1
|
Li NR, Zeng YX, Gu YF, Xie P, Deng BY, Lu SF, Li WA, Liu Y. Aspartame increases the risk of liver cancer through CASP1 protein: A comprehensive network analysis insights. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118089. [PMID: 40139029 DOI: 10.1016/j.ecoenv.2025.118089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Aspartame is a widely used artificial sweetener in food and beverages. Its safety concerns and potential carcinogenic risks have garnered increasing attention. This study aims to systematically explore the carcinogenic potential and mechanisms of aspartame on the liver through a comprehensive analysis based on network toxicology, mendelian randomization, molecular dynamics and single-cell RNA sequencing. METHODS ProTox 3.0 and ADMEtlab 2.0 platforms were used to predict the toxicity and drug metabolism levels of aspartame. Network toxicology methods were employed to investigate the pathogenic pathways and mechanisms of aspartame in liver cancer. Mendelian randomization (MR) was used to verify the causal relationship between aspartame's carcinogenic targets and liver cancer. Furthermore, molecular docking and molecular dynamics (MD) simulations were conducted to explore the binding efficiency and stability of aspartame with the validated targets from MR. Single-cell technology further explores which types of liver cells have the highest expression of CASP1. RESULTS Combining the results from two prediction platforms, it was found that aspartame exhibits significant neurological, nephrotoxic, and hepatotoxic effects. Network toxicology results indicated that aspartame promotes the development of liver cancer by affecting multiple key proteins and regulatory factors PTGS2, IL1β and CASP1, in the Necroptosis, NF-κB and TNF signaling pathways. MR was used to discover that among the core targets of aspartame, REN, HLA-A, CASP1, and MME have causal relationships with liver cancer, while CASP1 is a risk factor for liver cancer. The binding affinity of aspartame to these four proteins was investigated by molecular docking, and it was found that the binding to CASP1 was the strongest at -18.45 kJ/mol. MD further verified that over a 50 ns period, the protein-target complex of aspartame and CASP1 exhibited excellent binding stability. Additionally, the single-cell sequencing found that CASP1 is most highly expressed in endothelial cells. In summary, these findings suggested that aspartame may increase the possibility of liver cancer by modulating the CASP1 protein. CONCLUSIONS This study identifies CASP1 as a potential target for aspartame-induced liver cancer, which is of a significant public health importance. The potential carcinogenic risk of aspartame and reliability need to be re-evaluated. The study provides a new method for assessing the safety of food additives and offers novel scientific insights into the toxicological effects of aspartame. Furthermore, subsequent experimental validation is crucial for further research into the carcinogenic mechanisms of aspartame.
Collapse
Affiliation(s)
- Ni-Ren Li
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yi-Xuan Zeng
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Feng Gu
- Jiangmen Central Hospital, Jiangmen 529000, PR China.
| | - Pai Xie
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Bing-Ying Deng
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Si-Fan Lu
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wang-An Li
- College of Life Science and Chemistry, Hunan University of Technology, PR China
| | - Yi Liu
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
2
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
3
|
Fleifil Y, Gulati R, Jennings K, Miethke A, Bondoc A, Tiao G, Geller JI, Karns R, Timchenko L, Timchenko N. DNAJB1-PKAc Kinase Is Expressed in Young Patients with Pediatric Liver Cancers and Enhances Carcinogenic Pathways. Cancers (Basel) 2024; 17:83. [PMID: 39796711 PMCID: PMC11720578 DOI: 10.3390/cancers17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background and Aims: Hepatoblastoma (HBL) and fibrolamellar hepatocellular carcinoma (FLC) are the most common liver malignancies in children and young adults. FLC oncogenesis is associated with the generation of the fusion kinase, DNAJB1-PKAc (J-PKAc). J-PKAc has been found in 90% of FLC patients' tumors but not in other liver cancers. Since previous studies of J-PKAc were performed with adolescent patients, we asked if young children may express J-PKAc and if there are consequences of such expression. Methods: The biobank of the pediatric HBL/HCN-NOS specimens was examined by QRT-PCR, Western blots, RNA-Seq, and immunostaining with fusion-specific antibodies. Results: J-PKAc is expressed in 70% of the HBL/HCN-NOS patients. RNA-Seq analysis revealed that HBL tumors that do not have cells expressing J-PKAc show elevated expression of the membrane attack complex (MAC), which eliminates cells expressing J-PKAc. The fusion-positive HBL/HCN-NOS samples have several signaling pathways that are different from fusion-negative HBLs. Upregulated pathways included genes involved in the G1 to S transition and in liver cancer. Downregulated pathways included over 60 tumor suppressors, the CYP family, and the SLC family. The repression of these genes involves J-PKAc-β-catenin-TCF4-mediated elevation of the HDAC1-Sp5 pathway. The identified upregulated and downregulated pathways are direct targets of the fusion kinase. The J-PKAc kinase is also detected in livers of 1-year-old children with biliary atresia (BA). Conclusions: J-PKAc is expressed in both HBL tumor and BA liver samples, contributing to the development of HBL and creating a transcriptome profiling consistent with the potential development of liver cancer in young patients.
