1
|
Spalinger MR, Sanati G, Chatterjee P, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Tofacitinib Mitigates the Increased SARS-CoV-2 Infection Susceptibility Caused by an IBD Risk Variant in the PTPN2 Gene. Cell Mol Gastroenterol Hepatol 2025; 19:101447. [PMID: 39756517 PMCID: PMC11953972 DOI: 10.1016/j.jcmgh.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND & AIMS Coronavirus disease (COVID-19), caused by severe acquired respiratory syndrome-Coronavirus-2 (SARS-CoV-2), triggered a global pandemic with severe medical and socioeconomic consequences. Although fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases. The aim of our study was to investigate whether the autoimmunity risk gene, PTPN2, which also confers elevated risk to develop inflammatory bowel disease, affects susceptibility to SARS-CoV-2 viral uptake. METHODS Using samples from PTPN2 genotyped patients with inflammatory bowel disease, PTPN2-deficient mice, and human intestinal and lung epithelial cell lines, we investigated how PTPN2 affects expression of the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2), and uptake of virus-like particles expressing the SARS-CoV2 spike protein and live SARS-CoV-2 virus. RESULTS We report that the autoimmune PTPN2 loss-of-function risk variant rs1893217 promotes expression of the SARS-CoV-2 receptor, ACE2, and increases cellular entry of SARS-CoV-2 spike protein and live virus. Elevated ACE2 expression and viral entry were mediated by increased Janus kinase-signal transducers and activators of transcription signaling and were reversed by the Janus kinase inhibitor, tofacitinib. CONCLUSION Collectively, our findings uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Golshid Sanati
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Current position: College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Elaine Hanson
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California
| | - Brigid S Boland
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California.
| |
Collapse
|
2
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Santoni D, Ghosh N, Derelitto C, Saha I. Transcription Factor Driven Gene Regulation in COVID-19 Patients. Viruses 2023; 15:v15051188. [PMID: 37243274 DOI: 10.3390/v15051188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 and its many variants have caused a worldwide emergency. Host cells colonised by SARS-CoV-2 present a significantly different gene expression landscape. As expected, this is particularly true for genes that directly interact with virus proteins. Thus, understanding the role that transcription factors can play in driving differential regulation in patients affected by COVID-19 is a focal point to unveil virus infection. In this regard, we have identified 19 transcription factors which are predicted to target human proteins interacting with Spike glycoprotein of SARS-CoV-2. Transcriptomics RNA-Seq data derived from 13 human organs are used to analyse expression correlation between identified transcription factors and related target genes in both COVID-19 patients and healthy individuals. This resulted in the identification of transcription factors showing the most relevant impact in terms of most evident differential correlation between COVID-19 patients and healthy individuals. This analysis has also identified five organs such as the blood, heart, lung, nasopharynx and respiratory tract in which a major effect of differential regulation mediated by transcription factors is observed. These organs are also known to be affected by COVID-19, thereby providing consistency to our analysis. Furthermore, 31 key human genes differentially regulated by the transcription factors in the five organs are identified and the corresponding KEGG pathways and GO enrichment are also reported. Finally, the drugs targeting those 31 genes are also put forth. This in silico study explores the effects of transcription factors on human genes interacting with Spike glycoprotein of SARS-CoV-2 and intends to provide new insights to inhibit the virus infection.
