1
|
Zhan J, Liu Q, Chen J, Pang X. New insights into Peniophora crassitunicata and its co-inoculation with commercial microbial inoculant accelerating lignocellulose degradation and compost maturation during orchard wastes composting. ENVIRONMENTAL RESEARCH 2025; 274:121298. [PMID: 40049358 DOI: 10.1016/j.envres.2025.121298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 05/04/2025]
Abstract
Lignocellulosic composting has been widely promoted in the utilization of agricultural wastes, while few focus on orchard lignocellulosic wastes in the fruit industry. Peniophora is a laccase hyper-producer highly efficient in lignin degradation, yet its application in lignocellulosic composting has not been investigated. Here, an aerobic composting experiment was conducted to investigate the effects of inoculation with Peniophora crassitunicata and a commercial microbial inoculant (mainly Bacillus and Aspergillus) on grape (Vitis Vinifera L.) orchard lignocellulosic wastes degradation and the underlying mechanisms. The inoculation with P. crassitunicata, both individually (H) and in combination with the commercial microbial inoculant (HS), enhanced lignocellulose degradation efficiency. Notably, the co-inoculation exhibited higher lignocellulose degradation ratios and higher lignocellulosic enzyme activities compared to other treatments. The compost piles with co-inoculation experienced a more rapid temperature rise, a longer duration (15 days) of high temperatures, lower pH, and lower electrical conductivity (EC). Firmicutes (e.g. Bacillus, Paenibacillus) and Ascomycota (e.g. Aspergillus) along with Bacteroidota, Actinobacteriota, and Basidiomycota (e.g. Peniophora) dominated the microbial community in compost; carbohydrate metabolism dominated microbial metabolic pathways at the thermophilic phase, highlighting an active microbial community. As compost processed, highly mature and non-toxic compost products were finally obtained for the co-inoculation, with a pH of 7.87, C/N ratio of 13.5, NH4+-N/NO3‾-N ratio of 0.21-0.41, EC of 0.90 mS cm-1, and germination index of 149 %. The co-inoculation of P. crassitunicata with the commercial microbial inoculant effectively accelerated lignocellulose degradation and compost maturation, producing a friendly and non-toxic organic fertilizer for agricultural applications and thereby providing a new strategy for orchard wastes management and agricultural applications.
Collapse
Affiliation(s)
- Juan Zhan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Junwen Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
2
|
Kumar R, Banerji T, Sharma N. Advancements in constructed wetland technology: a state-of-the-art review on bio-electrochemical processes, tidal flow dynamics, and resilience to shock loads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10749-10785. [PMID: 40205295 DOI: 10.1007/s11356-025-36326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
This research article presents a comprehensive examination of recent advancements in constructed wetland technology, with a primary focus on bio-electrochemical processes, including electrolysis and microbial fuel cells, as well as the impact of tidal flow and shock loads on the constructed wetland performance. To date, extensive studies and in-depth analyses in these aspects are limited, highlighting a significant research gap. Electrolysis is explored for its efficacy in dephosphorization and denitrification, particularly under conditions of low carbon availability. Additionally, microbial fuel cell technology is investigated for its dual benefits of bioenergy generation and climate change mitigation. The tidal flow component is highlighted for its ability to create anaerobic, anoxic, and aerobic environments within and between cells, crucial for effective nitrogen removal. The study emphasizes the importance of constructed wetland resilience to shock loads, whether from increased discharge due to rainfall or heightened contaminant levels. The research employs bibliographic analysis and microbial community profiling and investigates factors such as nutrient removal, polarization curves, and the effects of flood/rest and flood/drain in tidal flow. Furthermore, the article delves into the impacts of hydraulic and organic shock loads on constructed wetland systems, providing a comprehensive overview of the current state of the field.