Collapse
Affiliation(s)
- Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
| | - Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
| | - Katherine Jennings
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Alexander Miethke
- Department of Gastroenterology, Hepatology & Nutrition, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA; (A.M.); (R.K.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Alexander Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James I. Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology & Nutrition, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA; (A.M.); (R.K.)
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Zhou X, Gu C, Xiao L, Hu L, Chen G, Zuo F, Shao H, Fei B. LINC01094 promotes gastric cancer through dual targeting of CDKN1A by directly binding RBMS2 and HDAC1. Biol Direct 2024; 19:137. [PMID: 39719596 DOI: 10.1186/s13062-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Accumulating studies have focused on long noncoding RNAs (lncRNAs) because of their regulatory effects on multiple cancers. However, the biological functions and molecular mechanisms of lncRNAs in gastric cancer (GC) remain to be elucidated in depth. METHODS Long intergenic nonprotein coding RNA 1094 (LINC01094), a differentially expressed lncRNA between GC tissues and adjacent normal tissues, was identified. Moreover, gain- and loss-of-function experiments in vitro and in vivo were carried out. To understand the mechanisms underlying the regulatory effects of LINC01094, we performed RNA pull-down assays, RNA immunoprecipitation assays, chromatin immunoprecipitation assays, luciferase reporter assays, etc. RESULTS: LINC01094 was markedly upregulated in GC tissues and cell lines, and LINC01094 upregulation was positively correlated with GC malignant behaviours in vitro and in vivo. Mechanistically, LINC01094 downregulated the expression of CDKN1A by interacting with RNA binding motif single stranded interacting protein 2 (RBMS2) and histone deacetylase 1 (HDAC1). Additionally, LINC01094 was confirmed to sponge miR-128-3p and participate in the LINC01094-miR-128-3p-RUNX family transcription factor 1 (RUNX1) feedback loop. Finally, Ro 5-3335, a validated RUNX1 inhibitor, was explored for anticancer drug development in GC. CONCLUSIONS The LINC01094-miR-128-3p-RUNX1 feedback loop downregulates CDKN1A and promotes GC cooperatively with RBMS2 and HDAC1. Furthermore, Ro 5-3335 may hold promising therapeutic potential in the treatment of GC. Hence, our study found an oncogenic lncRNA, LINC01094, which could be a promising target for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.
| | - Cheng Gu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Linmei Xiao
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, Wuxi, 214000, Jiangsu Province, China
| | - Li Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang Province, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Guanhua Chen
- Department of Radiation Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, Jiangsu Province, China
| | - Fei Zuo
- Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu Province, China
| | - Hongan Shao
- Department of Thoracic Surgery, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing Second Hospital, Nanjing, 210003, Jiangsu Province, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.
| |
Collapse
|
5
|
Fu Y, Francés R, Monge C, Desterke C, Marchio A, Pineau P, Chang-Marchand Y, Mata-Garrido J. Metabolic and Epigenetic Mechanisms in Hepatoblastoma: Insights into Tumor Biology and Therapeutic Targets. Genes (Basel) 2024; 15:1358. [PMID: 39596558 PMCID: PMC11593527 DOI: 10.3390/genes15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival. METHODS Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined. RESULTS Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa. CONCLUSIONS The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Collapse
Affiliation(s)
- Yuanji Fu
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Yunhua Chang-Marchand
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
6
|
Gulati R, Fleifil Y, Jennings K, Bondoc A, Tiao G, Geller J, Timchenko L, Timchenko N. Inhibition of Histone Deacetylase Activity Increases Cisplatin Efficacy to Eliminate Metastatic Cells in Pediatric Liver Cancers. Cancers (Basel) 2024; 16:2300. [PMID: 39001363 PMCID: PMC11240720 DOI: 10.3390/cancers16132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer Associated Fibroblasts (CAFs) and neuron-like cells, which initiate cancer spread from liver to lungs. In this study, we found that these cells express high levels of HDAC1; therefore, we examined if histone deacetylase inhibition improves cisplatin anti-proliferative effects and reduces the formation of tumor clusters in pediatric liver cancer metastatic microenvironments. METHODS New cell lines were generated from primary hepatoblastoma liver tumors (hbl) and lung metastases (LM) of HBL