1
|
Zhang H, Li M, Li N, Jiang R, Yin E, Li X. Performance enhancement and mechanism of tetracycline removal by visible light-driven photo bio-electro-fenton system with CoFe-LDH/g-C 3N 4 cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125526. [PMID: 40315647 DOI: 10.1016/j.jenvman.2025.125526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
Bio-electro-Fenton (BEF) technology has shown significant advantages in the treatment of antibiotic wastewater. However, the strict pH application range (2-3) still limits the practical application of BEF. To overcome the limitation of pH on traditional BEF, CoFe-LDH/g-C3N4 composite catalyst was synthesized by hydrothermal method and applied to the BEF cathode to construct a photo-BEF (PBEF) system. The performance of the PBEF system under visible light was investigated with tetracycline hydrochloride (TC) as the target pollutant. The results showed that the PBEF system could extend the pH application range to 3-11 and could maintain more than 80 % of TC removal. The highest removal efficiency of TC by PBEF reached 94.98 % at pH 5, and the highest TOC removal could achieve 70.09 %, indicating that the PBEF can effectively remove TC. Meanwhile, PBEF also showed good universality, anti-interference and stability. In addition, to explore the mechanism of TC degradation by PBEF, the quenching experiments and electron spin resonance (ESR) tests were used to identify and evaluate the contribution of the reactive oxygen species in TC removal. And the results showed that e- and •OH played the major role in TC removal. Density functional theory (DFT) calculations were used to analyze the active sites of TC molecules, and three possible degradation pathways of TC were proposed. Moreover, the toxicity of TC degradation by PBEF was effectively reduced. This study proposes a new way to broaden the application range of pH by PBEF and provides a novel alternative for antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ni Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
2
|
Xiao C, Wang Z, Zhang M, Dai M, Cao J, Xie C, Li J. 0-Dimensional/1-dimensional S-scheme Ag 2S/BiSI hetero-structured photocatalyst for superb Cr(VI) reduction under full spectrum irradiation. J Colloid Interface Sci 2025; 682:619-628. [PMID: 39642548 DOI: 10.1016/j.jcis.2024.11.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Developing ultraviolet (UV), visible (Vis) and near-infrared (NIR) responsive photocatalysts for Cr(VI) reduction is valuable. Herein, a 0-dimensional/1-dimensional (0D/1D) S-scheme Ag2S/BiSI hetero-structured photocatalyst was successfully synthesized, which displays greatly enhanced Cr(VI) removal activity either under UV, Vis or NIR light irradiation. In-situ characterization technique and theoretical calculation confirm that an internal electric field (IEF), directing from Ag2S to BiSI, exists between the interface, which facilitates the spatial-oriented separation of photoirradiated carriers. Furthermore, the immobilization of Cr2O72- and the transformation from *Cr2O72- to *CrO3H2 on the surface of S-scheme Ag2S/BiSI heterostructure is much more favorable than that on the surface of single Ag2S or BiSI. This work gives a comprehensive insight on the design of full spectrum responsive S-scheme photocatalysts for heavy metal removal.
Collapse
Affiliation(s)
- Chun Xiao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China; Guangdong Provincial Key Laboratory of Eco-environmental Studies and Low-carbon Agriculture in Peri-urban Arease, Zhaoqing University, Zhaoqing 526061, PR China
| | - Zhuangzhuang Wang
- Petrochemical New Materials Joint Laboratory, Maoming Green Chemical Industry Research Institute, Maoming 525030, PR China
| | - Mingyu Zhang
- China Tobacco Hubei Industrial LLC, Wuhan 430048, PR China
| | - Min Dai
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China; Guangdong Provincial Key Laboratory of Eco-environmental Studies and Low-carbon Agriculture in Peri-urban Arease, Zhaoqing University, Zhaoqing 526061, PR China
| | - Jiangfei Cao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China; Guangdong Provincial Key Laboratory of Eco-environmental Studies and Low-carbon Agriculture in Peri-urban Arease, Zhaoqing University, Zhaoqing 526061, PR China
| | - Chunsheng Xie
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China; Guangdong Provincial Key Laboratory of Eco-environmental Studies and Low-carbon Agriculture in Peri-urban Arease, Zhaoqing University, Zhaoqing 526061, PR China.