Collapse
Affiliation(s)
- Rohan Kumar
- Department of Civil Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| | - Tuhin Banerji
- R. D. Aga Research Technology and Innovation Centre, Thermax Limited, Pune, 411019, India
| | - Naresh Sharma
- Military Engineering Service, HQ Chief Engineer Jaipur Zone, Rajasthan, 302006, India
| |
Collapse
|
3
|
Liu B, Guo Z, Chen W, Wang Z, Xu L, Gao S, Wu Y, Zeng Y, Tang B, Wu M, Yin H. Addition of Thermotolerant Nitrifying Bacteria During Pig Manure Composting Enhanced Nitrogen Retention and Modified Microbial Composition. Microorganisms 2025; 13:719. [PMID: 40284556 PMCID: PMC12029871 DOI: 10.3390/microorganisms13040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Preventing loss of nitrogen during aerobic manure composting is a critical challenge, and introducing microbial agents with specific functions offers a promising solution. This study aimed to explore how Bacillus subtilis F2 (a thermotolerant nitrifying bacterium) affects nitrogen conservation, microbial dynamics, and nitrogen conversion-associated gene abundance during pig manure composting. Relative to the uninoculated controls, adding F2 markedly raised the germination index, nitrate content, and total nitrogen in the final compost, resulting in reduced nitrogen loss. The inoculation led to a distinct succession of bacterial communities, enriching microorganisms associated with fermentation and hydrocarbon degradation, while the fungal communities did not change significantly between the control and treated compost. Furthermore, inoculation markedly increased amoA gene levels and decreased nirK abundance during the cooling and maturation phases. Significant relationships were detected between nitrogen content, microbial composition, and nitrogen conversion genes in correlation analyses. In summary, the addition of F2 is recommended for bolstering nitrogen retention in the context of composting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongmei Yin
- Hunan Institute of Microbiology, Hunan Academy of Agricultural Sciences, Changsha 410009, China; (B.L.)
| |
Collapse
|
4
|
Shi S, Guo Z, Bao J, Jia X, Fang X, Tang H, Zhang H, Sun Y, Xu X. Machine learning-based prediction of compost maturity and identification of key parameters during manure composting. BIORESOURCE TECHNOLOGY 2025; 419:132024. [PMID: 39732375 DOI: 10.1016/j.biortech.2024.132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Evaluating compost maturity, e.g. via manual seed germination index (GI) measurement, is both time-consuming and costly during composting. This study employed six machine learning methods, including random forest (RF), extra tree (ET), eXtreme gradient boosting, gradient boosting decision tree, back propagation neural network, and multilayer perceptron, to develop models for predicting GI during manure composting. RF and ET exhibited robust predictive performance for GI, achieving high coefficient of determination (R2) of 0.937 and 0.904, respectively, along with root mean squared error of 7.261 and 8.930. SHapley additive exPlanations identified the duration time of composting, total nitrogen, and electrical conductivity as the key features influencing GI. Validation with actual GI data further confirmed the effectiveness of RF and ET models in predicting GI. This study could facilitate optimizing manure composting strategies, enable efficient parameter regulation, reduce labor costs, assist in anomaly detection, and promote intelligent management in real-world composting practices.
Collapse
Affiliation(s)
- Shuai Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Zhiheng Guo
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Jiaxin Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangyang Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuyu Fang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Huaiyao Tang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Hongxin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuhong Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Fu J, Chen S, Tan Y, Zou K, Yu X, Ji L, Zhang J, Xiao X, Wang W, Zhao K, Zou L. Inoculation of thermophilic bacteria from giant panda feces into cattle manure reduces gas emissions and decreases resistance gene prevalence in short-term composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123601. [PMID: 39642832 DOI: 10.1016/j.jenvman.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Here, thermophilic bacteria (TB) with cellulose degradation functions were screened from composting panda feces and applied to cattle manure composting. TB (Aeribacillus pallidus G5 and Parageobacillus toebii G12) inoculation led to remarkable improvement of the compost temperature, prolonging of the thermophilic stage and shortening of the composting process, resulting in increased manure harmlessness (GI ≥ 70%), compost humification, and greenhouse gas emission reduction (14.19%-22.57%), compared with the control compost, within 15 days of composting. In particular, G5 inoculation reduced NH3 emissions by 41.97% relative to control composts over 15 days. G5 was capable of rapidly colonizing in the composts, and its inoculation immediately enriched the genera of Firmicutes, and simultaneously decreased the genera of Proteobacteria, contributing to the elimination of harmful microorganisms. Notably, this strain lacked antibiotic resistance genes, and the absolute abundances of resistance genes and mobile genetic genes (MGEs) decreased the most (by 80.84%). Metagenomic analysis revealed that enzymes capable of producing CO2, N2O, and NH3 were generally inhibited, while CO2 fixation and N2O and NH3 reduction enzymes were enriched in the G5 compost, since metagenome-assembled genomes of Proteobacteria harbored more key genes and enzymes in complete pathways for producing N2O, NH3, and CO2. Moreover, Proteobacteria, such as Pseudomonas and Halopseudomonas, were the main host of resistance genes and MGEs. Overall, the gas emission could be reduced, and more efficient control of resistance genes could be achieved by inhibited the abundance of Proteobacteria during composting. This study provides a safe and effective microbial agent (A. pallidus) for manure treatment.