patients. In addition, cell lines were generated from hepatocellular neoplasm, not otherwise specified (HCN-NOS) tumor samples, and hcc cell lines. Hbl, LM and hcc cells were treated with cisplatin, SAHA or in combination. The effect of these drugs on the number of cells, formation of tumor clusters and HDAC1-Sp5-p21 axis were examined. RESULTS Both HBL and HCC tissue specimens have increased HDAC1-Sp5 pathway activation, recapitulated in cell lines generated from the tumors. HDAC inhibition with vorinostat (SAHA) increases cisplatin efficacy to eliminate CAFs in hbl and in hcc cell lines. Although the neuron-like cells survive the combined treatments, proliferation was inhibited. Notably, combining SAHA with cisplatin overcame cisplatin resistance in an LM cell line from an aggressive case with multiple metastases. Underlying mechanisms of this enhanced inhibition include suppression of the HDAC1-Sp5 pathway and elevation of an inhibitor of proliferation p21. Similar findings were found with gemcitabine treatments suggesting that elimination of proliferative CAFs cells is a key event in the inhibition of mitotic microenvironment. CONCLUSIONS Our studies demonstrate the synergistic benefits of HDAC inhibition and cisplatin to eliminate metastasis-initiating cells in pediatric liver cancers.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Katherine Jennings
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Greg Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Espinoza AF, Patel RH, Patel KR, Badachhape AA, Whitlock R, Srivastava RK, Govindu SR, Duong A, Kona A, Kureti P, Armbruster B, Kats D, Srinivasan RR, Dobrolecki LE, Yu X, Najaf Panah MJ, Zorman B, Sarabia SF, Urbicain M, Major A, Bissig KD, Keller C, Lewis MT, Heczey A, Sumazin P, López-Terrada DH, Woodfield SE, Vasudevan SA. A novel treatment strategy utilizing panobinostat for high-risk and treatment-refractory hepatoblastoma. J Hepatol 2024; 80:610-621. [PMID: 38242326 DOI: 10.1016/j.jhep.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND & AIMS Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 μM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.
Collapse
Affiliation(s)
- Andres F Espinoza
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roma H Patel
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Andrew A Badachhape
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard Whitlock
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rohit K Srivastava
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saiabhiroop R Govindu
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashley Duong
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhishek Kona
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pavan Kureti
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan Armbruster
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dina Kats
- Pediatric Cancer Biology, Children's Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinjian Yu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Mohammad J Najaf Panah
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Martin Urbicain
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Charles Keller
- Pediatric Cancer Biology, Children's Cancer Therapy Development Institute, Beaverton, OR, United States
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andras Heczey
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Dolores H López-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjeev A Vasudevan
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Wang HS, Lao J, Jiang RS, Wang B, Ma XP, Wang JY. Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 2024; 12:1309693. [PMID: 38390281 PMCID: PMC10881832 DOI: 10.3389/fped.2024.1309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Hepatoblastoma is the most prevalent primary hepatic malignancy in children, comprising 80% of pediatric hepatic malignancies and 1% of all pediatric malignancies. However, traditional treatments have proven inadequate in effectively curing hepatoblastoma, leading to a poor prognosis. Methods A literature search was conducted on multiple electronic databases (PubMed and Google Scholar). A total of 86 articles were eligible for inclusion in this review. Result This review aims to consolidate recent developments in hepatoblastoma research, focusing on the latest advances in cancer-associated genomics, epigenetic studies, transcriptional programs and molecular subtypes. We also discuss the current treatment approaches and forthcoming strategies to address cancer-associated biological challenges. Conclusion To provide a comprehensive summary of the molecular mechanisms associated with hepatoblastoma occurrence, this review highlights three key aspects: genomics, epigenetics, and transcriptomics. Our review aims to facilitate the exploration of novel molecular mechanisms and the development of innovative clinical treatment strategies for hepatoblastoma.