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
3
|
Gao H, Fang M, Zhang Z, Han Y, Wang D, Wang Y, Xia H, Zhu X, Miao S, Kang X. Electronic coupling of iron-cobalt in Prussian blue towards improved peroxydisulfate activation. J Colloid Interface Sci 2025; 678:1087-1098. [PMID: 39241470 DOI: 10.1016/j.jcis.2024.08.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Prussian blue analogs (PBAs) have attracted extensive attention in the field of aqueous organic degradation due to the tremendous potential for peroxydisulfate (PDS) activation. However, the relationship between the d-band center of the catalyst and the activation behavior of PDS remained largely unexplored. Herein, a series of Fe-Co PBAs-based catalysts with different Fe/Co ratios (Fe-Co PBAs-1 = 1: 0.52; Fe-Co PBAs-2 = 1: 1.21, and Fe-Co PBAs-3 = 1: 1.48) have been prepared by a facile hydrothermal procedure and subsequent acid treatment (Fe-Co PBAs-xH). The as-prepared Fe-Co PBAs-xH exhibited superior PDS activation performance and excellent recyclability in the degradation of methylene blue (MB). Density functional theory calculations revealed that the electron-occupied state of the Fe-Co PBAs was shifted to the Fermi level, indicating a strong interaction and easier electron transfer. Moreover, the d-band center of Fe-Co PBAs was upshifted relative to that of Fe PBAs, suggesting easier adsorption of MB and PDS, which was beneficial to enhancing catalytic activation and subsequent dissociation. Radicals such as •OH, 1O2, O2•-, and SO4•- were determined by the radical quenching experiment and electron paramagnetic resonance (EPR) testing in the Fe-Co PBAs-3H/PDS system, and the order of MB degradation by the free active radical is •OH > 1O2 > O2•- > SO4•-. The degradation pathway and potential ecotoxicity of MB and its intermediates were also studied. This work can provide new insights to construct the efficient catalysts for the activation of PDS and the degradation of organic pollutants.
Collapse
Affiliation(s)
- Hongcheng Gao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Mengchen Fang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Zhenzhu Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Yi Han
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Dejin Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Yi Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Hongyu Xia
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Xiaojing Zhu
- Research Center of Advanced Chemical Equipment, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China.
| | - Shihao Miao
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
4
|
Wang J, He F, Fang J, Yu R, Jia Z, Zhou H. Activation of peroxymonosulfate by β-FeOOH@C ia-MoS 2 for enhancing degradation of tetracycline: Significant roles of surface functional groups and Fe/Mo redox reactions. CHEMOSPHERE 2024; 364:143152. [PMID: 39173836 DOI: 10.1016/j.chemosphere.2024.143152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Vertically oriented interstitial atom carbon-anchored molybdenum disulfide (Cia-MoS2) nanospheres loaded with iron oxyhydroxide (β-FeOOH) were proposed for modulating the surface catalytic activity and stability of the unsaturated catalytic system. The β-FeOOH@Cia-MoS2 efficiently activated peroxymonosulfate (PMS) to degrade 95.4% of tetracycline (TC) within 30 min, owing to the more sulfur vacancies, higher surface hydroxyl density, redox ability and electronic transmission rate of β-FeOOH@Cia-MoS2. According to the characterization and analysis data, the multiple active sites (Fe, Mo and S sites) and oxygen-containing functional groups (CO, -OH) of β-FeOOH@Cia-MoS2 could promote the activation of PMS to form reactive oxygen species (ROS). The oxidation cycle of Fe(II)/Fe(III) and Mo(IV)/Mo(VI), the electron transfer mediator of rich sulfur vacancies, as well as oxygen-containing functional groups on the surface of β-FeOOH@Cia-MoS2 synergistically promoted the formation of ROS (1O2, FeIVO, SO4•- and •OH), among which 1O2 was the main active oxidant. In particular, the β-FeOOH@Cia-MoS2/PMS system could still degrade pollutants efficiently and stably after five recycling cycles. Furthermore, this system had a strong anti-interference ability in the actual water body. This study provided a promising strategy for the removal of difficult-to-degrade organic pollutants.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Jieru Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Rui Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zaiwen Jia