Collapse
Affiliation(s)
- Jingxia Fu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yulan Tan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, China
| | - Keyi Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Wang SP, Sun ZY, Wang ST, Tang YQ. Efficiency and mechanisms for enhancing nitrogen retention in distilled grain waste compost through a composting-biofiltration approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123606. [PMID: 39637510 DOI: 10.1016/j.jenvman.2024.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Composting is an effective method for recycling resources in waste management. However, significant nitrogen loss can hinder the overall effectiveness of the composting process. Biofiltration is a promising method for conserving nitrogen in composting owing to its ability to efficiently trap and convert gaseous emissions. This study investigated the efficiency and mechanisms of a composting-biofiltration system to enhance nitrogen retention in distilled grain waste (DGW) compost using pre-composted DGW as biofilter media. The DGW composting-biofiltration system exhibited a lower nitrogen loss (24.9%) than the mono-composting system (40.1%). Additionally, this DGW system achieved a high NH3 removal efficiency of 94.7%-97.7%, while NO3- concentration continuously increased in the biofilter, indicating that biofiltration mainly conserved nitrogen through the conversion of NH3 emitted from the composter. The analysis of the microbial community and key functional enzymes involved in nitrogen metabolism revealed a significant increase in both nitrification and ammonia assimilation within the biofilter. This resulted in the accumulation of NO3- and the formation of organic nitrogen, thereby facilitating nitrogen retention. Genera such as Chryseolinea, Anseongella, Parapusillimonas, Bacillus, and Urebacillus mainly contributed to the generation of NO3- and organic nitrogen. The structural equation model analysis revealed that nitrogen retention in DGW compost was mainly facilitated by enhanced nitrification and ammonia assimilation in the biofilter. These results provide insights into underlying mechanisms for enhancing nitrogen retention through a composting-biofiltration approach and present guidance for improving compost quality.
Collapse
Affiliation(s)
- Shi-Peng Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China; College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, Sichuan, PR China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
7
|
Zhang Z, Yang H, Linghu M, Li J, Chen C, Wang B. Cattle manure composting driven by a microbial agent: A coupled mechanism involving microbial community succession and organic matter conversion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175953. [PMID: 39226954 DOI: 10.1016/j.scitotenv.2024.175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Aerobic composting has been used as a mainstream treatment technology for agricultural solid waste resourcing. In the present study, we investigated the effects and potential mechanisms of the addition of a microbial agent (LD) prepared by combining Bacillus subtilis, Bacillus paralicheniformis and Irpex lacteus in improving the efficiency of cattle manure composting. Our results showed that addition of 1.5 % LD significantly accelerated compost humification, i.e., the germination index and lignocellulose degradation rate of the final compost product reached values of 92.20 and 42.29 %, respectively. Metagenomic sequencing results showed that inoculation of cattle manure with LD increased the abundance of functional microorganisms. LD effectively promoted the production of humus precursors, which then underwent reactions through synergistic abiotic and biotic pathways to achieve compost humification. This research provides a theoretical basis for the study of microbial enhancement strategies and humus formation mechanisms in the composting of livestock manure.
