1
|
Shu Y, Gumma N, Hassan F, Branch DA, Baer LA, Ostrowski MC, Stanford KI, Baskin KK, Mehta KD. Hepatic protein kinase Cbeta deficiency mitigates late-onset obesity. J Biol Chem 2023; 299:104917. [PMID: 37315788 PMCID: PMC10393818 DOI: 10.1016/j.jbc.2023.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Although aging is associated with progressive adiposity and a decline in liver function, the underlying molecular mechanisms and metabolic interplay are incompletely understood. Here, we demonstrate that aging induces hepatic protein kinase Cbeta (PKCβ) expression, while hepatocyte PKCβ deficiency (PKCβHep-/-) in mice significantly attenuates obesity in aged mice fed a high-fat diet. Compared with control PKCβfl/fl mice, PKCβHep-/- mice showed elevated energy expenditure with augmentation of oxygen consumption and carbon dioxide production which was dependent on β3-adrenergic receptor signaling, thereby favoring negative energy balance. This effect was accompanied by induction of thermogenic genes in brown adipose tissue (BAT) and increased BAT respiratory capacity, as well as a shift to oxidative muscle fiber type with an improved mitochondrial function, thereby enhancing oxidative capacity of thermogenic tissues. Furthermore, in PKCβHep-/- mice, we determined that PKCβ overexpression in the liver mitigated elevated expression of thermogenic genes in BAT. In conclusion, our study thus establishes hepatocyte PKCβ induction as a critical component of pathophysiological energy metabolism by promoting progressive hepatic and extrahepatic metabolic derangements in energy homeostasis, contributing to late-onset obesity. These findings have potential implications for augmenting thermogenesis as a means of combating aging-induced obesity.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nikhil Gumma
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faizule Hassan
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel A Branch
- Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lisa A Baer
- Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael C Ostrowski
- Department of Biochemistry & Molecular Biology, Holling Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kristin I Stanford
- Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kedryn K Baskin
- Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kamal D Mehta
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Metabolic Syndrome, Instacare Therapeutics, Dublin, Ohio, USA.
| |
Collapse
|
2
|
Liu S, Deng S, Ding Y, Flores JJ, Zhang X, Jia X, Hu X, Peng J, Zuo G, Zhang JH, Gong Y, Tang J. Secukinumab attenuates neuroinflammation and neurobehavior defect via PKCβ/ERK/NF-κB pathway in a rat model of GMH. Exp Neurol 2023; 360:114276. [PMID: 36402169 DOI: 10.1016/j.expneurol.2022.114276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIMS Germinal matrix hemorrhage (GMH) is a disastrous clinical event for newborns. Neuroinflammation plays an important role in the development of neurological deficits after GMH. The purpose of this study is to investigate the anti-inflammatory role of secukinumab after GMH and its underlying mechanisms involving PKCβ/ERK/NF-κB signaling pathway. METHODS A total of 154 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. Secukinumab was administered intranasally post-GMH. PKCβ activator PMA and p-ERK activator Ceramide C6 were administered intracerebroventricularly at 24 h prior to GMH induction, respectively. Neurobehavioral tests, western blot and immunohistochemistry were used to evaluate the efficacy of Secukinumab in both short-term and long-term studies. RESULTS Endogenous IL-17A, IL-17RA, PKCβ and p-ERK were increased after GMH. Secukinumab treatment improved short- and long-term neurological outcomes, reduced the synthesis of MPO and Iba-1 in the perihematoma area, and inhibited the synthesis of proinflammatory factors, such as NF-κB, IL-1β, TNF-α and IL-6. Additionally, PMA and ceramide C6 abolished the beneficial effects of Secukinumab. CONCLUSION Secukinumab treatment suppressed neuroinflammation and attenuated neurological deficits after GMH, which was mediated through the downregulation of the PKCβ/ERK/NF-κB pathway. Secukinumab treatment may provide a promising therapeutic strategy for GMH patients.