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Haihong Zhou
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
5
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Ye J, Xu H, Kong X, Zhang Y, Chen Y, Zhou B, Zhu Y, Cai D, Wang D. Simultaneous removal of tetracycline hydrochloride and hexavalent chromium by heterogeneous Fenton in a photocatalytic fuel cell system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121608. [PMID: 38943751 DOI: 10.1016/j.jenvman.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
In this work, a novel double-chamber system (PFC-Fenton), combined photocatalytic fuel cell (PFC) with Fenton, was constructed for tetracycline hydrochloride (TCH) and hexavalent chromium (Cr(VI)) removal and electricity production. Therein, Zn5(OH)6(CO3)2/Fe2O3/BiVO4/fluorine-doped SnO2 (ZIO/BiVO4/FTO) and carboxylated carbon nanotubes/polypyrrole/graphite felt (CCNTs/Ppy/GF) were served as photoanode and cathode, respectively. Under light irradiation, the removal efficiencies of TCH and Cr(VI) with the addition of H2O2 (2 mL) could reach 93.1% and 80.4%, respectively. Moreover, the first-order kinetic constants (7.37 × 10-3 min-1 of TCH and 3.94 × 10-3 min-1 of Cr(VI)) were 5.26 and 5.57 times as much as the absence of H2O2. Simultaneously, the maximum power density could be obtained 0.022 mW/cm2 at a current density of 0.353 mA/cm2. Therein, the main contribution of TCH degradation was ·OH and holes in anode chamber. The synergistic effect of photoelectrons, generated ·O2-, and H2O2 played a crucial role in the reduction of Cr(VI) in cathode chamber. The high-performance liquid chromatography-mass spectrometry indicated that TCH could be partially mineralized into CO2 and H2O. X-ray photoelectron spectroscope and X-ray absorption near-edge structure spectra showed that Cr(VI) could be reduced to Cr(III). After 5 times of cycling, the removal efficiencies of TCH and Cr(VI) were still greater than 70%, indicating the remarkable stability of the PFC-Fenton system. Overall, this system could remove TCH/Cr(VI) and generate power simultaneously without iron sludge formation, demonstrating a promising method to further develop PFC-Fenton technology.
Collapse
Affiliation(s)
- Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yong Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuhan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Benji Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
7
|
Cao R, Kang G, Zhang W, Zhou J, Xie W, Liu Z, Xu L, Hu F, Li Z, Li H. Biochar loaded with ferrihydrite and Bacillus pseudomycoides enhances remediation of co-existed Cd(II) and As(III) in solution. BIORESOURCE TECHNOLOGY 2024; 395:130323. [PMID: 38228221 DOI: 10.1016/j.biortech.2024.130323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bioremediation is one of the effective ways for heavy metal remediation. Iron-modified biochar (F@BC) loaded with Bacillus pseudomycoides (BF@BC) was synthesized to remove the coexistence of cadmium (Cd) and arsenic (As) in solutions. The results showed that B. pseudomycoides significantly increased the removal rate of Cd(II) by enhancing the specific surface area and Si-containing functional groups of biochar (BC). The surface of F@BC was enriched with Fe-containing functional groups, significantly improving As(III) adsorption. The combination of ferrihydrite and strains on BF@BC enhanced the removal of Cd(II) and As(III). It also promoted the oxidation of As(III) by producing an abundance of hydroxyl radicals (·OH). The maximum saturated adsorption capacity of BF@BC for Cd(II) and As(III) increased by 52.47% and 2.99 folds compared with BC, respectively. This study suggests that biochar loaded with Fe and bacteria could be sustainable for the remediation of the coexistence of Cd(II) and As(III) in solutions.
Collapse
Affiliation(s)
- Rui Cao
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, Jiangsu, 210042, China
| | - Weiwen Zhang
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jihai Zhou
- Provincial Collaborative Innovation Center for Restoration and Reconstruction of Degraded Ecosystems in Wanjiang Basin, College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wangliang Xie
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenzhen Liu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li Xu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Feng Hu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, 610059, China.
