, 140 413, India.
| | - M Elisabete V Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Argenziano R, Agustin-Salazar S, Panaro A, Calarco A, Di Salle A, Aprea P, Cerruti P, Panzella L, Napolitano A. Combining the Potent Reducing Properties of Pecan Nutshell with a Solvent-Free Mechanochemical Approach for Synthesizing High Ag 0 Content-Silver Nanoparticles: An Eco-Friendly Route to an Efficient Multifunctional Photocatalytic, Antibacterial, and Antioxidant Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:821. [PMID: 36903701 PMCID: PMC10005451 DOI: 10.3390/nano13050821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
A straightforward, low-cost, and scalable solid-state mechanochemical protocol for the synthesis of silver nanoparticles (AgNP) based on the use of the highly reducing agri-food by-product pecan nutshell (PNS) is reported herein. Under optimized conditions (180 min, 800 rpm, PNS/AgNO3 ratio = 55/45 w/w), a complete reduction in silver ions was achieved, leading to a material containing ca. 36% w/w Ag0 (X-ray diffraction analysis). Dynamic light scattering and microscopic analysis showed a uniform size distribution (15-35 nm average diameter) of the spherical AgNP. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay revealed lower-although still absolutely high (EC50 = 5.8 ± 0.5 mg/mL)-antioxidant properties for PNS for the further incorporation of AgNP, supporting the efficient reduction of Ag+ ions by PNS phenolic compounds. Photocatalytic experiments indicated that AgNP-PNS (0.4 mg/mL) was able to induce the >90% degradation of methylene blue after 120 min visible light irradiation, with good recycling stability. Finally, AgNP-PNS demonstrated high biocompatibility and significantly light-enhanced growth inhibition properties against Pseudomonas aeruginosa and Streptococcus mutans at concentrations as low as 250 μg/mL, also eliciting an antibiofilm effect at 1000 μg/mL. Overall, the adopted approach allowed to reuse a cheap and abundant agri-food by-product and required no toxic or noxious chemicals, making AgNP-PNS a sustainable and easy-to-access multifunctional material.
Collapse
Affiliation(s)
- Rita Argenziano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
| | - Andrea Panaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via P. Castellino 111, I-80131 Naples, Italy
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via P. Castellino 111, I-80131 Naples, Italy
| | - Paolo Aprea
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
4
|
Elzoheiry A, Ayad E, Omar N, Elbakry K, Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022; 12:18403. [PMID: 36319750 PMCID: PMC9626641 DOI: 10.1038/s41598-022-23276-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis results from the hepatic accumulation of the extracellular matrix accompanied by a failure of the mechanisms responsible for matrix dissolution. Pathogenesis of liver fibrosis is associated with many proteins from different cell types. In the present study, in silico molecular docking analysis revealed that curcumin may inhibit the fibrosis-mediating proteins PDGF, PDGFRB, TIMP-1, and TLR-9 by direct binding. Nano-formulation can overcome curcumin problems, increasing the efficacy of curcumin as a drug by maximizing its solubility and bioavailability, enhancing its membrane permeability, and improving its pharmacokinetics, pharmacodynamics and biodistribution. Therefore, green silver nanoparticles (AgNPs) were synthesized in the presence of sunlight by means of the metabolite of Streptomyces malachiticus, and coated with curcumin-chitosan mixture to serve as a drug delivery tool for curcumin to target CCl4-induced liver fibrosis mouse model. Fibrosis induction significantly increased hepatic gene expression of COL1A1, α-SMA, PDGFRB, and TIMP1, elevated hepatic enzymes, increased histopathological findings, and increased collagen deposition as determined by Mason's trichrome staining. Treatment with naked AgNPs tended to increase these inflammatory effects, while their coating with chitosan, similar to treatment with curcumin only, did not prevent the fibrogenic effect of CCl4. The induction of liver fibrosis was reversed by concurrent treatment with curcumin/chitosan-coated AgNPs. In this nano form, curcumin was found to be efficient as anti-liver fibrosis drug, maintaining the hepatic architecture and function during fibrosis development. This efficacy can be attributed to its inhibitory role through a direct binding to fibrosis-mediating proteins such as PDGFRB, TIMP-1, TLR-9 and TGF-β.
Collapse
Affiliation(s)
- Alya Elzoheiry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Nahed Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Kadry Elbakry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
5
|
Abdullah JAA, Jiménez-Rosado M, Perez-Puyana V, Guerrero A, Romero A. Green Synthesis of Fe xO y Nanoparticles with Potential Antioxidant Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2449. [PMID: 35889673 PMCID: PMC9315626 DOI: 10.3390/nano12142449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
Iron oxide nanoparticles (FexOy-NPs) are currently being applied in numerous high-tech sectors, such as in chemical sectors for catalysis and in the medical sector for drug delivery systems and antimicrobial purposes, due to their specific, unique and magnetic properties. Nevertheless, their synthesis is under continuous investigation, as physicochemical methods are considered expensive and require toxic solvents. Thus, green nanotechnology has shown considerable promise in the eco-biogenesis of nanoparticles. In the current study, FexOy-NPs were synthesized by two different methods: via green synthesis through the use of polyphenols, which were extracted from Phoenix dactylifera L.; and via chemical synthesis, in which the reducing agent was a chemical (NaOH), and iron chloride was used as a precursor. Thus, polyphenol extraction and its ability to produce nanoparticles were evaluated based on the drying temperature used during the Phoenix dactylifera L. recollection, as well as the extraction solvent used. The results highlight the potential of polyphenols present in Phoenix dactylifera L. for the sustainable manufacture of FexOy-NPs. Finally, green and chemical syntheses were compared on the basis of physicochemical characteristics and functional properties.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Víctor Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
6
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
7
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
8
|
Selection of derivatisation agents for chlorophenols determination with multicriteria decision analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Ran L, Zou Y, Cheng J, Lu F. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int J Biol Macromol 2018; 125:392-403. [PMID: 30529352 DOI: 10.1016/j.ijbiomac.2018.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
In recent years, silver nanoparticles have widely been used in antibacterial dressings to solve antibiotic resistance problems. However, traditional methods for reducing silver nanoparticles are usually toxic. To overcome this problem, Sanghuangporus sanghuang polysaccharides (FSHPs) were used as a green reducing agent to prepare silver nanoparticles (AgNPs) with a size of 3-35 nm. The FSHPs‑silver nanoparticles (FSHPs-Ag) composite with chitosan solution were then freeze-dried to obtain a porous sponge dressing of chitosan-FSHPs-Ag (CS-FSHPs-Ag). The internal pores of CS-FSHPs-Ag were between 50 and 100 μm and had good swelling and water retention properties, which could provide a moist environment for wounds. Based on the experimental results, the appropriate concentration of AgNPs required for CS-FSHPs-Ag to inhibit Escherichia coli and Staphylococcus aureus was determined. Moreover, there was no statistically significant difference between the material treatment and the blank control group, indicating that the material almost showed no toxicity to L929 cells. Finally, this material was used for dressing animal wounds. The results showed that the CS-FSHPs-Ag promoted wound contraction and internal tissue growth better than the wounds treated with Aquacel® Ag, which indicated that the CS-FSHPs-Ag has a great potential as an ideal wound dressing material.
Collapse
Affiliation(s)
- Luoxiao Ran
- College of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Yini Zou
- College of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Junwen Cheng
- The Key Laboratory of Biological and Chemical Utilization of Zhejiang Province, Zhejiang Forestry Academy, Hangzhou 310023, China
| | - Fei Lu
- College of Textile and Garments, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
10
|
|