Collapse
Affiliation(s)
- Huan-sheng Wang
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jing Lao
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Ren-sen Jiang
- Department of General Surgery, Shenzhen Children’s Hospital of ShanTou University, Shenzhen, Guangdong Province, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-peng Ma
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Jian-yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
9
|
Gulati R, Lutz M, Hanlon M, Cast A, Karns R, Geller J, Bondoc A, Tiao G, Timchenko L, Timchenko NA. Cellular origin and molecular mechanisms of lung metastases in patients with aggressive hepatoblastoma. Hepatol Commun 2024; 8:e0369. [PMID: 38285876 PMCID: PMC10830083 DOI: 10.1097/hc9.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND AND AIMS Lung metastases are the most threatening signs for patients with aggressive hepatoblastoma (HBL). Despite intensive studies, the cellular origin and molecular mechanisms of lung metastases in patients with aggressive HBL are not known. The aims of these studies were to identify metastasis-initiating cells in primary liver tumors and to determine if these cells are secreted in the blood, reach the lung, and form lung metastases. APPROACH We have examined mechanisms of activation of key oncogenes in primary liver tumors and lung metastases and the role of these mechanisms in the appearance of metastasis-initiating cells in patients with aggressive HBL by RNA-Seq, immunostaining, chromatin immunoprecipitation, Real-Time Quantitative Reverse Transcription PCR and western blot approaches. Using a protocol that mimics the exit of metastasis-initiating cells from tumors, we generated 16 cell lines from liver tumors and 2 lines from lung metastases of patients with HBL. RESULTS We found that primary HBL liver tumors have a dramatic elevation of neuron-like cells and cancer-associated fibroblasts and that these cells are released into the bloodstream of patients with HBL and found in lung metastases. In the primary liver tumors, the ph-S675-β-catenin pathway activates the expression of markers of cancer-associated fibroblasts; while the ZBTB3-SRCAP pathway activates the expression of markers of neurons via cancer-enhancing genomic regions/aggressive liver cancer domains leading to a dramatic increase of cancer-associated fibroblasts and neuron-like cells. Studies of generated metastasis-initiating cells showed that these cells proliferate rapidly, engage in intense cell-cell interactions, and form tumor clusters. The inhibition of β-catenin in HBL/lung metastases-released cells suppresses the formation of tumor clusters. CONCLUSIONS The inhibition of the β-catenin-cancer-enhancing genomic regions/aggressive liver cancer domains axis could be considered as a therapeutic approach to treat/prevent lung metastases in patients with HBL.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maggie Lutz
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Margaret Hanlon
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley Cast
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A. Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Xie N, Mei S, Dai C, Chen W. HDAC1-Mediated Downregulation of NEU1 Exacerbates the Aggressiveness of Cervical Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:45-54. [PMID: 38505872 DOI: 10.1615/critreveukaryotgeneexpr.2023051396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.
Collapse
Affiliation(s)
- Nanzi Xie
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Sisi Mei
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Changlan Dai
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Wei Chen
- People's Hospital of Anshun City Guizhou Province
| |
Collapse
|
11
|
Hanlon MA, Gulati R, Johnston M, Fleifil Y, Rivas M, Timchenko NA. Genetic Ablation of C/EBPα-p300 Pathway Blocks Development of Obese Pregnancy Associated Liver Disorders in Offspring. Cell Mol Gastroenterol Hepatol 2023; 17:347-360. [PMID: 37967813 PMCID: PMC10821535 DOI: 10.1016/j.jcmgh.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND & AIMS The obesity-associated nonalcoholic fatty liver disease represents a common cause of pediatric liver diseases, including the pediatric liver cancer hepatoblastoma. The mechanisms behind the development of fatty liver in children are not yet known. We examined the role of the C/EBPα-p300 pathway in the development of maternal obesity-associated fatty liver phenotype in offspring. METHODS Because the ability of C/EBPα to promote fatty liver phenotype is enhanced by CDK4-mediated phosphorylation of C/EBPα at Ser193 and subsequent formation of C/EBPα-p300 complexes, we used wild-type (WT) and C/EBPα-S193D and C/EBPα-S193A mutant mice to study the effects of maternal high-fat diet (HFD) on the liver health of offspring. The females of these mouse lines were fed an HFD before mating, and the pups were further subjected to either an HFD or a normal diet for 12 weeks. RESULTS WT female mice on the HFD before and during pregnancy and their subsequent offspring on the HFD had severe fatty liver, fibrosis, and an increased rate of liver proliferation. However, the HFD in C/EBPα-S193A mice did not cause development of these disorders. In HFD-HFD treated WT mice, C/EBPα is phosphorylated at Ser193 and forms complexes with p300, which activate expression of genes involved in development of fatty liver, fibrosis, and proliferation. However, S193A-C/EBPα mice do not have complexes of C/EBPα-S193A with p300, leading to a lack of activation of genes of fatty liver, fibrosis, and proliferation. The mutant C/EBPα-S193D mice have accelerated cdk4-dependent pathway and have developed steatosis at early stages. CONCLUSIONS These studies identified the epigenetic cause of obese pregnancy-associated liver diseases and suggest a potential therapy based on inhibition of cdk4-ph-S193-C/EBPα-p300 pathway.
