1
|
Ma C, Wang J, Liu X, Duan X, Qi J, Li S, Li N, Li Y, Fan X, Peng W. Enhanced Fe(III)/Fe(II) Cycle by Lattice Sulfur for Continuous Fenton Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8812-8821. [PMID: 40264343 DOI: 10.1021/acs.est.4c12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The Fenton reaction is usually limited by the sluggish regeneration of Fe(II). In this article, we developed a Fenton system that uses metal sulfides (MSx) and diluted Fe(III) to activate H2O2, and the enhanced mechanism of the Fe(III)/Fe(II) cycle in the presence of sulfides was investigated. The lattice sulfur of MSx can donate electrons to reduce Fe(III) into Fe(II) and is partially oxidized to SO42- during H2O2 activation. •OH and 1O2 are the primary reactive oxygen species for pollutant removal. Meanwhile, low-cost iron-based sulfide (FeSx) is selected for scale-up experiments in a fixed-bed reactor, which can maintain 100% atrazine degradation over 240 h. Additionally, the Fukui function is employed to analyze the selective degradation pathway of atrazine, and the biological toxicity of the organic intermediates is also assessed. The novel FeSx/Fe(III) system provides a potential alternative to the traditional Fenton reaction.
Collapse
Affiliation(s)
- Chengbo Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Junjie Qi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, China
| | - Shuai Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Li X, Liu Y, Huang H, Cheng J. A photocatalysis-self-Fenton system based on NCDs@ZnIn 2S 4 composites at neutral pH and low amount of Fe 2+ for the effective degradation of antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122580. [PMID: 39299112 DOI: 10.1016/j.jenvman.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Photocatalysis-self-Fenton combining photocatalytic production of H2O2 with Fenton reaction has been a hotspot, but the pH limitation and iron sludge production problems remain unsolved. Herein, we proposed a self-fenton system based on N-doped carbon dots modified ZnIn2S4 (NCDs@ZnIn2S4) composites that exhibits effective degradation of antibiotics under neutral pH using low amounts of Fe2+. The decoration of ZnIn2S4 with NCDs significantly increased the surface area, visible light absorption, charge transfer ability and oxygen adsorption ability. NCDs@ZnIn2S4 composites exhibited a high H2O2 production rate (1528 μM g-1•h-1) under visible light, which was 1.9 and 5.3 times higher than ZnIn2S4 and NCDs, respectively. Meanwhile, the Fe2+/NCDs@ZnIn2S4 system with a low concentration of Fe2+(1 mg/L) could remove over 95% levofloxacin and oxytetracycline within 30 min. Interestingly, the highest degradation efficiency occurred under neutral pH. Quenching experiments and analytical measurements indicated that the high catalytic performance under pH = 7 with low amounts of Fe2+ stemmed from the higher amount of inner-generate H2O2 under neutral pH and easy regeneration of Fe2+ by photoinduced electrons for high •OH yields. Additionally, the Fe2+/NCDs@ZnIn2S4 system exhibited high degradation performance under different water matrix and ultrahigh degradation efficiency towards levofloxacin under real sunlight irradiation. The work shows the prospects of photocatalysis-self-Fenton systems for overcoming the pH limitation and the difficulty of iron sludge separation in the purification of effluents.
Collapse
Affiliation(s)
- Xiaoman Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuanhua Liu
- College of Environmental Science and Technology, Tongji University, Shanghai, 200092, China
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jianhua Cheng
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
4
|
Xiang Y, Xie X, Zhong H, Xiao F, Xie R, Liu B, Guo H, Hu D, Zhang P, Huang H. Efficient Catalytic Elimination of Toxic Volatile Organic Compounds via Advanced Oxidation Process Wet Scrubbing with Bifunctional Cobalt Sulfide/Activated Carbon Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8846-8856. [PMID: 38728579 DOI: 10.1021/acs.est.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.