Collapse
Affiliation(s)
- Zichun Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Meilin Linghu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Han Y, Yang Z, Yin M, Zhang Q, Tian L, Wu H. Exploring product maturation, microbial communities and antibiotic resistance gene abundances during food waste and cattle manure co-composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175704. [PMID: 39214357 DOI: 10.1016/j.scitotenv.2024.175704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This study proposed combining food waste (FW) and cattle manure (CM) in composting to improve the product maturity. The findings suggested that the inclusion of CM effectively extended the thermophilic stage, facilitated the decomposition of cellulose, and enhanced the production of humus-like substances by enhancing beneficial microbial cooperation. Adding 40 % CW was optimal to reduce the nitrogen loss, increase the cellulose degradation rate to 22.07 %, increase germination index (GI) to 140 %, and reduce normalized antibiotic resistance gene (ARG) abundances. Adding CW could promote the transformation of protein-like compounds, thereby enhancing the humification process of organic substances. Structural equation modeling further verified that the temperature was the key factor affecting humification production, while the main driver for ARGs was physiochemical parameters. This study shows that co-composting of FW and CM offers the potential to promote humification, reduce ARG abundance, and improve fertilizer quality for utilization of both biowastes in the field.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zijian Yang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Meiqi Yin
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China.
| | - Lili Tian
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China
| | - Hao Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
9
|
Liu D, Ma X, Ye C, Jin Y, Huang K, Niu C, Zhang G, Li D, Ma L, Li S, Yang G. Prediction of the impact of tobacco waste hydrothermal products on compost microbial growth using hyperspectral imaging combined with machine learning. Front Microbiol 2024; 15:1476803. [PMID: 39564483 PMCID: PMC11573759 DOI: 10.3389/fmicb.2024.1476803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The insufficient understanding of the impact of hydrothermal products on the growth characteristics of compost microorganisms presents a significant challenge to the broader implementation of hydrothermal coupled composting for tobacco waste. Traditional biochemical detection methods are labor-intensive and time-consuming, highlighting the need for faster and more accurate alternatives. This study investigated the effects of hydrothermal treatment on tobacco straw products and their influence on compost microorganism growth, using hyperspectral imaging (HSI) technology and machine learning algorithms. Sixty-one tobacco straw samples were analyzed with a hyperspectral camera, and image processing was used to extract average spectra from regions of interest (ROI). Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were applied to assess four key variables: nicotine content, total humic acid content, Penicillium chrysogenum H/C ratio, and Bacillus subtilis OD600 ratio. The effects of hydrothermal treatment on compost were classified as promoting, inhibiting, or neutral regarding microbial growth. The Competitive Adaptive Reweighted Sampling (CARS) method identified the most influential wavelengths in the 900-1700 nm spectral range. The Random Forest (RF) model outperformed SVM, KNN, and XGBoost models in predicting microbial growth responses, achieving R c = 0.957, RMSE = 3.584. Key wavelengths were identified at 1096 nm, 1101 nm, 1163 nm, 1335 nm, and 1421 nm. The results indicate that hyperspectral imaging combined with machine learning can accurately predict changes in the chemical composition of tobacco straws and their effects on microbial activity. This method provides an innovative and effective means of improving the resource usage of tobacco straws in composting, enhancing sustainable waste management procedures.
Collapse
Affiliation(s)
- Dandan Liu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Xinxin Ma
- School of Environment, Tsinghua University, Beijing, China
| | - Changwen Ye
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing, China
| | - Kuo Huang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Chenqi Niu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Ge Zhang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Dong Li
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Linzhi Ma
- College of Physical Engineering, Zhengzhou University, Zhengzhou, China
| | - Suxiao Li
- College of Physical Engineering, Zhengzhou University, Zhengzhou, China
| | - Guotao Yang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| |
Collapse
|
10
|
Li J, Wu S, Zheng J, Sun X, Hu C. Combining citrus waste-derived function microbes with biochar promotes humus formation by enhancing lignocellulose degradation in citrus waste compost. CHEMOSPHERE 2024; 368:143754. [PMID: 39549969 DOI: 10.1016/j.chemosphere.2024.143754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The low degradation rate of lignocellulose limits the humification process of citrus organic waste composting. This study explored the roles of general microbial inoculation (GM), citrus waste-derived function microbial inoculation (CM), and CM combined with biochar (CMB) in citrus waste compost. Results showed microbial inoculations all promoted lignocellulose degradation and humus formation, but the roles of CM and CMB were better than GM, especially CMB. Compared to the control, CMB raised the temperature and duration of thermophilic phase by 2.8 °C and 4 days, and improved lignin degradation rate and humus content by 21.5% and 7.6%. Furthermore, CMB promoted bacterial community succession and cooperation, and decreased network complexity. Moreover, CMB strengthened the correlation between mainly bacterial communities and polysaccharides, reducing sugars as well as carbohydrates metabolic, enhancing the contribution of bacteria such as Bacillus, Flavobacterium and Staphylococcus to humus and its precursors. It concludes that the naturally derived microbes in compost had better effects on promoting humus synthesis than exogenous microbes, which provides a new route for rapid humification of high-lignin organic waste in composting.
