1
|
Sommer F, Bernardes JP, Best L, Sommer N, Hamm J, Messner B, López-Agudelo VA, Fazio A, Marinos G, Kadibalban AS, Ito G, Falk-Paulsen M, Kaleta C, Rosenstiel P. Life-long microbiome rejuvenation improves intestinal barrier function and inflammaging in mice. MICROBIOME 2025; 13:91. [PMID: 40176137 PMCID: PMC11963433 DOI: 10.1186/s40168-025-02089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Alterations in the composition and function of the intestinal microbiota have been observed in organismal aging across a broad spectrum of animal phyla. Recent findings, which have been derived mostly in simple animal models, have even established a causal relationship between age-related microbial shifts and lifespan, suggesting microbiota-directed interventions as a potential tool to decelerate aging processes. To test whether a life-long microbiome rejuvenation strategy could delay or even prevent aging in non-ruminant mammals, we performed recurrent fecal microbial transfer (FMT) in mice throughout life. Transfer material was either derived from 8-week-old mice (young microbiome, yMB) or from animals of the same age as the recipients (isochronic microbiome, iMB) as control. Motor coordination and strength were analyzed by rotarod and grip strength tests, intestinal barrier function by serum LAL assay, transcriptional responses by single-cell RNA sequencing, and fecal microbial community properties by 16S rRNA gene profiling and metagenomics. RESULTS Colonization with yMB improved coordination and intestinal permeability compared to iMB. yMB encoded fewer pro-inflammatory factors and altered metabolic pathways favoring oxidative phosphorylation. Ecological interactions among bacteria in yMB were more antagonistic than in iMB implying more stable microbiome communities. Single-cell RNA sequencing analysis of intestinal mucosa revealed a salient shift of cellular phenotypes in the yMB group with markedly increased ATP synthesis and mitochondrial pathways as well as a decrease of age-dependent mesenchymal hallmark transcripts in enterocytes and TA cells, but reduced inflammatory signaling in macrophages. CONCLUSIONS Taken together, we demonstrate that life-long and repeated transfer of microbiota material from young mice improved age-related processes including coordinative ability (rotarod), intestinal permeability, and both metabolic and inflammatory profiles mainly of macrophages but also of other immune cells. Video Abstract.
Collapse
Affiliation(s)
- Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Lena Best
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
| | - Berith Messner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Víctor A López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- CAU Innovation Gmbh, Christian-Albrechts-University, Kiel, 24118, Germany
| | - A Samer Kadibalban
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
- The Center for Personalized Medicine for Healthy Aging, Institute of Science Tokyo, Tokyo, Japan
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
2
|
Lu Z, Xu J, Li J. The Transcription Factor ATF2 Accelerates Clear Cell Renal Cell Carcinoma Progression Through Activating the PLEKHO1/NUS1 Pathway. Mol Carcinog 2025; 64:617-628. [PMID: 39777695 DOI: 10.1002/mc.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant cancer with high mortality rate. Activating transcription factor 2 (ATF2) and pleckstrin homology domain containing O1 (PLEKHO1) were reported to participate in numerous cancers. However, their roles and the detailed mechanisms in ccRCC development remain largely unknown. RT-qPCR and western blot were used to measure the levels of PLEKHO1, ATF2, and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1). Cell proliferation, apoptosis, invasion, migration and stemness were evaluated using CCK-8 assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere formation assay, respectively. Dual-luciferase reporter assay was conducted to verify the relationship between ATF2 and PLEKHO1. The interaction between PLEKHO1 and NUS1 was proved by Co-IP assay. Xenograft models were utilized to evaluate the tumorigenic capability of ccRCC cells upon PLEKHO1 knockdown. PLEKHO1, ATF2 and NUS1 expression were significantly elevated in ccRCC, and PLEKHO1 might be a prognosis biomarker for ccRCC. PLEKHO1 depletion significantly inhibited cell proliferation, invasion, migration, stemness, and induced cell apoptosis in ccRCC cells. ATF2 activated PLEKHO1 expression via transcription regulation, and PLEKHO1 overexpression could reverse the suppressive effects of ATF2 knockdown on the malignant behaviors of ccRCC cells. Moreover, PLEKHO1 directly bound to NUS1, and PLEKHO1 depletion markedly restrained ccRCC progression through targeting NUS1 in vitro and in vivo. Our findings suggested that ATF2 transcriptionally activated PLEKHO1 to promote the development of ccRCC via regulating NUS1 expression.