Collapse
Affiliation(s)
- Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Di Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Pan Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| |
Collapse
|
5
|
Yang K, Chi Y, Yang Y, Lou Z, Wang T, Wang D, Miao H, Xu X. Synergistic effect of novel pyrite/N-doped reduced graphene oxide composite with heterojunction structure for enhanced photo-assisted reduction of Cr(VI) in oxic water: Specific role of molecular oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168123. [PMID: 37884135 DOI: 10.1016/j.scitotenv.2023.168123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
To avoid severe aggregation and synergistically utilize the intrinsic and photocatalytic reducibility, pyrite (FeS2) was loaded onto N-doped reduced graphene oxides (N-rGO) to fabricate a novel FeS2/N-rGO heterojunction catalyst for enhanced chromium (Cr(VI)) reduction in oxic condition to simultaneously investigate the specific effect and role of dissolved oxygen (DO). Characterization results showed that strong interaction and combination of FeS2 and N-rGO not only achieved the uniform distribution of FeS2, but also increased the defects, and exposed more functional groups. Meanwhile, the Type II heterojunction was formed in FeS2/N-rGO, which facilitated the separation efficiency of photo-generated carriers and electrons, endowing FeS2/N-rGO a superior photocatalytic activity. Cr(VI) was almost completely reduced via FeS2/N-rGO within 60 min under irradiation (Cr(VI) = 10 mg/L, dosage = 0.2 g/L), 3 times that of pristine FeS2 (18.7 %). Trapping and Electron Spin Resonance (ESR) experiments indicated that photo-generated e- and derived O2- species from photoactivation of dioxygen (DO) were the key reactive species for the enhancement of photo-assisted Cr(VI) reduction, rather than reductive Fe2+ and S22- species. Although the photocatalysis of FeS2/N-rGO cannot directly generate hydroxyl radicals (OH), the oxidative OH ascribed to superoxide radicals (O2-), photo-induced holes and free DO preferentially consumed by Fe2+ and S22- with stronger reducibility. Hence, as compared to the anoxic condition, the reduction rate of Cr(VI) was slightly decreased, but still could be totally removed within 60 min in the oxic conditions. Due to the excessive amount of FeS2/N-rGO, Cr(III) after reduction would not be influenced by oxidative species and maintain stability under oxic condition. This study provided a facile modification strategy for FeS2 based composites and uncovered its working mechanism for Cr(VI) decontamination.
Collapse
Affiliation(s)
- Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Suzhou Institute of Environmental Sciences, Postdoctoral Innovation and Practice Base of Jiangsu Province, Suzhou 21500, China
| | - Yanxiao Chi
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zimo Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tonghui Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Dengyang Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhu L, Zhang X, Ran L, Zhang H, Zheng Y, Liu C, Zhou L. Tri-modified ferric alginate gel with high regenerative properties catalysts for efficient degradation of rhodamine B. Carbohydr Polym 2023; 322:121309. [PMID: 37839850 DOI: 10.1016/j.carbpol.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023]
Abstract
Water pollution caused by dyes has become a focal point of attention. Among them, the heterogeneous Fenton reaction has emerged as an effective solution to this problem. In this study, we designed a ferric alginate gel (PAGM) tri-modified with poly(vinyl alcohol), graphene oxide, and MoS2 as a heterogeneous Fenton catalyst for organic dye degradation. PAGM addresses the drawbacks of alginate gel, such as poor mechanical properties and gel chain dissolution, thereby significantly extending the catalyst's lifespan. The removal rate of rhodamine B by PAGM reached 95.5 % within 15 min, which was 5.9 times higher than that of unmodified ferric alginate gel. Furthermore, due to the π-π interactions, PAGM exhibits unique adsorption properties for pollutants containing benzene rings. Additionally, PAGM can be regenerated multiple times through a simple soaking procedure without any performance degradation. Finally, the reaction column constructed with PAGM maintained an 83.5 % removal rate even after 319 h of continuous wastewater treatment. This work introduces a novel concept for the study of alginate-based gel catalysts in heterogeneous Fenton reactions.