Collapse
Affiliation(s)
- Jinye Li
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Songwei Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixiang Zheng
- Guangxi Fruit Industry Technology Research Institute, Nanning, 530105, China
| | - Xuecheng Sun
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Wu X, Gao R, Tian X, Hou J, Wang Y, Wang Q, Tang DKH, Yao Y, Zhang X, Wang B, Yang G, Li H, Li R. Co-composting of dewatered sludge and wheat straw with newly isolated Xenophilus azovorans: Carbon dynamics, humification, and driving pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121613. [PMID: 38944964 DOI: 10.1016/j.jenvman.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Composting is a biological reaction caused by microorganisms. Composting efficiency can be adequately increased by adding biochar and/or by inoculating with exogenous microorganisms. In this study, we looked at four methods for dewatered sludge waste (DSW) and wheat straw (WS) aerobic co-composting: T1 (no additive), T2 (5% biochar), T3 (5% of a newly isolated strain, Xenophilus azovorans (XPA)), and T4 (5% of biochar-immobilized XPA (BCI-XPA)). Throughout the course of the 42-day composting period, we looked into the carbon dynamics, humification, microbial community succession, and modifications to the driving pathways. Compared to T1 and T2, the addition of XPA (T3) and BCI-XPA (T4) extended the thermophilic phase of composting without negatively affecting compost maturation. Notably, T4 exhibited a higher seed germination index (132.14%). Different from T1 and T2 treatments, T3 and T4 treatments increased CO2 and CH4 emissions in the composting process, in which the cumulative CO2 emissions increased by 18.61-47.16%, and T3 and T4 treatments also promoted the formation of humic acid. Moreover, T4 treatment with BCI-XPA addition showed relatively higher activities of urease, polyphenol oxidase, and laccase, as well as a higher diversity of microorganisms compared to other processes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis showed that microorganisms involved in the carbon cycle dominated the entire composting process in all treatments, with chemoheterotrophy and aerobic chemoheterotrophy being the main pathways of organic materials degradation. Moreover, the presence of XPA accelerated the breakdown of organic materials by catabolism of aromatic compounds and intracellular parasite pathways. On the other hand, the xylanolysis pathway was aided in the conversion of organic materials to dissolved organics by the addition of BCI-XPA. These findings indicate that XPA and BCI-XPA have potential as additives to improve the efficiency of dewatered sludge and wheat straw co-composting.