Collapse
Affiliation(s)
- Daniele Santoni
- Institute for System Analysis and Computer Science "Antonio Ruberti", National Research Council of Italy, 00185 Rome, Italy
| | - Nimisha Ghosh
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Carlo Derelitto
- Institute for System Analysis and Computer Science "Antonio Ruberti", National Research Council of Italy, 00185 Rome, Italy
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers' Training and Research, Kolkata 700106, India
| |
Collapse
|
4
|
Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell 2022; 13:920-939. [PMID: 35377064 PMCID: PMC8978510 DOI: 10.1007/s13238-022-00915-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
Collapse
|
5
|
Liu L, Zhang Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Yao L, Zhang Z, Xiao Z, Du F. Therapeutic prospects of ceRNAs in COVID-19. Front Cell Infect Microbiol 2022; 12:998748. [PMID: 36204652 PMCID: PMC9530275 DOI: 10.3389/fcimb.2022.998748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
Since the end of 2019, COVID-19 caused by SARS-CoV-2 has spread worldwide, and the understanding of the new coronavirus is in a preliminary stage. Currently, immunotherapy, cell therapy, antiviral therapy, and Chinese herbal medicine have been applied in the clinical treatment of the new coronavirus; however, more efficient and safe drugs to control the progress of the new coronavirus are needed. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) may provide new therapeutic targets for novel coronavirus treatments. The first aim of this paper is to review research progress on COVID-19 in the respiratory, immune, digestive, circulatory, urinary, reproductive, and nervous systems. The second aim is to review the body systems and potential therapeutic targets of lncRNAs, miRNAs, and circRNAs in patients with COVID-19. The current research on competing endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA) in SARS-CoV-2 is summarized. Finally, we predict the possible therapeutic targets of four lncRNAs, MALAT1, NEAT1, TUG1, and GAS5, in COVID-19. Importantly, the role of PTEN gene in the ceRNA network predicted by lncRNA MALAT1 and lncRNA TUG1 may help in the discovery and clinical treatment of effective drugs for COVID-19.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| |
Collapse
|
6
|
Upadhyai P, Shenoy PU, Banjan B, Albeshr MF, Mahboob S, Manzoor I, Das R. Exome-Wide Association Study Reveals Host Genetic Variants Likely Associated with the Severity of COVID-19 in Patients of European Ancestry. Life (Basel) 2022; 12:1300. [PMID: 36143338 PMCID: PMC9504138 DOI: 10.3390/life12091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Host genetic variability plays a pivotal role in modulating COVID-19 clinical outcomes. Despite the functional relevance of protein-coding regions, rare variants located here are less likely to completely explain the considerable numbers of acutely affected COVID-19 patients worldwide. Using an exome-wide association approach, with individuals of European descent, we sought to identify common coding variants linked with variation in COVID-19 severity. Herein, cohort 1 compared non-hospitalized (controls) and hospitalized (cases) individuals, and in cohort 2, hospitalized subjects requiring respiratory support (cases) were compared to those not requiring it (controls). 229 and 111 variants differed significantly between cases and controls in cohorts 1 and 2, respectively. This included FBXO34, CNTN2, and TMCC2 previously linked with COVID-19 severity using association studies. Overall, we report SNPs in 26 known and 12 novel candidate genes with strong molecular evidence implicating them in the pathophysiology of life-threatening COVID-19 and post-recovery sequelae. Of these few notable known genes include, HLA-DQB1, AHSG, ALOX5AP, MUC5AC, SMPD1, SPG7, SPEG,GAS6, and SERPINA12. These results enhance our understanding of the pathomechanisms underlying the COVID-19 clinical spectrum and may be exploited to prioritize biomarkers for predicting disease severity, as well as to improve treatment strategies in individuals of European ancestry.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pooja U. Shenoy
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bhavya Banjan
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohammed F. Albeshr
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Manzoor
- Department of Biology, The College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
7
|
Rokni M, Heidari Nia M, Sarhadi M, Mirinejad S, Sargazi S, Moudi M, Saravani R, Rahdar S, Kargar M. Association of TMPRSS2 Gene Polymorphisms with COVID-19 Severity and Mortality: a Case-Control Study with Computational Analyses. Appl Biochem Biotechnol 2022; 194:3507-3526. [PMID: 35386063 PMCID: PMC8986508 DOI: 10.1007/s12010-022-03885-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a severe disease caused by a new variant of beta-coronavirus that first appeared in China. Human genetic factors, including polymorphisms, serve pivotal roles in the high transmission of SARS-CoV-2 and the stubbornly progressing sickness seen in a small but significant percentage of infected people; however, but these factors remain ill-defined. A total of 288 COVID-19 patients and 288 controls were genotyped for TMPRSS2 polymorphisms using both restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) and