1
|
Imai N, Ohsaki Y, Cheng J, Kawecka H, Zhang J, Mizuno F, Tanaka T, Yokoyama S, Yamamoto K, Ito T, Ishizu Y, Honda T, Ishikawa T, Woźniak M, Wake H, Kawashima H. Pathological significance of intranuclear structures in liver biopsy samples. Hepatol Res 2025. [PMID: 40347491 DOI: 10.1111/hepr.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 05/14/2025]
Abstract
AIM Glycogenated nuclei (GN) are glycogen deposits within the nuclei and are a frequent pathological finding in metabolic dysfunction-associated steatotic liver disease. This study aimed to investigate the relationship between GN and two morphologically distinct types of intranuclear lipid droplets in liver biopsy specimens and to explore their respective pathological significance. METHODS We analyzed 135 liver biopsy specimens. A portion of the liver biopsy specimen was examined using transmission electron microscopy (TEM) to investigate intranuclear lipid droplets in hepatocytes. Nuclear inclusion bodies with clear boundaries and unstained areas on hematoxylin and eosin staining were identified as nuclear glycogen. RESULTS TEM revealed nucleoplasmic lipid droplets (nLD) in 65% of liver biopsy specimens and invagination of cytoplasmic lipid droplets into the nucleus in 30% of specimens. In contrast, light microscopy detected GN in 82% of specimens. No significant correlations were observed between the frequencies of the two types of intranuclear lipid droplets and nuclear glycogen levels. A significant positive correlation was observed between the frequency of nLD and transaminase levels. Glycogenated nuclei were frequently observed in liver biopsy specimens from patients with MASLD; however, their frequency did not significantly correlate with the degree of hepatic steatosis. Instead, a significant positive correlation was observed between nuclear glycogen and blood HbA1c levels. CONCLUSIONS The two types of intranuclear lipid droplets and nuclear glycogen observed in liver biopsy specimens showed no significant correlation in their formation frequencies, suggesting that they possess distinct pathological significance.
Collapse
Affiliation(s)
- Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuki Ohsaki
- Division of Cell and Tissue Morphology, Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hanna Kawecka
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Jingjing Zhang
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumitaka Mizuno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Tanaka
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Zhang X, Li S, Hao L, Jia F, Yu F, Hu X. Influencing factors and mechanism of hepatocyte regeneration. J Transl Med 2025; 23:493. [PMID: 40307789 PMCID: PMC12042435 DOI: 10.1186/s12967-025-06278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/20/2025] [Indexed: 05/02/2025] Open
Abstract
As a research hotspot in the field of regenerative medicine, hepatocyte regeneration has great potential in the treatment of liver diseases. This paper comprehensively summarizes the diverse sources of hepatocyte regeneration and its complex influencing factors, and deeply discusses the typical mechanism. According to the existing research, we observed that Wnt signaling pathway and Notch signaling pathway can play a synergistic role in the process of hepatocyte regeneration. So we further analyzed the crosstalk between Wnt and Notch signal pathway and the cross mechanism with TGF-β, YAP/TAZ pathway during regeneration. Despite the remarkable progress in the study of liver regeneration at the cellular and molecular levels, the comprehensive understanding of the fine regulation of influencing factors and the interaction between mechanisms still needs to be deepened. This paper aims to systematically analyze the interaction between influencing factors and classical mechanisms of hepatocyte regeneration by integrating multi-group data and advanced bioinformatics methods, so as to provide feasible ideas for the treatment of liver diseases and lay a solid theoretical foundation for the future development of regenerative medicine. It is believed that focusing on the rational development of innovative means such as inducing gene tendentiousness expression and anti-aging therapy, and in-depth analysis of the complex interactive network between hepatocyte regeneration mechanisms are expected to open up a new road for the development of more effective treatment strategies for liver diseases.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Fukang Jia
- Henan University of Traditional Chinese, Zhengzhou, China
| | - Fei Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China
- Clinical Medical College of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Custode BM, Annunziata F, Dos Santos Matos F, Schiano V, Maffia V, Lillo M, Colonna R, De Cegli R, Ballabio A, Pastore N. Folliculin depletion results in liver cell damage and cholangiocarcinoma through MiT/TFE activation. Cell Death Differ 2025:10.1038/s41418-025-01486-8. [PMID: 40189703 DOI: 10.1038/s41418-025-01486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025] Open
Abstract
Mutations in the tumor suppressor gene Folliculin (FLCN) are responsible for Birt-Hogg-Dube' (BHD) syndrome, a rare inherited condition that predisposes affected individuals to skin tumors, pulmonary cysts, and kidney tumors. FLCN regulates key cellular pathways, including TFEB, TFE3, and mTORC1, which are critical for maintaining cell homeostasis. Loss of FLCN leads to both hyperactivation of mTORC1 and constitutive activation of TFEB and TFE3, contributing to tumorigenesis. While previous studies showed that Flcn liver-specific conditional knockout (FlcnLiKO) mice are protected from developing liver fibrosis and damage upon high-fat diet exposure, the potential role of FLCN loss in liver carcinogenesis remained unexplored. Here, we demonstrate that hepatic loss of FLCN in mice results in cancer associated with inflammation and fibrosis with features of cholangiocarcinoma (CCA). This phenotype emerges in mice over 90-week-old, with a male predominance. Moreover, FlcnLiKO mice are more prone to develop diethylnitrosamine (DEN)- or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced liver tumors with heterogenous histological features. Notably, depletion of TFE3, but not TFEB, in the liver of FlcnLiKO mice fully rescues the cancer phenotype and normalized mTORC1 signaling, highlighting TFE3 as the primary driver of liver cancer and mTORC1 hyperactivity in the absence of FLCN.