Collapse
Affiliation(s)
- Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Runyu Gao
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Xiaorui Tian
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiawei Hou
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Daniel Kuok Ho Tang
- The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ, 85721, USA; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, 712100, China
| | - Yiqing Yao
- School of Mechanical & Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China
| | - Bowen Wang
- Shaanxi Livestock and Poultry Breeding Generic Technology Research and Development Platform, Yangling, 712100, China; College of Economics and Management, Northwest A&F University (NWAFU), Yangling, 712100, China; Yangling Animal Husbandry Industry Innovation Center, Yangling, 712100, China; Shaanxi Animal Husbandry Industry Innovation Consortia, Yangling, 712100, China
| | - Guoping Yang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China
| | - Hua Li
- Shaanxi Livestock and Poultry Breeding Generic Technology Research and Development Platform, Yangling, 712100, China; College of Economics and Management, Northwest A&F University (NWAFU), Yangling, 712100, China; Yangling Animal Husbandry Industry Innovation Center, Yangling, 712100, China; Shaanxi Animal Husbandry Industry Innovation Consortia, Yangling, 712100, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Lu M, Hao Y, Lin B, Huang Z, Zhang Y, Chen L, Li K, Li J. The bioaugmentation effect of microbial inoculants on humic acid formation during co-composting of bagasse and cow manure. ENVIRONMENTAL RESEARCH 2024; 252:118604. [PMID: 38548254 DOI: 10.1016/j.envres.2024.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 06/07/2024]
Abstract
The effective degradation of recalcitrant lignocellulose has emerged as a bottleneck for the humification of compost, and strategies are required to improve the efficiency of bagasse composting. Bioaugmentation is a promising method for promoting compost maturation and improving the quality of final compost. In this study, the bioaugmentation effects of microbial inoculants on humic acid (HA) formation during lignocellulosic composting were explored. In the inoculated group, the maximum temperature was increased to 72.5 °C, and the phenol-protein condensation and Maillard humification pathways were enhanced, thus increasing the HA content by 43.85%. After inoculation, the intensity of the microbial community interactions increased, particularly for fungi (1.4-fold). Macrogenomic analysis revealed that inoculation enriched thermophilic bacteria and lignocellulose-degrading fungi and increased the activity of carbohydrate-active enzymes and related metabolic functions, which effectively disrupted the recalcitrant structure of lignocellulose to achieve a high humification degree. Spearman correlation analysis indicated that Stappia of the Proteobacteria phylum, Ilumatobacter of the Actinomycetes phylum, and eleven genera of Ascomycota were the main HA producers. This study provides new ideas for bagasse treatment and recycling and realizing the comprehensive use of resources.
Collapse
Affiliation(s)
- Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Liang Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
13
|
Wang S, Xu Z, Xu X, Gao F, Zhang K, Zhang X, Zhang X, Yang G, Zhang Z, Li R, Quan F. Effects of two strains of thermophilic nitrogen-fixing bacteria on nitrogen loss mitigation in cow dung compost. BIORESOURCE TECHNOLOGY 2024; 400:130681. [PMID: 38599350 DOI: 10.1016/j.biortech.2024.130681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Excavating nitrogen-fixing bacteria with high-temperature tolerance is essential for the efficient composting of animal dung. In this study, two strains of thermophilic nitrogen-fixing bacteria, NF1 (Bacillus subtilis) and NF2 (Azotobacter chroococcum), were added to cow dung compost both individually (NF1, NF2) and mixed together (NF3; mixing NF1 and NF2 at a ratio of 1:1). The results showed that NF1, NF2, and NF3 inoculants increased the total Kjeldahl nitrogen level by 38.43%-55.35%, prolonged the thermophilic period by 1-13 d, increased the seed germination index by 17.81%, and the emissions of NH3 and N2O were reduced by 25.11% and 42.75%, respectively. Microbial analysis showed that Firmicutes were the predominant bacteria at the thermophilic stage, whereas Chloroflexi, Proteobacteria, and Bacteroidetes were the predominant bacteria at the mature stage. These results confirmed that the addition of the isolated strains to cow dung composting improved the bacterial community structure and benefited nitrogen retention.
Collapse
Affiliation(s)
- Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, PR China
| | - Guoping Yang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling Shaanxi, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling Shaanxi, 712100, PR China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
14
|
Liu Y, Pan J, Wang J, Yang X, Zhang W, Tang KHD, Wang H, Zhang X, Gao R, Yang G, Zhang Z, Li R. Insight into the humification and carbon balance of biogas residual biochar amended co-composting of hog slurry and wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33110-6. [PMID: 38570431 DOI: 10.1007/s11356-024-33110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The impact of biogas residual biochar (BRB) on the humification and carbon balance process of co-composting of hog slurry (HGS) and wheat straw (WTS) was examined. The 50-day humification process was significantly enhanced by the addition of BRB, particular of 5% BRB, as indicated by the relatively higher humic acid content (67.28 g/kg) and humification ratio (2.31) than other treatments. The carbon balance calculation indicated that although BRB addition increased 22.16-46.77% of C lost in form of CO2-C, but the 5% BRB treatment showed relatively higher C fixation and lower C loss than other treatments. In addition, the BRB addition reshaped the bacterial community structure during composting, resulting in increased abundances of Proteobacteria (25.50%) during the thermophilic phase and Bacteroidetes (33.55%) during the maturation phase. Combined these results with biological mechanism analysis, 5% of BRB was likely an optimal addition for promoting compost humification and carbon fixation in practice.