| | - Huixin Li
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
8
|
Zheng L, Sun L, Qiu J, Song J, Zou L, Teng Y, Zong Y, Yu H. Using NH 2-MIL-125(Ti) for efficient removal of Cr(VI) and RhB from aqueous solutions: Competitive and cooperative behavior in the binary system. J Environ Sci (China) 2024; 136:437-450. [PMID: 37923453 DOI: 10.1016/j.jes.2023.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 11/07/2023]
Abstract
The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications. Therefore, in this research, we used NH2-MIL-125(Ti) to evaluate the single adsorption of hexavalent chromium (Cr(VI)) or Rhodamine B (RhB) in an aqueous solution and further investigate simultaneous adsorption experiments to compare the adsorption behavior changes. The main influencing factors, for example, reaction time, initial concentration, reaction temperature, and pH were studied in detail. In all reaction systems, the pseudo-second-order kinetic and Langmuir isotherm models were well illuminated the adsorption progress of Cr(VI) and RhB. Thermodynamic studies showed that the adsorption process was spontaneous and endothermic. As compared to the single system, the adsorption capacity of Cr(VI) in the binary system gradually decreased as the additive amount of RhB increased, whereas the adsorption capacity of RhB in the binary system was expanded brilliantly. When the binary reaction system contained 100 mg/L Cr(VI), the removal rate of RhB increased to 97.58%. The formation of Cr(VI)-RhB and Cr(III)-RhB complexes was the cause that provided facilitation for the adsorption of RhB. These findings prove that the interactions during the water treatment process between contaminants may obtain additional benefits, contributing to a better adsorption capacity of co-existing contaminant.
Collapse
Affiliation(s)
- Lei Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixia Sun
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangbo Qiu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Junling Song
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Liu J, Hu Y, Li X, Xiao C, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. High-efficient degradation of chloroquine phosphate by oxygen doping MoS 2 co-catalytic Fenton reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131894. [PMID: 37352777 DOI: 10.1016/j.jhazmat.2023.131894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
To degrade the antiviral and antimalarial drug chloroquine phosphate (CQP), an oxygen doping MoS2 nanoflower (O-MoS2-230) co-catalyst was prepared by a hydrothermal method to construct an O-MoS2-230 co-catalytic Fenton system (O-MoS2-230/Fenton) without pH adjustment (initial pH 5.4). Remarkable CQP degradation efficiency (99.5 %) could be achieved in 10 min under suitable conditions ([co-catalyst] = 0.2 g L-1, [Fe2+]0 = 70 μM, [H2O2]0 = 0.4 mM) with a reaction rate constant of 0.24 min-1, which was 4.8 times that of MoS2 co-catalytic Fenton system (MoS2/Fenton). Compared to MoS2/Fenton, the system had 1.5 times more Fe2+ (28.4 μM) and showed a 24.0 % increase in H2O2 activation efficiency, reaching 50.0 %. The electron paramagnetic resonance (EPR) determinations and active species trapping experimental data revealed that •OH and 1O2 were responsible for CQP degradation. The combination of experiments and density functional theory (DFT) calculation demonstrates that O doping in MoS2 modifies the surface charge distribution, leading to an increase in its conductivity, thus accelerating the Fe3+/Fe2+ cycle and promoting reactive oxygen species (ROS) generation. Furthermore, O-MoS2-230/Fenton system exhibited excellent stability. This work reveals the degradation mechanism of accelerated Fe3+/Fe2+ cycle and abundant ROS in the O-MoS2-230/Fenton system and provides a promising technology for antibiotic pollutant degradation.
Collapse
Affiliation(s)
- Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| |
Collapse
|
10
|
Xiao C, Hu Y, Li Q, Liu J, Li X, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. Degradation of sulfamethoxazole by super-hydrophilic MoS 2 sponge co-catalytic Fenton: Enhancing Fe 2+/Fe 3+ cycle and mass transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131878. [PMID: 37379606 DOI: 10.1016/j.jhazmat.2023.131878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
To promote the cycle of Fe2+/Fe3+ in co-catalytic Fenton and enhance mass transfer in an external circulation sequencing batch packed bed reactor (ECSPBR), super-hydrophilicity MoS2 sponge (TMS) modified by tungstosilicic acid (TA) was prepared for efficiently degrading sulfamethoxazole (SMX) antibiotics in aqueous solution. The influence of hydrophilicity of co-catalyst on co-catalytic Fenton and the advantages of ECSPBR were systematically studied through comparative research methods. The results showed that the super hydrophilicity increased the contact between Fe2+ and Fe3+ with TMS, then accelerated Fe2+/Fe3+ cycle. The max Fe2+/Fe3+ ratio of TMS co-catalytic Fenton (TMS/Fe2+/H2O2) was 1.7 times that of hydrophobic MoS2 sponge (CMS) co-catalytic Fenton. SMX degradation efficiency could reach over 90% under suitable conditions. The structure of TMS remained unchanged during the process, and the max dissolved concentration of Mo was lower than 0.06 mg/L. Additionally, the catalytic activity of TMS could be restored by a simple re-impregnation. The external circulation of the reactor was conducive to improving the mass transfer and the utilization rate of Fe2+ and H2O2 during the process. This study offered new insights to prepare a recyclable and hydrophilic co-catalyst and develop an efficient co-catalytic Fenton reactor for organic wastewater treatment.