Collapse
Affiliation(s)
- Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiaoli Zhang
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiaojing Jia
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
3
|
Shu Y, Hassan F, Ostrowski MC, Mehta KD. Role of hepatic PKCβ in nutritional regulation of hepatic glycogen synthesis. JCI Insight 2021; 6:149023. [PMID: 34622807 PMCID: PMC8525638 DOI: 10.1172/jci.insight.149023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCβ-deficient (PKCβHep-/-) mouse model, we demonstrated the role of hepatic PKCβ in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCβHep-/- mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/β signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCβHep-/- liver compared with controls. The above data strongly imply that hepatic PKCβ deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCβ has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faizule Hassan
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael C Ostrowski
- Department of Biochemistry & Molecular Biology, Holling Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal D Mehta
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Instacare Therapeutics, Dublin, Ohio, USA
| |
Collapse
|
4
|
Shu Y, Hassan F, Coppola V, Baskin KK, Han X, Mehta NK, Ostrowski MC, Mehta KD. Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis. Mol Metab 2021; 44:101133. [PMID: 33271332 PMCID: PMC7785956 DOI: 10.1016/j.molmet.2020.101133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCβ), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCβ in energy homeostasis is limited. METHODS The floxed-PKCβ and hepatocyte-specific PKCβ-deficient mouse models were generated to study the in vivo role of hepatocyte PKCβ on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS We report that hepatocyte-specific PKCβ deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCβ-deficient livers compared to control. Moreover, hepatocyte PKCβ deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS The above data indicate that hepatocyte PKCβ is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCβ as a drug target for obesity-associated nonalcoholic hepatic steatosis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Faizule Hassan
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xianlin Han
- Department of Medicine, UT Health, San Antonio, TX, USA
| | | | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Kamal D Mehta
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Huang W, Mehta D, Sif S, Kent LN, Jacob ST, Ghoshal K, Mehta KD. Dietary fat/cholesterol-sensitive PKCβ-RB signaling: Potential role in NASH/HCC axis. Oncotarget 2017; 8:73757-73765. [PMID: 29088742 PMCID: PMC5650297 DOI: 10.18632/oncotarget.17890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent form of cancer with a poor prognosis, and environmental factors significantly contribute to the risk. Despite knowledge that a Western-style diet is a risk factor in the development of nonalcoholic steatohepatitis (NASH) and subsequent progression to HCC, diet-induced signaling changes are not well understood. Understanding molecular mechanisms altered by diet is crucial for developing preventive and therapeutic strategies. We have previously shown that diets enriched with high-fat and high-cholesterol, shown to produce NASH and HCC, induce hepatic protein kinase C beta (PKCβ) expression in mice, and a systemic loss of PKCβ promotes hepatic cholesterol accumulation in response to this diet. Here, we sought to determine how PKCβ and diet functionally interact during the pathogenesis of NASH and how it may promote hepatic carcinogenesis. We found that diet-induced hepatic PKCβ expression is accompanied by an increase in phosphorylation of Ser780 of retinoblastoma (RB) protein. Intriguingly, PKCβ-/- livers exhibited reduced RB protein levels despite increased transcription of the RB gene. It is also accompanied by reduced RBL-1 with no significant effect on RBL-2 protein levels. We also found reduced expression of the PKCβ in HCC compared to non-tumorous liver in human patients. These results raise an interesting possibility that diet-induced PKCβ activation represents an important mediator in the functional wiring of cholesterol metabolism and tumorigenesis through modulating stability of cell cycle-associated proteins. The potential role of PKCβ in the suppression of tumorigenesis is discussed.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Devina Mehta
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Said Sif
- Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lindsey N Kent
- Department of Cancer Genetics, OSU Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Samson T Jacob
- Department of Cancer Genetics, OSU Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kalpana Ghoshal
- Department of Cancer Genetics, OSU Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kamal D Mehta
- Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
6
|
Mehta D, Mehta KD. PKCβ: Expanding role in hepatic adaptation of cholesterol homeostasis to dietary fat/cholesterol. Am J Physiol Gastrointest Liver Physiol 2017; 312:G266-G273. [PMID: 28104587 PMCID: PMC5401991 DOI: 10.1152/ajpgi.00373.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
Abstract
Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-β (PKCβ) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCβ is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCβ expression and signaling in the intestine and liver, while systemic PKCβ deficiency promotes accumulation of cholesterol in the liver and bile. PKCβ disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCβ signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCβ is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.
Collapse
Affiliation(s)
- Devina Mehta
- 1Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Kamal D. Mehta
- 2Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
7
|
Chiang JY. Protein Kinase Cβ: Linking Intestine Fibroblast Growth Factor 15 to Hepatic Extracellular Signal Regulated Kinase 1/2 Signaling in Bile Acid and Cholesterol Homeostasis. Cell Mol Gastroenterol Hepatol 2015; 1:350-351. [PMID: 28210685 PMCID: PMC5301288 DOI: 10.1016/j.jcmgh.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- John Y.L. Chiang
- Correspondence Address correspondence to: John Y. L. Chiang, PhD, Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 SR 44, Rootstown, Ohio 44272. fax: 330-325-5910.
| |
Collapse
|