amplification refractory mutation system (ARMS)-PCR techniques. Different genotypes of TMPRSS2 polymorphisms were compared in terms of disease susceptibility and mortality. The statistical analysis showed that minor alleles of all studied variants statistically increased the risk of COVID-19, except for the rs75603675 C > A variant. The T allele of rs12329760 conferred an increased risk of COVID-19. Moreover, the AG/AC/TT/AG combination of genotypes significantly enhanced the risk of COVID-19 in our population. Different haplotypes of rs17854725/rs75603675/rs12329760/rs4303795 polymorphisms, including GACA, GACG, GATG, GATA, AATA, ACCG, ACTG, ACTA, GCCA, and GCTG, were found to be associated with increased risk of the disease (odds ratio > 1). Regarding the clinical and paraclinical characteristics, a statistically significant difference was found between non-severe and severe forms except for gender, platelet, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and underlying diseases. In addition, case genotypes of TMPRSS2 rs17854725 A > G, rs12329760 C > T, and rs4303795 A > G were significantly different regarding severe and non-severe forms of the disease (P-value < 0.001). Specifically, death was more frequent in carriers of the AG genotype of rs17854725 A > G (P-value = 0.022). Patients who carry the minor alleles of the four studied TMPRSS2 variants were rather vulnerable to COVID-19 infection. Our findings indicated that rs17854725 A > G (AA vs. AG and AA vs. GG), rs12329760 C > T (CC vs. CT and CC vs. TT), and rs4303795 A > G (AA vs. AG) genotypes of TMPRSS2 variations are associated with a more invasive disorder pattern. More studies on larger populations are needed to confirm our results.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Mahdiyeh Moudi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Rahdar
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Maryam Kargar
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sherman EJ, Mirabelli C, Tang VT, Khan TG, Leix K, Kennedy AA, Graham SE, Willer CJ, Tai AW, Sexton JZ, Wobus CE, Emmer BT. Identification of cell type specific ACE2 modifiers by CRISPR screening. PLoS Pathog 2022; 18:e1010377. [PMID: 35231079 PMCID: PMC8929698 DOI: 10.1371/journal.ppat.1010377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. In liver-derived HuH7 cells, we identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual HuH7 cell lines with disruption of SMAD4, EP300, PIAS1, or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Orthogonal screening of lung-derived Calu-3 cells revealed a distinct set of ACE2 modifiers comprised of ACE2, KDM6A, MOGS, GPAA1, and UGP2. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry, highlight the cell type specificity of ACE2 regulatory networks, and suggest potential targets for therapeutic development.
Collapse
Affiliation(s)
- Emily J. Sherman
- Department of Internal Medicine, Division of Hospital Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Taslima G. Khan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Chemical Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kyle Leix
- Department of Internal Medicine, Division of Hospital Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew A. Kennedy
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah E. Graham
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristen J. Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew W. Tai
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, United States of America
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian T. Emmer
- Department of Internal Medicine, Division of Hospital Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Keskus AG, Tombaz M, Arici BI, Dincaslan FB, Nabi A, Shehwana H, Konu O. Functional analysis of co-expression networks of zebrafish ace2 reveals enrichment of pathways associated with development and disease. Genome 2021; 65:57-74. [PMID: 34606733 DOI: 10.1139/gen-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Angiotensin I Converting Enzyme 2 (ACE2) plays an essential role in blood pressure regulation and SARS-CoV-2 entry. ACE2 has a highly conserved, one-to-one ortholog (ace2) in zebrafish, which is an important model for human diseases. However, the zebrafish ace2 expression profile has not yet been studied during early development, between genders, across different genotypes, or in disease. Moreover, a network-based meta-analysis for the extraction of functionally enriched pathways associated with differential ace2 expression is lacking in the literature. Herein, we first identified significant development-, tissue-, genotype-, and gender-specific modulations in ace2 expression via meta-analysis of zebrafish Affymetrix transcriptomics datasets (ndatasets = 107); and the correlation analysis of ace2 meta-differential expression profile revealed distinct positively and negatively correlated local functionally enriched gene networks. Moreover, we demonstrated that ace2 expression was significantly modulated under different physiological and pathological conditions related to development, tissue, gender, diet, infection, and inflammation using additional RNA-seq datasets. Our findings implicate a novel translational role for zebrafish ace2 in organ differentiation and pathologies observed in the intestines and liver.