Collapse
Affiliation(s)
| | | | | | - Valentina Schiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Milena Lillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
- Department of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy.
| |
Collapse
|
4
|
Huang YT, Calvi BR. Activation of a Src-JNK pathway in unscheduled endocycling cells of the Drosophila wing disc induces a chronic wounding response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642788. [PMID: 40161657 PMCID: PMC11952448 DOI: 10.1101/2025.03.12.642788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The endocycle is a specialized cell cycle during which cells undergo repeated G / S phases to replicate DNA without division, leading to large polyploid cells. The transition from a mitotic cycle to an endocycle can be triggered by various stresses, which results in unscheduled, or induced endocycling cells (iECs). While iECs can be beneficial for wound healing, they can also be detrimental by impairing tissue growth or promoting cancer. However, the regulation of endocycling and its role in tissue growth remain poorly understood. Using the Drosophila wing disc as a model, we previously demonstrated that iEC growth is arrested through a Jun N-Terminal Kinase (JNK)-dependent, reversible senescence-like response. However, it remains unclear how JNK is activated in iECs and how iECs impact overall tissue structure. In this study, we performed a genetic screen and identified the Src42A-Shark-Slpr pathway as an upstream regulator of JNK in iECs, leading to their senescence-like arrest. We found that tissues recognize iECs as wounds, releasing wound-related signals that induce a JNK-dependent developmental delay. Similar to wound closure, this response triggers Src-JNK-mediated actomyosin remodeling, yet iECs persist rather than being eliminated. Our findings suggest that the tissue response to iECs shares key signaling and cytoskeletal regulatory mechanisms with wound healing and dorsal closure, a developmental process during Drosophila embryogenesis. However, because iECs are retained within the tissue, they create a unique system that may serve as a model for studying chronic wounds and tumor progression.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, 46202 USA
| |
Collapse
|
5
|
Watson BR, Paul B, Rahman RU, Amir-Zilberstein L, Segerstolpe Å, Epstein ET, Murphy S, Geistlinger L, Lee T, Shih A, Deguine J, Xavier RJ, Moffitt JR, Mullen AC. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat Commun 2025; 16:319. [PMID: 39747812 PMCID: PMC11697218 DOI: 10.1038/s41467-024-55325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cell types and their heterogeneity within the human liver, but the spatial organization at single-cell resolution has not yet been described. Here we apply multiplexed error robust fluorescent in situ hybridization (MERFISH) to map the zonal distribution of hepatocytes, spatially resolve subsets of macrophage and mesenchymal populations, and investigate the relationship between hepatocyte ploidy and gene expression within the healthy human liver. Integrating spatial information from MERFISH with the more complete transcriptome produced by single-nucleus RNA sequencing (snRNA-seq), also reveals zonally enriched receptor-ligand interactions. Finally, MERFISH and snRNA-seq analysis of fibrotic liver samples identify two hepatocyte populations that expand with injury and do not have clear zonal distributions. Together these spatial maps of the healthy and fibrotic liver provide a deeper understanding of the cellular and spatial remodeling that drives disease which, in turn, could provide new avenues for intervention and further study.