Collapse
Affiliation(s)
- Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Qitian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
11
|
Wan Y, Luo H, Cai Y, Dang Z, Yin H. Selective removal of total Cr from a complex water matrix by chitosan and biochar modified-FeS: Kinetics and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131475. [PMID: 37104956 DOI: 10.1016/j.jhazmat.2023.131475] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Cr(VI) is difficult to remove from wastewater via a one-step method because it is a type of oxyanion. Developing ARPs to selectively remove total Cr is critical for Cr(VI) remediation, including Cr(VI) adsorption-reduction and Cr(III) complexation. Hereon, chitosan and biochar modified-FeS (CTS-FeS@BC) was prepared to apply in the selective removal of total Cr from wastewaters. The results showed that the activity of amorphous FeS on CTS-FeS@BC for Cr(VI) removal (110.0 mg/g FeS) was significantly enhanced by CTS and BC, and efficiency was inhibited slightly by many anions and humic acid (HA). Meanwhile, the removal of total Cr by CTS-FeS@BC (99.1 mg/g FeS) via ARPs was improved by 1.2 and 40.3 times when compared with CTS-FeS and raw FeS, respectively. Besides, CTS-FeS@BC exhibited an outstanding selectivity for total Cr removal in metal cations-Cr binary solutions and in a complex water matrix. The mechanism of ARPs on CTS-FeS@BC demonstrated by the results of the 1,10-phenanthroline experiment and the distribution of Cr species was that Cr(VI) was first adsorbed by outer-sphere complexation for reduction, and then adsorbed Cr(III) combined with Fe(III) species to generate Fe(III)-Cr(III) complex for total Cr removal. Overall, this study provides an ARP to effectively solve Cr pollution in wastewaters.
Collapse
Affiliation(s)
- Yi Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
12
|
Yang J, Zhu X, Ai Z, Leng L, Li H. Deep dewatering of refinery oily sludge by Fenton oxidation and its potential influence on the upgrading of oil phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27773-w. [PMID: 37243768 DOI: 10.1007/s11356-023-27773-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Highly efficient dewatering is essential to the reduction and reclamation disposal of oily sludge, which is a waste from the extraction, transportation, and refining of crude oil. How to effectively break the water/oil emulsion is a paramount challenge for dewatering of oily sludge. In this work, a Fenton oxidation approach was adopted for the dewatering of oily sludge. The results show that the oxidizing free radicals originated from Fenton agent effectively tailored the native petroleum hydrocarbon compounds into smaller organic molecules, hence destructing the colloidal structure of oily sludge and decreasing the viscosity as well. Meanwhile, the zeta potential of oily sludge was increased, implying the decrease of repulsive electrostatic force to realize easy coalescence of water droplets. Thus, the steric and electrostatic barriers which restrained the coalescence of dispersed water droplets in water/oil emulsion were removed. With these advantages, the Fenton oxidation approach derived the significant decrease of water content, in which 0.294 kg water was removed from per kilogram oily sludge under the optimal operation condition (i.e., pH value of 3, solid-liquid ratio of 1:10, Fe2+ concentration of 0.4 g/L and H2O2/Fe2+ ratio of 10:1, and reaction temperature of 50 °C). In addition, the quality of oil phase was upgraded after Fenton oxidation treatment accompanying with the degradation of native organic substances in oily sludge, and the heating value of oily sludge was increased from 8680 to 9260 kJ·kg-1, which would facilitate to the subsequent thermal conversion like pyrolysis or incineration. Such results demonstrate that the Fenton oxidation approach is efficient for the dewatering as well as the upgrading of oily sludge.