Collapse
Affiliation(s)
- Margaret A Hanlon
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael Johnston
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria Rivas
- Institute of Biosciences, University of São Paulo (USP) Cidade Universitária, Butantã, São Paulo, Brazil
| | - Nikolai A Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
12
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
13
|
Lu Y, Wang S, Chi T, Zhao Y, Guo H, Wang H, Feng L. DNA damage repair-related gene signature for identifying the immune status and predicting the prognosis of hepatocellular carcinoma. Sci Rep 2023; 13:18978. [PMID: 37923899 PMCID: PMC10624694 DOI: 10.1038/s41598-023-45999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) poses a challenge for accurate prognosis prediction. DNA damage repair genes (DDRGs) have an impact on a wide range of malignancies. However, the relevance of these genes in HCC prognosis has received little attention. In this study, we aimed to develop a prognostic signature to identify novel therapy options for HCC. We acquired mRNA expression profiles and clinical data for HCC patients from The Cancer Genome Atlas (TCGA) database. A polygenic prognostic model for HCC was constructed using selection operator Cox analysis and least absolute shrinkage. The model was validated using International Cancer Genome Consortium (ICGC) data. Overall survival (OS) between the high-risk and low-risk groups was compared using Kaplan‒Meier analysis. Independent predictors of OS were identified through both univariate and multivariate Cox analyses. To determine immune cell infiltration scores and activity in immune-related pathways, a single-sample gene set enrichment analysis was performed. The protein and mRNA expression levels of the prognostic genes between HCC and normal liver tissues were also examined by immunohistochemistry (IHC), immunofluorescence (IF) and quantitative real-time PCR (qRT-PCR). A novel ten-gene signature (CHD1L, HDAC1, KPNA2, MUTYH, PPP2R5B, NEIL3, POLR2L, RAD54B, RUVBL1 and SPP1) was established for HCC prognosis prediction. Patients in the high-risk group had worse OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the predictive ability of this prognostic gene signature. Multivariate Cox analysis showed that the risk score was an independent predictor of OS. Functional analysis revealed a strong association with cell cycle and antigen binding pathways, and the risk score was highly correlated with tumor grade, tumor stage, and types of immune infiltrate. High expression levels of the prognostic genes were significantly correlated with increased sensitivity of cancer cells to antitumor drugs. IHC, IF and qRT-PCR all indicated that the prognostic genes were highly expressed in HCC relative to normal liver tissue, consistent with the results of bioinformatics analysis. Ten DDRGs were utilized to create a new signature for identifying the immunological state of HCC and predicting prognosis. In addition, blocking these genes could represent a promising treatment.
Collapse
Affiliation(s)
- Yongpan Lu
- Department of Plastic Surgery, Shandong University of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qian Foshan Hospital, Jingshi Road, Jinan, 250014, Shandong, China
| | - Sen Wang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qian Foshan Hospital, Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
| | - Tingting Chi
- Department of Acupuncture and Rehabilitation, The Affiliated Qingdao Hai Ci Hospital of Qingdao University (West Hospital Area), Qingdao, 266000, Shandong, China
| | - Yuli Zhao
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qian Foshan Hospital, Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
| | - Huimin Guo
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qian Foshan Hospital, Jining Medical College, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
| | - Haizheng Wang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qian Foshan Hospital, Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
| | - Li Feng
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qian Foshan Hospital, Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
14
|
Clavería-Cabello A, Herranz JM, Latasa MU, Arechederra M, Uriarte I, Pineda-Lucena A, Prosper F, Berraondo P, Alonso C, Sangro B, García Marin JJ, Martinez-Chantar ML, Ciordia S, Corrales FJ, Francalanci P, Alaggio R, Zucman-Rossi J, Indersie E, Cairo S, Domingo-Sàbat M, Zanatto L, Sancho-Bru P, Armengol C, Berasain C, Fernandez-Barrena MG, Avila MA. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol 2023; 79:989-1005. [PMID: 37302584 DOI: 10.1016/j.jhep.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of β-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Collapse
Affiliation(s)
| | - Jose Maria Herranz
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ujue Latasa
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Prosper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Oncohematology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, University of Navarra, Pamplona, Spain; CIBERonc, Madrid, Spain
| | | | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - Jose Juan García Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Luz Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Fernando José Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Paola Francalanci