Collapse
Affiliation(s)
- Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Biplab Paul
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Raza Ur Rahman
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Åsa Segerstolpe
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Shane Murphy
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ludwig Geistlinger
- Core for Computational Biomedicine, Department for Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tyrone Lee
- Core for Computational Biomedicine, Department for Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela Shih
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jacques Deguine
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ramnik J Xavier
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Alan C Mullen
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
6
|
Chatterjee N, Sharma R, Kale PR, Trehanpati N, Ramakrishna G. Is the liver resilient to the process of ageing? Ann Hepatol 2024; 30:101580. [PMID: 39276981 DOI: 10.1016/j.aohep.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
The liver's unique regenerative capacity, immunotolerant feature, and polyploidy status distinguish it as a metabolic organ unlike any other in the body. Despite aging, the liver generally exhibits fewer pathological abnormalities than other organs (such as the kidney), maintaining its functions near-normal balanced manner. Subtle changes in the liver, including reduced blood flow, detoxification alterations, pseudo-capillarization, and lipofuscin deposition, may occur with chronological age. Research indicates that carefully selected liver grafts from octogenarian donors can perform well post-transplant, emphasizing instances where age doesn't necessarily compromise liver function. Notably, a recent report suggests that the liver is a youthful organ, with hepatocytes averaging an age of only 3 years. Despite the liver's impressive regenerative capabilities and cellular reserve, a lingering question persists: how does the liver maintain its youthful characteristic amidst the chronological aging of the entire organism? The various adaptive mechanism possibly include:(a) cellular hypertrophy to maintain physiological capacity even before proliferation initiates, (b) the "ploidy conveyor" as a genetic adaptation to endure aging-related stress, (c) sustained telomere length indicative of youthfulness (d) active extracellular matrix remodelling for normal cellular functioning, (e) Mitochondria-Endoplasmic Reticulum based metabolic adaptation and (c) cellular plasticity as fitness mechanisms for healthy aging. However, it is crucial to note that aged livers may have compromised regenerative capacity and chronic liver disease is often associated with declining function due to premature hepatocyte senescence. This review delves into varied cellular adaptations sustaining liver homeostasis with chronological aging and briefly explores the role of accelerated hepatocyte aging as a precursor to chronic liver disease.
Collapse
Affiliation(s)
- Nirupama Chatterjee
- Artemis Education and Research Foundation, Artemis Health Institute, Sector 51 Gurugram, India
| | - Rishabh Sharma
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana Amity Education Valley, Panchgaon, Manesar Gurugram, HR 122413, India
| | - Pratibha R Kale
- Department of Clinical Microbiology, Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India.
| |
Collapse
|
7
|
Xie B, Fan M, Wang CX, Zhang Y, Xu S, Mizenko R, Lin TY, Duan Y, Zhang Y, Huang J, Berg JI, Wu D, Li A, Hao D, Gao K, Sun Y, Tepper CG, Carney R, Li Y, Wang A, Gong Q, Daly M, Jao LE, Monjazeb AM, Fierro FA, Li JJ. Post-death Vesicles of Senescent Bone Marrow Mesenchymal Stromal Polyploids Promote Macrophage Aging and Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583755. [PMID: 38496556 PMCID: PMC10942423 DOI: 10.1101/2024.03.06.583755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk. Graphic Abstract
Collapse
|
8
|
Abstract
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
Collapse
Affiliation(s)
- Sierra R. Wilson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Dehn AS, Duhaime L, Gogna N, Nishina PM, Kelley K, Losick VP. Epithelial mechanics are maintained by inhibiting cell fusion with age in Drosophila. J Cell Sci 2023; 136:jcs260974. [PMID: 37732459 PMCID: PMC10651104 DOI: 10.1242/jcs.260974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.
Collapse
Affiliation(s)
- Ari S. Dehn
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Levi Duhaime
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Navdeep Gogna
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kristina Kelley
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Vicki P. Losick
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| |
Collapse
|
10
|
Wang J, Huang X, Zheng D, Li Q, Mei M, Bao S. PRMT5 determines the pattern of polyploidization and prevents liver from cirrhosis and carcinogenesis. J Genet Genomics 2023; 50:87-98. [PMID: 35500745 DOI: 10.1016/j.jgg.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Human hepatocellular carcinoma (HCC) occurs almost exclusively in cirrhotic livers. Here, we report that hepatic loss of protein arginine methyltransferase 5 (PRMT5) in mice is sufficient to cause cirrhosis and HCC in a clinically relevant way. Furthermore, pathological polyploidization induced by hepatic loss of PRMT5 promotes liver cirrhosis and hepatic tumorigenesis in aged liver. The loss of PRMT5 leads to hyper-accumulation of P21 and endoreplication-dependent formation of pathological mono-nuclear polyploid hepatocytes. PRMT5 and symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) directly associate with chromatin of P21 to suppress its transcription. More importantly, loss of P21 rescues the pathological mono-nuclear polyploidy and prevents PRMT5-deficiency-induced liver cirrhosis and HCC. Thus, our results indicate that PRMT5-mediated symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) is crucial for preventing pathological polyploidization, liver cirrhosis and tumorigenesis in mouse liver.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiang Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoshan Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