Collapse
Affiliation(s)
- Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Burcin Irem Arici
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Afshan Nabi
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| |
Collapse
|
10
|
Sweed D, Abdelsameea E, Khalifa EA, Abdallah H, Moaz H, Moaz I, Abdelsattar S, Abdel-Rahman N, Mosbeh A, Elmahdy HA, Sweed E. SARS-CoV-2-associated gastrointestinal and liver diseases: what is known and what is needed to explore. EGYPTIAN LIVER JOURNAL 2021; 11:64. [PMID: 34777871 PMCID: PMC8325538 DOI: 10.1186/s43066-021-00123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pandemic of COVID19 which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first described in China as an unexplained pneumonia transmitted by respiratory droplets. Gastrointestinal (GI) and liver injury associated with SARS-CoV-2 infection were reported as an early or sole disease manifestation, mainly outside China. The exact mechanism and incidence of GI and liver involvement are not well elucidated. MAIN BODY We conducted a PubMed search for all articles written in the English language about SARS-CoV-2 affecting the GI and liver. Following data extraction, 590 articles were selected. In addition to respiratory droplets, SARS-CoV-2 may reach the GI system through the fecal-oral route, saliva, and swallowing of nasopharyngeal fluids, while breastmilk and blood transmission were not implicated. Moreover, GI infection may act as a septic focus for viral persistence and transmission to the liver, appendix, and brain. In addition to the direct viral cytopathic effect, the mechanism of injury is multifactorial and is related to genetic and demographic variations. The most frequently reported GI symptoms are diarrhea, nausea, vomiting, abdominal pain, and bleeding. However, liver infection is generally discovered during laboratory testing or a post-mortem. Radiological imaging is the gold standard in diagnosing COVID-19 patients and contributes to understanding the mechanism of extra-thoracic involvement. Medications should be prescribed with caution, especially in chronic GI and liver patients. CONCLUSION GI manifestations are common in COVID-19 patients. Special care should be paid for high-risk patients, older males, and those with background liver disease.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Menofia University, Shibin El Kom, 32511 Egypt
| | - Eman Abdelsameea
- Hepatology and Gastroenterology Department, National Liver Institute, Menofia University, Shibin El Kom, Egypt
| | - Esraa A. Khalifa
- Radiology Department, Faculty of Medicine, Menofia University, Shibin El Kom, Egypt
| | - Heba Abdallah
- Clinical Pathology Department, National Liver Institute, Menofia University, Shibin El Kom, Egypt
| | - Heba Moaz
- Microbiology Department, Faculty of Medicine, Menofia University, Shibin El Kom, Egypt
| | - Inas Moaz
- Epidemiology and Preventive Medicine Department, Menofia University, Shibin El Kom, Egypt
| | - Shimaa Abdelsattar
- Clinical Biochemistry, and Molecular Diagnostics Department, National Liver Institute, Menofia University, Shibin El Kom, Egypt
| | | | - Asmaa Mosbeh
- Pathology Department, National Liver Institute, Menofia University, Shibin El Kom, 32511 Egypt
| | - Hussein A. Elmahdy
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menofia University, Shibin El Kom, Egypt
| |
Collapse
|
11
|
Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis 2021; 8:385-400. [PMID: 33521210 PMCID: PMC7836435 DOI: 10.1016/j.gendis.2020.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged and is responsible for the Coronavirus Disease 2019 global pandemic. Coronaviruses, including SARS-CoV-2, are strongly associated with respiratory symptoms during infection, but gastrointestinal symptoms, such as diarrhea, vomiting, nausea, and abdominal pain, have been identified in subsets of COVID-19 patients. This article focuses on gastrointestinal symptoms and pathophysiology in COVID-19 disease. Evidence suggests that the gastrointestinal tract could be a viral target for SARS-CoV-2 infection. Not only is the SARS-CoV-2 receptor ACE2 highly expressed in the GI tract and is associated with digestive symptoms, but bleeding and inflammation are observed in the intestine of COVID-19 patients. We further systemically summarize the correlation between COVID-19 disease, gastrointestinal symptoms and intestinal microbiota. The potential oral-fecal transmission of COVID-19 was supported by viral RNA and live virus detection in the feces of COVID-19 patients. Additionally, the viral balance in the GI tract could be disordered during SARS-CoV-2 infection which could further impact the homeostasis of the gut microbial flora. Finally, we discuss the clinical and ongoing trials of treatments/therapies, including antiviral drugs, plasma transfusion and immunoglobulins, and diet supplementations for COVID-19. By reviewing the pathogenesis of SARS-CoV-2 virus, and understanding the correlation among COVID-19, inflammation, intestinal microbiota, and lung microbiota, we provide perspective in prevention and control, as well as diagnosis and treatment of the COVID-19 disease.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Toyonaga T, Araba KC, Kennedy MM, Keith BP, Wolber EA, Beasley C, Steinbach EC, Schaner MR, Jain A, Long MD, Barnes EL, Herfarth HH, Isaacs KL, Hansen JJ, Kapadia MR, Guillem JG, Gulati AS, Sethupathy P, Furey TS, Ehre C, Sheikh SZ. Increased colonic expression of ACE2 associates with poor prognosis in Crohn's disease. Sci Rep 2021; 11:13533. [PMID: 34188154 PMCID: PMC8241995 DOI: 10.1038/s41598-021-92979-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan–Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is an independent risk factor for surgery (OR 2.17; 95% CI, 1.10–4.26; p = 0.025). Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that can impact CD disease-related outcomes.