Collapse
Affiliation(s)
- Zheng Lu
- Gravel Center, Nanyang First People's Hospital, Nanyang, China
| | - Jinge Xu
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyu Li
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhang X, Zuo L, Song X, Zhang W, Yang Z, Wang Z, Guo Y, Ge S, Wang L, Wang Y, Geng Z, Li J, Hu J. The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease. iScience 2024; 27:111517. [PMID: 39759008 PMCID: PMC11699250 DOI: 10.1016/j.isci.2024.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/21/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells. This study elucidates possible mechanisms by which mesenteric adipokines influence the progression of enteritis and provides a new theoretical basis for the treatment of CD via the mesenteric pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenjing Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Yibing Guo
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Sitang Ge
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Awdeh A, Turcotte M, Perkins TJ. Identifying transcription factors with cell-type specific DNA binding signatures. BMC Genomics 2024; 25:957. [PMID: 39402535 PMCID: PMC11472444 DOI: 10.1186/s12864-024-10859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) bind to different parts of the genome in different types of cells, but it is usually assumed that the inherent DNA-binding preferences of a TF are invariant to cell type. Yet, there are several known examples of TFs that switch their DNA-binding preferences in different cell types, and yet more examples of other mechanisms, such as steric hindrance or cooperative binding, that may result in a "DNA signature" of differential binding. RESULTS To survey this phenomenon systematically, we developed a deep learning method we call SigTFB (Signatures of TF Binding) to detect and quantify cell-type specificity in a TF's known genomic binding sites. We used ENCODE ChIP-seq data to conduct a wide scale investigation of 169 distinct TFs in up to 14 distinct cell types. SigTFB detected statistically significant DNA binding signatures in approximately two-thirds of TFs, far more than might have been expected from the relatively sparse evidence in prior literature. We found that the presence or absence of a cell-type specific DNA binding signature is distinct from, and indeed largely uncorrelated to, the degree of overlap between ChIP-seq peaks in different cell types, and tended to arise by two mechanisms: using established motifs in different frequencies, and by selective inclusion of motifs for distint TFs. CONCLUSIONS While recent results have highlighted cell state features such as chromatin accessibility and gene expression in predicting TF binding, our results emphasize that, for some TFs, the DNA sequences of the binding sites contain substantial cell-type specific motifs.
Collapse
Affiliation(s)
- Aseel Awdeh
- School of Electrical Engineering and Compute Science, University of Ottawa, 800 King Edward Ave., Ottawa, K1N 6N5, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, K1H 8L6, Ontario, Canada
| | - Marcel Turcotte
- School of Electrical Engineering and Compute Science, University of Ottawa, 800 King Edward Ave., Ottawa, K1N 6N5, Ontario, Canada
| | - Theodore J Perkins
- School of Electrical Engineering and Compute Science, University of Ottawa, 800 King Edward Ave., Ottawa, K1N 6N5, Ontario, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, K1H 8L6, Ontario, Canada.
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd., Ottawa, K1H 8M5, Ontario, Canada.
| |
Collapse
|
5
|
Aigner GP, Peer V, Fiechtner B, Piechnik CA, Höckner M. Wound healing and Cadmium detoxification in the earthworm Lumbricus terrestris - a potential case for coelomocytes? Front Immunol 2023; 14:1272191. [PMID: 38116011 PMCID: PMC10728717 DOI: 10.3389/fimmu.2023.1272191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Earthworms are affected by physical stress, like injury, and by exposure to xenobiotics, such as the toxic metal cadmium (Cd), which enters the environment mainly through industry and agriculture. The stress response to the single and the combination of both stressors was examined in regenerative and unharmed tissue of Lumbricus terrestris to reveal if the stress response to a natural insult like injury (amputation) interferes with Cd detoxification mechanisms. We characterized the roles of metallothionein 1 (MT1) and MT2 isoforms, heat shock protein 70 as well as immune biomarkers such as the toll-like receptors (TLR) single cysteine cluster TLR and multiple cysteine cluster TLR. The role of the activated transcription factors (ATFs) ATF2, ATF7, and the cAMP responsive element binding protein as putative regulatory intersection as well as a stress-dependent change of the essential trace elements zinc and calcium was analyzed. Phosphorylated AMP activated protein kinase, the cellular energy sensor, was measured to explore the energy demand, while the energy status was determined by detecting carbohydrate and protein levels. Taken together, we were able to show that injury rather than Cd is the driving force that separates the four treatment groups - Control, Cd exposure, Injury, Cd exposure and injury. Interestingly, we found that gene expression differed regarding the tissue section that was analyzed and we hypothesize that this is due to the migration of coelomocytes, earthworm immune cells, that take over a key role in protecting the organism from a variety of environmental challenges. Surprisingly, we discovered a role for MT1 in the response to multiple stressors and an isoform-specific function for the two newly characterized TLRs. In conclusion, we gathered novel information on the relation of innate immunity, wound healing, and Cd detoxification mechanisms in earthworms.