Collapse
Affiliation(s)
- Jianping Yang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Xiaolei Zhu
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Zejian Ai
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
13
|
Yuan Y, Liu Y, Xie X, Wen Y, Song M, He J, Wang Z. 2D defect-engineered Ag-doped γ-Fe 2O 3/BiVO 4: The effect of noble metal doping and oxygen vacancies on exciton-triggering photocatalysis production of singlet oxygen. CHEMOSPHERE 2023; 322:138176. [PMID: 36806812 DOI: 10.1016/j.chemosphere.2023.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The selectivity of singlet oxygen (1O2) holds promising applications in complex environmental systems due to its ability to preferentially oxidize target pollutants. Usually, 1O2 in photocatalytic systems is generated via the electron transfer pathway and •O2- plays an important role as an intermediate, while the exciton-based energy transfer pathway for 1O2 generation has been less studied. Here, a 2D Ag-γ-Fe2O3/BiVO4 with oxygen vacancies was designed which was capable of generating 1O2 by an exciton-based energy transfer-dominated approach, as strongly demonstrated by the results of steady-state fluorescence spectroscopy and phosphorescence spectroscopy. In the Z-type heterojunction photocatalyst system, Ag acted as an electron mediator to promote not only the generation of free carriers but also the generation of singlet excitons, while the appropriate concentration of oxygen vacancies further promotes the exciton-triggering photocatalysis production of 1O2. The Ag-γ-Fe2O3/BiVO4 could degrade 99.4% of sulfadiazine within 90 min, and 1O2 played an important role in the degradation of sulfadiazine, as shown by EPR and active species capture experiments. Ecotoxicity predictions indicated that the main byproducts of sulfadiazine degradation by Ag-γ-Fe2O3/BiVO4 were low in toxicity. The prepared photocatalysts provide a new idea for obtaining 1O2 and designing photocatalysts with selectivity.
Collapse
Affiliation(s)
- Yi Yuan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Yijie Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China.
| | - Yuan Wen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Mengxi Song
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Jiancheng He
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| |
Collapse
|
14
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
15
|
Xiao C, Hu Y, Li Q, Liu J, Li X, Shi Y, Chen Y, Cheng J. Carbon-doped defect MoS 2 co-catalytic Fe 3+/peroxymonosulfate process for efficient sulfadiazine degradation: Accelerating Fe 3+/Fe 2+ cycle and 1O 2 dominated oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159587. [PMID: 36270354 DOI: 10.1016/j.scitotenv.2022.159587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In order to accelerate Fe3+/Fe2+ cycle and boost singlet oxygen (1O2) generation in peroxymonosulfate (PMS) Fenton-like system, a co-catalyst of defect MoS2 was prepared by C doping and C2-MoS2/Fe3+/PMS system was structured. The removal efficiency of sulfadiazine (SDZ) antibiotics was nearly 100 % in 10 min in the system under the appropriate conditions ([co-catalysts] = 0.2 g/L, [PMS] = 0.1 mM, [Fe3+] = 0.4 mM, pH 3.5), and the reaction rate constant was 4.6 times that of Fe3+/PMS system. C doping MoS2 could induce phase transition, yield more sulfur defects, and expedite electron transfer. Besides, exposed Mo4+ sites on C2-MoS2 could significantly enhance the regeneration and stability of Fe2+ and further promote the activation of PMS. ·OH, SO4·-, and 1O2 were responsible for SDZ degradation in the system. Notably, 1O2 generation was efficiently promoted by sulfur defects and CO sites on C2-MoS2, and 1O2 played the main role in SDZ degradation. Therefore, this co-catalytic system exhibited great anti-interference and stability, and organic contaminants could be efficiently and stably degraded in a 14-day long-term experiment. This work provides a new approach for improving the co-catalytic performance of MoS2 for Fe3+ mediated Fenton-like technology, and offers a promising antibiotic pollutant removal strategy.