Collapse
Affiliation(s)
- Takahiko Toyonaga
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenza C Araba
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Meaghan M Kennedy
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin P Keith
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Elisabeth A Wolber
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erin C Steinbach
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Matthew R Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Animesh Jain
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Millie D Long
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edward L Barnes
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hans H Herfarth
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kim L Isaacs
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jonathan J Hansen
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Muneera R Kapadia
- Department of Surgery, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - José Gaston Guillem
- Department of Surgery, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Ajay S Gulati
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Gastroenterology, Department of Pediatrics, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Terrence S Furey
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina At Chapel Hill, 111 Mason Farm Road, 7312B MBRB, UNC Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Cao TT, Zhang GQ, Pellegrini E, Zhao Q, Li J, Luo LJ, Pan HQ. COVID-19 and its effects on the digestive system. World J Gastroenterol 2021; 27:3502-3515. [PMID: 34239265 PMCID: PMC8240057 DOI: 10.3748/wjg.v27.i24.3502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by infection of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with typical respiratory symptoms. SARS-CoV-2 invades not only the respiratory system, but also other organs expressing the cell surface receptor angiotensin converting enzyme 2. In particular, the digestive system is a susceptible target of SARS-CoV-2. Gastrointestinal symptoms of COVID-19 include anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver damage. Patients with digestive damage have a greater chance of progressing to severe or critical illness, a poorer prognosis, and a higher risk of death. This paper aims to summarize the digestive system symptoms of COVID-19 and discuss fecal-oral contagion of SARS-CoV-2. It also describes the characteristics of inflammatory bowel disease patients with SARS-CoV-2 infection and discusses precautions for preventing SARS-CoV-2 infection during gastrointestinal endoscopy procedures. Improved attention to digestive system abnormalities and gastrointestinal symptoms of COVID-19 patients may aid health care providers in the process of clinical diagnosis, treatment, and epidemic prevention and control.
Collapse
Affiliation(s)
- Ting-Ting Cao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Gu-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | | | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| | - Lin-jie Luo
- Department of Experimental Radiation Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Hua-Qin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei Province, China
| |
Collapse
|
14
|
Sherman EJ, Mirabelli C, Tang VT, Khan TG, Kennedy AA, Graham SE, Willer CJ, Tai AW, Sexton JZ, Wobus CE, Emmer BT. Identification of ACE2 modifiers by CRISPR screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.10.447768. [PMID: 34127970 PMCID: PMC8202422 DOI: 10.1101/2021.06.10.447768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. We identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2 in HuH7 cells. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual cell lines with disruption of SMAD4, EP300, PIAS1 , or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry and suggest potential targets for therapeutic development.