12
|
Kim JY, Choi H, Kim HJ, Jee Y, Noh M, Lee MO. Polyploidization of Hepatocytes: Insights into the Pathogenesis of Liver Diseases. Biomol Ther (Seoul) 2022; 30:391-398. [PMID: 35790893 PMCID: PMC9424332 DOI: 10.4062/biomolther.2022.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022] Open
Abstract
Polyploidization is a process by which cells are induced to possess more than two sets of chromosomes. Although polyploidization is not frequent in mammals, it is closely associated with development and differentiation of specific tissues and organs. The liver is one of the mammalian organs that displays ploidy dynamics in physiological homeostasis during its development. The ratio of polyploid hepatocytes increases significantly in response to hepatic injury from aging, viral infection, iron overload, surgical resection, or metabolic overload, such as that from non-alcoholic fatty liver diseases (NAFLDs). One of the unique features of NAFLD is the marked heterogeneity of hepatocyte nuclear size, which is strongly associated with an adverse liver-related outcome, such as hepatocellular carcinoma, liver transplantation, and liver-related death. Thus, hepatic polyploidization has been suggested as a potential driver in the progression of NAFLDs that are involved in the control of the multiple pathogenicity of the diseases. However, the importance of polyploidy in diverse pathophysiological contexts remains elusive. Recently, several studies reported successful improvement of symptoms of NAFLDs by reducing pathological polyploidy or by controlling cell cycle progression in animal models, suggesting that better understanding the mechanisms of pathological hepatic polyploidy may provide insights into the treatment of hepatic disorders.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 00826, Republic of Korea
| | - Yelin Jee
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 00826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 00826, Republic of Korea
- Bio-MAX institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Zhao Y, Yang Y, Li Q, Li J. Understanding the Unique Microenvironment in the Aging Liver. Front Med (Lausanne) 2022; 9:842024. [PMID: 35280864 PMCID: PMC8907916 DOI: 10.3389/fmed.2022.842024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past decades, many studies have focused on aging because of our pursuit of longevity. With lifespans extended, the regenerative capacity of the liver gradually declines due to the existence of aging. This is partially due to the unique microenvironment in the aged liver, which affects a series of physiological processes. In this review, we summarize the related researches in the last decade and try to highlight the aging-related alterations in the aged liver.
Collapse
Affiliation(s)
- Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Jianzhou Li
| |
Collapse
|
14
|
Kim JY, Yang IS, Kim HJ, Yoon JY, Han YH, Seong JK, Lee MO. RORα contributes to the maintenance of genome ploidy in the liver of mice with diet-induced nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab 2022; 322:E118-E131. [PMID: 34894722 DOI: 10.1152/ajpendo.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatic polyploidization is closely linked to the progression of nonalcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism is not clearly understood. In this study, we demonstrated the role of retinoic acid-related orphan receptor α (RORα) in the maintenance of genomic integrity, particularly in the pathogenesis of NAFLD, using the high-fat diet (HFD)-fed liver-specific RORα knockout (RORα-LKO) mouse model. First, we observed that the loss of hepatic retinoic acid receptor-related orphan receptor α (RORα) accelerated hepatocyte nuclear polyploidization after HFD feeding. In 70% partial hepatectomy experiments, enrichment of hepatocyte polyploidy was more obvious in the RORα-LKO animals, which was accompanied by early progression to the S phase and blockade of the G2/M transition, suggesting a potential role of RORα in suppressing hepatocyte polyploidization in the regenerating liver. An analysis of a publicly available RNA sequencing (RNA-seq) and chromatin immunoprecipitation-seq dataset, together with the Search Tool of the Retrieval of Interacting Genes/Proteins database resource, revealed that DNA endoreplication was the top-enriched biological process Gene Ontology term. Furthermore, we found that E2f7 and E2f8, which encode key transcription factors for DNA endoreplication, were the downstream targets of RORα-induced transcriptional repression. Finally, we showed that the administration of JC1-40, an RORα activator (5 mg/kg body wt), significantly reduced hepatic nuclear polyploidization in the HFD-fed mice. Together, our observations suggest that the RORα-induced suppression of hepatic polyploidization may provide new insights into the pathological polyploidy of NAFLD and may contribute to the development of therapeutic strategies for the treatment of NAFLD.NEW & NOTEWORTHY It has been reported that hepatic polyploidization is closely linked to the progression of NAFLD. Here, we showed that the genetic depletion of hepatic RORα in mice accelerated hepatocyte polyploidization after high-fat diet feeding. The mechanism could be the RORα-mediated repression of E2f7 and E2f8, key transcription factors for DNA endoreplication. Thus, preservation of genome integrity by RORα could provide a new insight for developing therapeutics against the disease.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - In Sook Yang
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Yeun Yoon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yong-Hyun Han
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute of Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| |
Collapse
|