Collapse
Affiliation(s)
| | | | | | | | - Martina Höckner
- Department of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Meng H, Li J, Sun H, Lin Y, Xu H, Zhang N. The transcription factor ATF2 promotes gastric cancer progression by activating the METTL3/cyclin D1 pathway. Drug Dev Res 2023; 84:1325-1334. [PMID: 37421203 DOI: 10.1002/ddr.22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Globally, gastric cancer (GC) is a major cause of cancer death. This study is aimed at investigating the biological functions of activating transcription factor 2 (ATF2) and the underlying mechanism in GC. In the present work, GEPIA, UALCAN, Human Protein Atlas and StarBase databases were adopted to analyze ATF2 expression characteristics in GC tissues and normal gastric tissues, and its relationships with tumor grade and patients' survival time. Quantitative real-time polymerase chain reaction (qRT-PCR) method was employed to examine ATF2 mRNA expression in normal gastric tissues, GC tissues, and GC cell lines. Cell counting kit-8 (CCK-8) and EdU assays were utilized for detecting GC cell proliferation. Cell apoptosis was detected by flow cytometry. PROMO database was applied to predict the binding site of ATF2 with the METTL3 promoter region. The binding relationship between ATF2 and the METTL3 promoter region was verified through dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay. Western blot was performed to evaluate the effect of ATF2 on METTL3 expression. METTL3-related signaling pathways were predicted using Gene Set Enrichment Analysis (GSEA) in the LinkedOmics database. It was found that, ATF2 level was elevated in GC tissues and cell lines in comparison with normal tissues and correlated with short patients' survival time. ATF2 overexpression facilitated GC cell growth and suppressed the apoptosis, whereas ATF2 knockdown suppressed GC cell proliferation and facilitated the apoptosis. ATF2 bound to the METTL3 promoter region, and ATF2 overexpression promoted the transcription of METTL3, and ATF2 knockdown restrained the transcription of METTL3. METTL3 was associated with cell cycle progression, and ATF2 overexpression enhanced cyclin D1 expression, and METTL3 knockdown reduced cyclin D1 expression. In summary, ATF2 facilitates GC cell proliferation and suppresses the apoptosis via activating the METTL3/cyclin D1 signaling pathway, and ATF2 is promising to be an anti-drug target for GC.
Collapse
Affiliation(s)
- Hong Meng
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huapeng Sun
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanxin Lin
- Xinjiang Medical University, Urumchi, China
| | - Haisheng Xu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Na Zhang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
7
|
Transcriptome and 16S rRNA Analyses Reveal That Hypoxic Stress Affects the Antioxidant Capacity of Largemouth Bass ( Micropterus salmoides), Resulting in Intestinal Tissue Damage and Structural Changes in Microflora. Antioxidants (Basel) 2022; 12:antiox12010001. [PMID: 36670863 PMCID: PMC9854696 DOI: 10.3390/antiox12010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dissolved oxygen (DO) is a key factor affecting the health of aquatic organisms in an intensive aquaculture environment. In this study, largemouth bass (Micropterus salmoides) were subjected to acute hypoxic stress for 96 h (DO: 1.00 mg/L) followed by recovery under sufficient DO conditions (DO: 7.50 mg/L) for 96 h. Serum biochemical indices, intestinal histomorphology, the transcriptome, and intestinal microbiota were compared between hypoxia-treated fish and those in a control group. The results showed that hypoxia caused oxidative stress, exfoliation of the intestinal villus epithelium and villus rupture, and increased cell apoptosis. Transcriptome analyses revealed that antioxidant-, inflammation-, and apoptosis-related pathways were activated, and that the MAPK signaling pathway played an important role under hypoxic stress. In addition, 16S rRNA sequencing analyses revealed that hypoxic stress significantly decreased bacterial richness and identified the dominant phyla (Proteobacteria, Firmicutes) and genera (Mycoplasma, unclassified Enterobacterales, Cetobacterium) involved in the intestinal inflammatory response of largemouth bass. Pearson's correlation analyses showed that differentially expressed genes in the MAPK signaling pathway were significantly correlated with some microflora. The results of this study will help to develop strategies to reduce damage caused by hypoxic stress in aquacultured fish.