Collapse
Affiliation(s)
- Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Qitian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
16
|
Shi Y, Hu Y, Wang Y, Li X, Xiao C, Liu J, Chen Y, Cheng J, Zhu X, Wang G, Xie J. 3D N-doped graphene aerogel sponge-loaded CoS2 co-catalytic Fenton system for ciprofloxacin degradation. JOURNAL OF CLEANER PRODUCTION 2022; 380:135008. [DOI: 10.1016/j.jclepro.2022.135008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
17
|
Efficient simultaneous removal of tetracycline hydrochloride and Cr(VI) through photothermal-assisted photocatalytic-Fenton-like processes with CuOx/γ-Al2O3. J Colloid Interface Sci 2022; 622:526-538. [DOI: 10.1016/j.jcis.2022.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022]
|
18
|
Liang D, Hu Y, Xiao C, Wang G, Xie J, Zhu X. Highly efficient catalytic ozonation for ammonium in water upon γ-Al 2O 3@Fe/Mg with acidic-basic sites and oxygen vacancies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155278. [PMID: 35447182 DOI: 10.1016/j.scitotenv.2022.155278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Catalytic ozonation has prospects in the advanced treatment of nitrogen removal, and solid base MgO can efficiently catalyze the ozonation of ammonium nitrogen. However, it is necessary to improve the problem of easy loss, difficult recovery, and low percentage of gaseous products. Here, MgO, amorphous Fe2O3, and γ-Al2O3 were selected as doping components and supports, respectively, to prepare γ-Al2O3@Fe/Mg composite catalysts with abundant acidic-basic sites and oxygen vacancies. The results show that γ-Al2O3@Fe/Mg5 can efficiently catalyze the ozonation of ammonium nitrogen (98.73%) with 67.82% gaseous product selectivity under the conditions of initial pH = 7, catalyst dosage of 112.88 g/L, and ozone dosage of 2.4 mg/min. The doping of Fe2O3 and MgO with a weaker lattice oxygen binding energy improves the gaseous product selectivity. The mechanism of ammonium nitrogen removal for γ-Al2O3@Fe/Mg5 is revealed, especially the intrinsic contribution of acidic-basic sites and oxygen vacancies. The pH and active sites play different roles in ozone decomposition for NH4+ removal. Surface hydroxyl protonation on basic sites and oxygen vacancies and electron transfer on acidic sites are responsible for ozone decomposition to hydroxyl radicals. Moreover, γ-Al2O3@Fe/Mg5 exhibits good stability, few leaching ions, and can be settled in water for easy recovery. This study suggests that γ-Al2O3@Fe/Mg5 is a good candidate for the catalytic ozonation of ammonium nitrogen.
Collapse
Affiliation(s)
- Dongmin Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
19
|
Facile fabrication of sulfuretted NiFe-layered double hydroxides/oxalic acid induced g-C3N4 Z-scheme heterojunction for enhanced photocatalytic removal of tetracycline and Cr(Ⅵ) under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Yu H, Gao Y, Xia S, Zou D, Liu Y. A strategy of eliminating phosphate inhibiting the degradation of metronidazole by hydroxylamine assisted heterogeneous Fenton-like system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
A High Flux Electrochemical Filtration System Based on Electrospun Carbon Nanofiber Membrane for Efficient Tetracycline Degradation. WATER 2022. [DOI: 10.3390/w14060910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, an electrochemical filter using an electrospun carbon nanofiber membrane (ECNFM) anode fabricated by electrospinning, stabilization and carbonization was developed for the removal of antibiotic tetracycline (TC). ECNFM with 2.5 wt% terephthalic acid (PTA) carbonized at 1000 °C (ECNFM-2.5%-1000) exhibited higher tensile stress (0.75 MPa) and porosity (92.8%), more graphitic structures and lower electron transfer resistance (23.52 Ω). Under the optimal condition of applied voltage 2.0 V, pH 6.1, 0.1 mol L−1 Na2SO4, initial TC concentration 10 ppm and membrane flux 425 LMH, the TC removal efficiency of the electrochemical filter of ECNFM-2.5%-1000 reached 99.8%, and no obvious performance loss was observed after 8 h of continuous operation. The pseudo-first-order reaction rate constant in flow-through mode was 2.28 min−1, which was 10.53 times higher than that in batch mode. Meanwhile, the energy demand for 90% TC removal was only 0.017 kWh m−3. TC could be converted to intermediates with lower developmental toxicity and mutagenicity via the loss of functional groups (-CONH2, -CH3, -OH, -N(CH3)2) and ring opening reaction, which was mainly achieved by direct anodic oxidation. This study highlights the potential of ECNFM-based electrochemical filtration for efficient and economical drinking water purification.
Collapse
|