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Sapienza University, Rome, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France; Champions Oncology, Rockville, MD, USA
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carolina Armengol
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite García Fernandez-Barrena
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| | - Matias Antonio Avila
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
15
|
He Z, Zhong Y, Hu H, Li F. ZFP64 Promotes Gallbladder Cancer Progression through Recruiting HDAC1 to Activate NOTCH1 Signaling Pathway. Cancers (Basel) 2023; 15:4508. [PMID: 37760477 PMCID: PMC10527061 DOI: 10.3390/cancers15184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of meaningful and effective early-stage markers remains the major challenge in the diagnosis of gallbladder cancer (GBC) and a huge barrier to timely treatment. Zinc finger protein 64 (ZFP64), a member of the zinc finger protein family, is considered to be a promising predictor in multiple tumors, but its potential effect in GBC still remains unclear. Here, we identified that ZFP64 was a vital regulatory protein in GBC. We found that ZFP64 expressed higher in GBC gallbladder carcinoma tissues than in normal tissues and was positively correlated with poor prognosis. Furthermore, ZFP64 was responsible for the migration, invasion, proliferation, anti-apoptosis, and epithelial mesenchymal transition (EMT) of GBC cells in vitro and in vivo. Mechanistically, through Co-IP assay, we confirmed that ZFP64 recruits HDAC1 localized to the promoter region of NUMB for deacetylation and therefore inhibits NUMB expression. The downregulation of NUMB enhanced the activation of the Notch1 signaling pathway, which is indispensable for the GBC-promotion effect of ZFP64 on GBC. In conclusion, ZFP64 regulated GBC progression and metastasis through upregulating the Notch1 signaling pathway, and thus ZFP64 is expected to become a new focus for a GBC prognostic marker and targeted therapy.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, National Health Commission (NHC), West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Haijie Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
16
|
Somers KM, Tabbouche RB, Bondoc A, Towbin AJ, Ranganathan S, Tiao G, Geller JI. Retreatment with Cisplatin May Provide a Survival Advantage for Children with Relapsed/Refractory Hepatoblastoma: An Institutional Experience. Cancers (Basel) 2023; 15:3921. [PMID: 37568737 PMCID: PMC10416880 DOI: 10.3390/cancers15153921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is the most common liver malignancy in children. There is no standard of care for management of relapsed/refractory HB (rrHB) and reports in the literature are limited. OBJECTIVE To describe presenting features, biology, treatment strategies, and outcomes for pediatric patients with relapsed/refractory hepatoblastoma. METHODS An IRB-approved retrospective institutional review of patients with rrHB who presented for consultation and/or care from 2000-2019. Clinical, radiographic, and histologic data were collected from all patients. RESULTS Thirty subjects were identified with a median age of 19.5 months (range 3-169 months) at initial diagnosis and 32.5 months (range 12-194 months) at time of first relapse. 63% of subjects were male, 70% Caucasian, and 13% were born premature. Three subjects had a known cancer predisposition syndrome. Eight patients had refractory disease while 22 patients had relapsed disease. Average time from initial diagnosis to relapse or progression was 12.5 months. Average alpha-fetoprotein (AFP) at initial diagnosis was 601,203 ng/mL (range 121-2,287,251 ng/mL). Average AFP at relapse was 12,261 ng/mL (range 2.8-201,000 ng/mL). For patients with tumor sequencing (n = 17), the most common mutations were in CTNNB1 (13) and NRF2 (4). First relapse sites were lungs (n = 12), liver (n = 11) and both (n = 6). More than one relapse/progression occurred in 47% of subjects; 6 had ≥3 relapses. Pathology in patients with multiply relapsed disease was less differentiated including descriptions of small cell undifferentiated (n = 3), pleomorphic (n = 1), transitional liver cell tumor (n = 2) and HB with carcinoma features (n = 1). All subjects underwent surgical resection of site of relapsed disease with 7 subjects requiring liver transplantation. Overall survival was 50%. Survival was associated with use of cisplatin at relapse (78.6% with vs. 25% without, p = 0.012). The most common late effect was ototoxicity with at least mild sensorineural hearing loss found in 80% of subjects; 54% required hearing aids. CONCLUSIONS Retreatment with cisplatin at the time of relapse may provide an advantage for some patients with hepatoblastoma. Multiply relapsed disease was not uncommon and not associated with a worse prognosis. Careful attention should be paid to cumulative therapy-induced toxicity while concurrently aiming to improve cure.
Collapse
Affiliation(s)
- Katherine M. Somers
- Division of Pediatric Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel Bernstein Tabbouche
- Division of Pediatric Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander Bondoc
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.B.); (G.T.)
| | - Alexander J. Towbin
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sarangarajan Ranganathan
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.B.); (G.T.)