Collapse
|
8
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
9
|
Zeng Q, Cheng J, Wu H, Liang W, Cui Y. The dynamic cellular and molecular features during the development of radiation proctitis revealed by transcriptomic profiling in mice. BMC Genomics 2022; 23:431. [PMID: 35681125 PMCID: PMC9178886 DOI: 10.1186/s12864-022-08668-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation proctitis (RP) is the most common complication of radiotherapy for pelvic tumor. Currently there is a lack of effective clinical treatment and its underlying mechanism is poorly understood. In this study, we aimed to dynamically reveal the mechanism of RP progression from the perspective of RNomics using a mouse model, so as to help develop reasonable therapeutic strategies for RP. RESULTS Mice were delivered a single dose of 25 Gy rectal irradiation, and the rectal tissues were removed at 4 h, 1 day, 3 days, 2 weeks and 8 weeks post-irradiation (PI) for both histopathological assessment and RNA-seq analysis. According to the histopathological characteristics, we divided the development process of our RP animal model into three stages: acute (4 h, 1 day and 3 days PI), subacute (2 weeks PI) and chronic (8 weeks PI), which could recapitulate the features of different stages of human RP. Bioinformatics analysis of the RNA-seq data showed that in the acute injury period after radiation, the altered genes were mainly enriched in DNA damage response, p53 signaling pathway and metabolic changes; while in the subacute and chronic stages of tissue reconstruction, genes involved in the biological processes of vessel development, extracellular matrix organization, inflammatory and immune responses were dysregulated. We further identified the hub genes in the most significant biological process at each time point using protein-protein interaction analysis and verified the differential expression of these genes by quantitative real-time-PCR analysis. CONCLUSIONS Our study reveals the molecular events sequentially occurred during the course of RP development and might provide molecular basis for designing drugs targeting different stages of RP development.
Collapse
Affiliation(s)
- Qingzhi Zeng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jingyang Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Haiyong Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Wenfeng Liang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanmei Cui
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
10
|
Wu A, Chen C, Lu J, Sun J, Xiao M, Yue X, Zhou P, Zhao S, Zhong G, Huang C, Qu Y, Zhang C. Preparation of Oral Core-Shell Zein Nanoparticles to Improve the Bioavailability of Glycyrrhizic Acid for the Treatment of Ulcerative Colitis. Biomacromolecules 2021; 23:210-225. [PMID: 34905341 DOI: 10.1021/acs.biomac.1c01233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, oral colon-targeted adhesion core-shell nanoparticles were designed by applying FA-Zein as the core and using pectin as the shell to enhance the low bioavailability exhibited by glycyrrhizic acid (GA) and the anti-inflammatory effect in specific parts of the intestine. As indicated by the results, the nanoparticles (NPs) remained stable in the stomach and small intestine, while pectins began to degrade and release GA in considerable amounts in the colon with the abundant flora. Subsequently, folate-acid targeting was further assessed with Raw 264.7 and NCM 460 cells. Lastly, NPs were reported to exhibit high adhesion on the colon by using the DSS-induced ulcerative colitis mouse model. Moreover, as indicated by in vitro and in vivo studies, nanoparticles could decrease the levels of MPO and TNF-α by reducing macrophages and neutrophils. In brief, this study provides an ideal loaded natural anti-inflammatory drug delivery system to treat ulcerative colitis.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chonghao Chen
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jiayi Sun
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng Xiao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xuan Yue
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ping Zhou
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Shiyi Zhao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chi Huang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
11
|
Alishahedani ME, Yadav M, McCann KJ, Gough P, Castillo CR, Matriz J, Myles IA. Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing. PLoS One 2021; 16:e0253669. [PMID: 34143844 PMCID: PMC8213172 DOI: 10.1371/journal.pone.0253669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The scratch assay is an in vitro technique used to analyze cell migration, proliferation, and cell-to-cell interaction. In the assay, cells are grown to confluence and then ‘scratched’ with a sterile instrument. For the cells in the leading edge, the resulting polarity induces migration and proliferation in attempt to ‘heal’ the modeled wound. Keloid scars are known to have an accelerated wound closure phenotype in the scratch assay, representing an overactivation of wound healing. We performed a qualitative review of the recent literature searching for inhibitors of scratch assay activity that were already available in topical formulations under the hypothesis that such compounds may offer therapeutic potential in keloid treatment. Although several shortcomings in the scratch assay literature were identified, caffeine and allicin successfully inhibited the scratch assay closure and inflammatory abnormalities in the commercially available keloid fibroblast cell line. Caffeine and allicin also impacted ATP production in keloid cells, most notably with inhibition of non-mitochondrial oxygen consumption. The traditional Chinese medicine, shikonin, was also successful in inhibiting scratch closure but displayed less dramatic impacts on metabolism. Together, our results partially summarize the strengths and limitations of current scratch assay literature and suggest clinical assessment of the therapeutic potential for these identified compounds against keloid scars may be warranted.
Collapse
Affiliation(s)
- Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Manoj Yadav
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Katelyn J. McCann
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Portia Gough
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Carlos R. Castillo
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Jobel Matriz
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
Leedham SJ. Intestine, Heal Thyself! Regulating the Intestinal Epithelial Response to Injury. Cell Mol Gastroenterol Hepatol 2020; 10:191-192. [PMID: 32087097 PMCID: PMC7296232 DOI: 10.1016/j.jcmgh.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/10/2022]
Affiliation(s)
- Simon J. Leedham
- Correspondence Address correspondence to Simon J. Leedham, PhD, Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom. fax: +44 1865 287664.
| |
Collapse
|