Collapse
Affiliation(s)
- Lingxiao Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Xu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Lang Ran
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Heng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yajuan Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Chen Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China; Zhongwei High-tech Institute of Lanzhou University, 755000, PR China.
| |
Collapse
|
7
|
Li X, Hu R, Liu Y, Guo X, Cheng J, Hu Y, Chen Y. Co-construction of oxygen doping and van der walls heterojunction in O-CB/ZnIn 2S 4 promoting photocatalytic production and activation of H 2O 2 for the degradation of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132187. [PMID: 37541119 DOI: 10.1016/j.jhazmat.2023.132187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
The in situ production of H2O2 by photocatalysis have shown a sustainable strategy for water remediation, but the peroxide evolution capacity are still unsatisfactory. Herein, we ingeniously design oxygen-doped carbon black/zinc indium sulfide (O-CB/ZnIn2S4) composites for photocatalytic production and activation of H2O2 to degrade antibiotics. The rich oxygen dopants and van der walls heterojunction between O-CB and ZnIn2S4 promoted charge transfer, oxygen adsorption and reduction for peroxide generation. The optimized O-CB/ZnIn2S4-2 composites exhibited ultrahigh H2O2 production rate (1985 μmol/g/h) in pure water (pH=7) without sacrificial reagents and aeration assistance, which was 2 times, 3 times, and 12 times higher than CB/ZnIn2S4-2, ZnIn2S4 and O-CB, respectively. Additionally, O-CB/ZnIn2S4-2 composites exhibited considerable amount of OH of 30 μmol/L in 60 min, which was originated from the reduction of innergenerate-H2O2 by photogenerated electrons and direct photolysis. The degradation and quenching experiments shows that the innergenerate-H2O2 contributed to the rapid degradation and deep mineralization of tetracycline antibiotics(tetracycline, oxytetracycline, chlortetracycline hydrochloride). Moreover, intermediates analysis and toxicity estimation further confirm the significant mineralization and toxicity decrease during the degradation of oxytetracycline by O-CB/ZnIn2S4-2. The work provides deep insights into the crucial role of dopants and heterojunction in promoting H2O2 production and activation.
Collapse
Affiliation(s)
- Xiaoman Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ruixiang Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanhua Liu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaolan Guo
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Yang Y, Zhu J, Zeng Q, Zeng X, Zhang G, Niu Y. Enhanced activation of peroxydisulfate by regulating pyrolysis temperature of biochar supported nZVI for the degradation of oxytetracycline. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Xin X, Liu H, Sun J, Gao K, Jia R. Enhanced photocatalytic activity of Fe-, S- and N-codoped TiO 2 for sulfadiazine degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-12. [PMID: 36686289 PMCID: PMC9846705 DOI: 10.1007/s13762-023-04771-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The composite material based on N-, S-, and Fe-doped TiO2 (NSFe-TiO2) synthesized by wet impregnation was used as a photocatalyst to rapidly degrade sulfadiazine. The photocatalytic degradation behavior and mechanism of sulfadiazine on NSFe-TiO2 were investigated for revealing the role of degradation under ultraviolet light. The results showed that compared with TiO2, NSFe-TiO2 markedly improved the efficiency in photocatalytic degradation of sulfadiazine: more than 90% of sulfadiazine could be removed within 120 min by NSFe-TiO2 dosage of 20 mg L-1. The process conformed to first-order reaction kinetics model. The parameters such as loaded amount of NSFe-TiO2, solution pH value, humic acid concentration and recycle numbers on removal efficiency were also studied. Compared to neutral and alkaline conditions, acidic condition was not conducive to the photocatalysis. HA, Ca2+, Cu2+ and Zn2+ in the actual water body had mild inhibition on sulfadiazine degradation in UV/NSFe-TiO2 system. Fragments screened by high-resolution mass spectrometry were conducted to explore the oxidation mechanism and pathways of sulfadiazine degradation. On the whole, UV/NSFe-TiO2 photocatalysis has a good effect on sulfadiazine removal. Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04771-6.
Collapse
Affiliation(s)
- X. Xin
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101 China
| | - H. Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| | - J. Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| | - K. Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| | - R. Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250101 China
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022 China
| |
Collapse
|