| | - James I. Geller
- Division of Pediatric Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Phosphorylation-Mediated Activation of β-Catenin-TCF4-CEGRs/ALCDs Pathway Is an Essential Event in Development of Aggressive Hepatoblastoma. Cancers (Basel) 2022; 14:cancers14246062. [PMID: 36551548 PMCID: PMC9775972 DOI: 10.3390/cancers14246062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HBL), a deadly malignancy in children, is the most common type of pediatric liver cancer. We recently demonstrated that β-catenin, phosphorylated at S675 (ph-S675-β-catenin), causes pathological alterations in fibrolamellar hepatocellular carcinoma (FLC), by activating oncogenes and fibrotic genes via human genomic regions, known as cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs). The aim of this study was to determine the role of the ph-S675-β-catenin-TCF4-CEGRs/ALCDs pathway in HBL. METHODS The ph-S675-β-catenin-TCF4-CEGRs/ALCDs pathway was examined in a large cohort of HBL specimens, in HBL cell lines HepG2 and Huh6, and in patient-derived xenografts (PDXs). RESULTS β-catenin is phosphorylated at S675 in a large portion of tested HBL patients. In these patients, ph-S675-β-catenin forms complexes with TCF4 and opens CEGRs/ALCDs-dependent oncogenes for transcription, leading to a massive overexpression of the oncogenes. The inhibition of the β-catenin-TCF4-CEGRs/ALCDs axis inhibits the proliferation of cancer cells and tumor growth in HBL cell lines and HBL-PDXs. The ph-S675-β-catenin is abundant in mitotic cells. We found that markers of HBL Glypican 3 (GPC3) and Alpha Fetoprotein (AFP) are increased in HBL patients by β-catenin-TCF4-p300 complexes. CONCLUSIONS The phosphorylation-mediated activation of the β-catenin-TCF4-p300-CEGRs/ALCDs pathway increases oncogene expression in patients with aggressive liver cancer and promotes the development of hepatoblastoma.
Collapse
|
20
|
Gulati R, Johnston M, Rivas M, Cast A, Kumbaji M, Hanlon MA, Lee S, Zhou P, Lake C, Schepers E, Min K, Yoon J, Karns R, Reid LM, Lopez‐Terrada D, Timchenko L, Parameswaran S, Weirauch MT, Ranganathan S, Bondoc A, Geller J, Tiao G, Shin S, Timchenko N. β-catenin cancer-enhancing genomic regions axis is involved in the development of fibrolamellar hepatocellular carcinoma. Hepatol Commun 2022; 6:2950-2963. [PMID: 36000549 PMCID: PMC9512470 DOI: 10.1002/hep4.2055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the β-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates β-catenin at Ser675, resulting in an increase of β-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-β-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of β-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of β-catenin-based therapy for patients with FLC.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Michael Johnston
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Maria Rivas
- Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Ashley Cast
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Margaret A. Hanlon
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sanghoon Lee
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Ping Zhou
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Emily Schepers
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Lola M. Reid
- Departments of Cell Biology and PhysiologyProgram in Molecular Biology and BiotechnologyUNC School of MedicineChapel HillNorth CarolinaUSA
| | - Dolores Lopez‐Terrada
- Department of Pathology and Immunology, and Department of PediatricsBaylor College of MedicineOne Baylor PlazaHoustonTexasUSA
| | - Lubov Timchenko
- Department of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and EtiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Divisions of Biomedical Informatics and Developmental BiologyCCHMCDepartment of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - James Geller
- Department of OncologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Soona Shin
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
21
|
Cao X, Chen H, Li Z, Li X, Yang X, Jin Q, Liang Y, Zhang J, Zhou M, Zhang N, Chen G, Du H, Zao X, Ye Y. Network pharmacology and in vitro experiments-based strategy to investigate the mechanisms of KangXianYiAi formula for hepatitis B virus-related hepatocellular carcinoma. Front Pharmacol 2022; 13:985084. [PMID: 36133813 PMCID: PMC9483169 DOI: 10.3389/fphar.2022.985084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Chinese traditional medicine KangXianYiAi formula (KXYA) is used to treat hepatic disease in the clinic. Here we aim to confirm the therapeutic effects and explore the pharmacological mechanisms of KXYA on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We first collected and analyzed clinical data of 40 chronic hepatitis B (CHB) patients with precancerous liver lesions under KXYA treatment. Then, the cell viability, migration, cell cycle, and apoptosis of HepAD38 cells with KXYA treatment were examined. Next, we performed network pharmacological analysis based on database mining to obtain the key target pathways and genes of KXYA treatment on HBV-related HCC. We finally analyzed the expression of the key genes between normal and HBV-related HCC tissues in databases and measured the mRNA expression of the key genes in HepAD38 cells after KXYA treatment. The KXYA treatment could reduce the liver nodule size of CHB patients, suppress the proliferation and migration capabilities, and promote apoptosis of HepAD38 cells. The key pathways of KXYA on HBV-related HCC were Cancer, Hepatitis B, Viral carcinogenesis, Focal adhesion, and PI3K-Akt signaling, and KXYA treatment could regulate the expression of the key genes including HNF4A, MAPK8, NR3C1, PTEN, EGFR, and HDAC1. The KXYA exhibited a curative effect via inhibiting proliferation, migration, and promoting apoptosis of HBV-related HCC and the pharmacological mechanism was related to the regulation of the expression of HNF4A, MAPK8, NR3C1, PTEN, EGFR, and HDAC1.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiguo Li
- Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xianzhao Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Qiushuo Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yijun Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyue Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ningyi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guang Chen, ; Hongbo Du, ; Xiaobin Zao, ; Yong’an Ye,
| |
Collapse
|
22
|
The Potential Mechanism of HDAC1-Catalyzed Histone Crotonylation of Caspase-1 in Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5049116. [PMID: 35958929 PMCID: PMC9363190 DOI: 10.1155/2022/5049116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is a predominant subtype of lung cancer and accounts for over 80% of all lung cancer cases. The resistance to pemetrexed (PEM) is frequently occurred and severely affects the NSCLC therapy. Proteomic analysis of histones indicated that the histone deacetylase 1 (HDAC1) complex could hydrolyze lysine crotonylation on histone3 (H3K18cr), affecting epigenetic regulation in cancers. However, the effect of HDAC1-mediated H3K18cr on the PEM resistance of NSCLC is still unclear. Here, we aimed to explore the function of HDAC1-mediated H3K18cr in NSCLC PEM resistance. The expression of HDAC1 was upregulated in clinical NSCLC tissues and cell lines and correlated with the poor prognosis of NSCLC samples. We constructed the PEM-resistant NSCLC cell lines, and the depletion of HDAC1 remarkably reduced the viability of the cells. The proliferation of PEM-resistant NSCLC cells was decreased by HDAC1 knockdown, and the IC50 of PEM was repressed by the silencing of HDAC1 in the cells. Mechanically, we identified the enrichment of HDAC1 on the promoter of caspase-1 in PEM-resistant NSCLC cells. The depletion of HDAC1 inhibited the enrichment of histone H3K18cr and RNA polymerase II (RNA pol II) on the caspase-1 promoter in the cells. The expression of caspase-1 was suppressed by HDAC1 knockdown. The knockdown of HDAC1 reduced proliferation of PEM-resistant NSCLC cells, in which caspase-1 or GSDMD depletion reversed the effect. Clinically, the HDAC1 expression was negatively associated with caspase-1 and GSDMD in clinical NSCLC tissues, while caspase-1 and GSDMD expression was positively correlated in the samples. Therefore, we concluded that HDAC1-catalyzed histone crotonylation of caspase-1 modulates PEM sensitivity of NSCLC by targeting GSDMD.
Collapse
|
23
|
Shen L, Li Y, Li N, Shen L, Li Z. Comprehensive analysis of histone deacetylases genes in the prognosis and immune infiltration of glioma patients. Aging (Albany NY) 2022; 14:4050-4068. [PMID: 35545840 PMCID: PMC9134955 DOI: 10.18632/aging.204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
The occurrence and development of tumors are closely related to histone deacetylases (HDACs). However, their relationship with the overall biology and prognosis of glioma is still unknown. In the present study, we developed and validated a prognostic model for glioma based on HDAC genes. Glioma patients can be divided into two subclasses based on eleven HDAC genes, and patients from the two subclasses had markedly different survival outcomes. Then, using six HDAC genes (HDAC1, HDAC3, HDAC4, HDAC5, HDAC7, and HDAC9), we established a prognostic model for glioma patients, and this prognostic model was validated in an independent cohort. Furthermore, the calculated risk score from six HDACA genes expression was found to be an independent prognostic factor that could predict the five-year overall survival of glioma patients well. High-risk patients have changes in multiple complex functions and molecular signaling pathways, and the gene alterations of high- and low-risk patients were significantly different. We also found that the different survival outcomes of high- and low-risk patients could be related to the differences in immune filtration levels and the tumor microenvironment. Subsequently, we identified several small molecular compounds that could be favorable for glioma patient treatment. Finally, the expression levels of HDAC genes from the prognostic model were validated in glioma and nontumor tissue samples. Our results revealed the clinical utility and potential molecular mechanisms of HDAC genes in glioma. A model based on six HDAC genes can predict the overall survival of glioma patients well, and these genes are potential therapeutic targets.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| |
Collapse
|
24
|
Albrecht JH. An Epigenetic Switch Between Differentiation and Proliferation in Hepatoblastoma. Cell Mol Gastroenterol Hepatol 2021; 12:1875-1876. [PMID: 34536386 PMCID: PMC8591193 DOI: 10.1016/j.jcmgh.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Jeffrey H. Albrecht
- Correspondence Address correspondence to: Jeffrey H. Albrecht, MD, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, 701 Park Avenue, Minneapolis, Minnesota 55455.
| |
Collapse
|