Collapse
|
15
|
Koester ST, Li N, Lachance DM, Morella NM, Dey N. Variability in digestive and respiratory tract Ace2 expression is associated with the microbiome. PLoS One 2021; 16:e0248730. [PMID: 33725024 PMCID: PMC7963026 DOI: 10.1371/journal.pone.0248730] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
COVID-19 (coronavirus disease 2019) patients exhibiting gastrointestinal symptoms are reported to have worse prognosis. Ace2 (angiotensin-converting enzyme 2), the gene encoding the host protein to which SARS-CoV-2 spike proteins bind, is expressed in the gut and therefore may be a target for preventing or reducing severity of COVID-19. Here we test the hypothesis that Ace2 expression in the gastrointestinal and respiratory tracts is modulated by the microbiome. We used quantitative PCR to profile Ace2 expression in germ-free mice, conventional raised specific pathogen-free mice, and gnotobiotic mice colonized with different microbiota. Intestinal Ace2 expression levels were significantly higher in germ-free mice compared to conventional mice. A similar trend was observed in the respiratory tract. Intriguingly, microbiota depletion via antibiotics partially recapitulated the germ-free phenotype, suggesting potential for microbiome-mediated regulation of Ace2 expression. Variability in intestinal Ace2 expression was observed in gnotobiotic mice colonized with different microbiota, partially attributable to differences in microbiome-encoded proteases and peptidases. Together, these data suggest that the microbiome may be one modifiable factor determining COVID-19 infection risk and disease severity.
Collapse
Affiliation(s)
- Sean T. Koester
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Naisi Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Daniel M. Lachance
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, United States of America
| | - Norma M. Morella
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Neelendu Dey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Microbiome Research Initiative, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Toyonaga T, Araba KC, Kennedy MM, Keith BP, Wolber EA, Beasley C, Steinbach EC, Schaner MR, Jain A, Long MD, Barnes EL, Herfarth HH, Isaacs KL, Hansen JJ, Kapadia M, Gaston Guillem J, Koruda MJ, Rahbar R, Sadiq T, Gulati AS, Sethupathy P, Furey TS, Ehre C, Sheikh SZ. Increased Colonic Expression of ACE2 Associates with Poor Prognosis in Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33269348 DOI: 10.1101/2020.11.24.396382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background and Aims The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. Methods We examined the expression of colon ACE2 using RNA-seq and quantitative (q) RT-PCR from 69 adult CD and 14 NIBD control patients. In a subset of this cohort we validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Results Colonic ACE2 expression was significantly higher in a subset of adult CD patients (ACE2-high CD). IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of diagnosis, with a Cox regression analysis finding that high ACE2 levels is an independent risk factor (OR 2.18; 95%CI, 1.05-4.55; p=0.037). Conclusion Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that may impact CD disease-related outcomes.
Collapse
|
17
|
Khodadoost M, Niknam Z, Farahani M, Razzaghi M, Norouzinia M. Investigating the human protein-host protein interactome of SARS-CoV-2 infection in the small intestine. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:374-387. [PMID: 33244381 PMCID: PMC7682973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 10/31/2022]
Abstract
AIM The present study aimed to identify human protein-host protein interactions of SARS-CoV-2 infection in the small intestine to discern the potential mechanisms and gain insights into the associated biomarkers and treatment strategies. BACKGROUND Deciphering the tissue and organ interactions of the SARS-CoV-2 infection can be important to discern the potential underlying mechanisms. In the present study, we investigated the human protein-host protein interactions in the small intestine. METHODS Public databases and published works were used to collect data related to small intestine tissue and SARS-CoV-2 infection. We constructed a human protein-protein interaction (PPI) network and showed interactions of host proteins in the small intestine. Associated modules, biological processes, functional pathways, regulatory transcription factors, disease ontology categories, and possible drug candidates for therapeutic targets were identified. RESULTS Thirteen primary protein neighbors were found for the SARS-CoV-2 receptor ACE2. ACE2 and its four partners were observed in a highly clustered module; moreover, 8 host proteins belonged to this module. The protein digestion and absorption as a significant pathway was highlighted with enriched genes of ACE2, MEP1A, MEP1B, DPP4, and XPNPEP2. The HNF4A, HNF1A, and HNF1B transcription factors were found to be regulating the expression of ACE2. A significant association with 12 diseases was deciphered and 116 drug-target interactions were identified. CONCLUSION The protein-host protein interactome revealed the important elements and interactions for SARS-CoV-2 infection in the small intestine, which can be useful in clarifying the mechanisms of gastrointestinal symptoms and inflammation. The results suggest that antiviral targeting of these interactions may improve the condition of COVID-19 patients.
Collapse
Affiliation(s)
- Mahmoud Khodadoost
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzinia
- Gastroenterology and Liver Diseases Research Center, Research Institute of Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|