Collapse
Affiliation(s)
- Yunpeng Liu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Junting Pan
- Key Laboratory of Non-Point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Wanqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Kuok Ho Daniel Tang
- The Department of Environmental Science, The University of Arizona (UA), Shantz Building Rm 4291177 E 4th St., Tucson, AZ, 85721, USA
- College of Natural Resources and Environment, NWAFU-UA Micro-Campus, Yangling, 712100, Shaanxi, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, China
| | - Runyu Gao
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Guoping Yang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, NWAFU-UA Micro-Campus, Yangling, 712100, Shaanxi, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China.
- College of Natural Resources and Environment, NWAFU-UA Micro-Campus, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Liang F, Liu X, Yu X, Liu L, He H, Huang C, Hu J, Wang Z, Zhou Y, Zhai Y. Enhancing bioavailable carbon sources and minimizing ammonia emissions in distillery sludge and distiller's grains waste co-composting through deep eutectic solvent addition. BIORESOURCE TECHNOLOGY 2024; 397:130491. [PMID: 38408502 DOI: 10.1016/j.biortech.2024.130491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
This study introduced two deep eutectic solvents, ChCl/oxalic acid (CO) and ChCl/ethylene glycol (CE), into a 34-day co-composting process of distillery sludge and distiller's grains waste to address challenges related to NH3 emissions. The addition of DES increased dissolved organic carbon by 68% to 92%, offering more utilizable carbon for microorganisms. SYTO9/PI staining and enzyme activity tests showed the CE group had higher bacterial activity and metabolic levels during the thermophilic phase than the control. Bacterial community analysis revealed that early dominance of Lactobacillus and Lysinibacillus in CE accelerated the onset of the thermophilic phase, reduced pile pH, and significantly decreased urease production by reducing Ureibacillus. Consequently, CE treatment substantially dropped NH3 emissions by 73% and nitrogen loss by 54%. Besides, CE fostered a more abundant functional microbial community during the cooling and maturation phases, enhancing deep degradation and humification of organic matter.
Collapse
Affiliation(s)
- Fashen Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoping Liu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xin Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jie Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
16
|
Wang S, Long H, Hu X, Wang H, Wang Y, Guo J, Zheng X, Ye Y, Shao R, Yang Q. The co-inoculation of Trichoderma viridis and Bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose. BIORESOURCE TECHNOLOGY 2024; 394:130285. [PMID: 38184087 DOI: 10.1016/j.biortech.2023.130285] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
The aim of this study was to reveal the mechanism by which co-inoculation with both Trichoderma viridis and Bacillus subtilis improved the efficiency of composting and degradation of lignocellulose in agricultural waste. The results showed that co-inoculation with Trichoderma and Bacillus increased abundance of Bacteroidota to promote the maturation 7 days in advance. Galbibacter may be a potential marker of co-inoculation composting efficiency compost. The compost became dark brown, odorless, and had a carbon to nitrogen ratio of 16.40 and a pH of 8.2. Moreover, Actinobacteriota and Firmicutes still dominated the degradation of lignocellulose following inoculation with Trichoderma or Bacillus 35 days after composting. Bacterial function prediction analysis showed that carbohydrate metabolism was the primary metabolic pathway. In conclusion, co-inoculation with Trichoderma and Bacillus shortened the composting cycle and accelerated the degradation of lignocellulose. These findings provide new strategies for the efficient use of agricultural waste to produce organic fertilizers.
Collapse
Affiliation(s)
- Shancong Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haochi Long
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinru Hu
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hao Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchao Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiameng Guo
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Youliang Ye
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Qinghua Yang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|