1
|
Madel MB, Ibáñez L, Ciucci T, Halper J, Boutin A, Beldi G, Lavanant AC, Garchon HJ, Rouleau M, Mueller CG, Peyrin-Biroulet L, Moulin D, Blin-Wakkach C, Wakkach A. Dysregulated myeloid differentiation in colitis is induced by inflammatory osteoclasts in a TNFα-dependent manner. Mucosal Immunol 2025; 18:90-104. [PMID: 39332768 DOI: 10.1016/j.mucimm.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by very severe intestinal inflammation associated with extra-intestinal manifestations. One of the most critical ones is bone destruction, which remains a major cause of morbidity and a risk factor for osteopenia and osteoporosis in IBD patients. In various mouse models of IBD, we and other have demonstrated concomitant bone loss due to a significant increase in osteoclast activity. Besides bone resorption, osteoclasts are known to control hematopoietic niches in vivo and modulate inflammatory responses in vitro, suggesting they may participate in chronic inflammation in vivo. Here, using different models of colitis, we showed that osteoclast inhibition significantly reduced disease severity and that induction of osteoclast differentiation by RANKL contributed to disease worsening. Our results demonstrate a direct link between osteoclast activity and myeloid cell accumulation in the intestine during colitis. RNAseq analysis of osteoclasts from colitic mice revealed overexpression of genes involved in the remodeling of hematopoietic stem cell niches. We also demonstrated that osteoclasts induced hematopoietic progenitor proliferation accompanied by a myeloid skewing in the early phases of colitis, which was confirmed in a model of RANKL-induced osteoclastogenesis. Mechanistically, inhibition of TNF-α reduced the induction of myeloid skewing by OCL both in vitro and in vivo. Lastly, we observed that osteoclastic activity and the proportion of myeloid cells in the blood are positively correlated in patients with Crohn's disease. Collectively, our results shed light on a new role of osteoclasts in colitis in vivo, demonstrating they exert their colitogenic activity through an early action on hematopoiesis, leading to an increase in myelopoiesis sustaining gut inflammation.
Collapse
Affiliation(s)
| | - Lidia Ibáñez
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | - Thomas Ciucci
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Julia Halper
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | | | - Ghada Beldi
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | - Alice C Lavanant
- CNRS UPR 3572, IBMC, University of Strasbourg, 67000 Strasbourg, France
| | - Henri-Jean Garchon
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | | | | | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, IHU INFINY, CHRU Nancy, F-54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, INSERM, NGERE, F-54500 Vandoeuvre les Nancy, France
| | - David Moulin
- Université de Lorraine, CNRS, IMoPA, F-54500 Vandœuvre Les Nancy, France; IHU INFINY, Contrat d'interface, CHRU Nancy, France
| | | | | |
Collapse
|
2
|
Indrio F, Salatto A. Gut Microbiota-Bone Axis. ANNALS OF NUTRITION & METABOLISM 2025:1-10. [PMID: 39848230 DOI: 10.1159/000541999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest. SUMMARY Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis. The major role on gut-bone axis is due to short-chain fatty acids (SCFAs). They have the ability to influence regulatory T-cell (Tregs) development and activate bone metabolism through the action of Wnt10. SCFA production may be a mechanism by which the microbial community, by increasing the serum level of insulin-like growth factor 1 (IGF-1), leads to the growth and regulation of bone homeostasis. A specific SCFA, butyrate, diffuses into the bone marrow where it expands Tregs. The Tregs induce production of the Wnt ligand Wnt10b by CD8+ T cells, leading to activation of Wnt signaling and stimulation of bone formation. At the hormonal level, the effect of the gut microbiota on bone homeostasis is expressed through the biphasic action of serotonin. Some microbiota, such as spore-forming microbes, regulate the level of serotonin in the gut, serum, and feces. Another group of bacterial species (Lactococcus, Mucispirillum, Lactobacillus, and Bifidobacterium) can increase the level of peripheral/vascular leptin, which in turn manages bone homeostasis through the action of brain serotonin.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
3
|
Liu M, Xiang F, Pan J, Xue Y, Sun M, Zhao K, Zhang W, Lei B, Gao P, Li L, Yuan W. Host-derived lactic acid bacteria alleviate short beak and dwarf syndrome by preventing bone loss, intestinal barrier disruption, and inflammation. Vet Microbiol 2024; 296:110187. [PMID: 39053390 DOI: 10.1016/j.vetmic.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Short-beak and dwarf syndrome (SBDS) is caused by novel goose parvovirus (NGPV) infection, which leads to farm economic losses. Our research aimed to investigate the potential of administering isolated lactic acid bacteria (LAB) in alleviating SBDS in ducks. Eight wild LAB strains were isolated from duck feces and their biosecurity was investigated in both duck embryo fibroblast (DEF) and live ducks. Moreover, the LAB strains exhibited no detrimental effects on bone metabolism levels and facilitated the tight junction proteins (TJPs) mRNA expression, and contributing to the mitigation of inflammation in healthy ducks. Subsequently, we conducted in vitrol and in vivo experiments to assess the impact of LAB on NGPV infection. The LAB strains significantly reduced the viral load of NGPV and downregulated the mRNA levels of pro-inflammatory factors in DEF. Additionally, LAB treatment alleviated SBDS in NGPV-infected ducks. Furthermore, LAB treatment alleviated intestinal damage, and reduced the inflammatory response, while also mitigating bone resorption in NGPV-infected ducks. In conclusion, the LAB strains isolated from duck feces have favorable biosecurity and alleviate SBDS in ducks, and the mechanism related to LAB improves intestinal barrier integrity, alleviates inflammation, and reduces bone resorption. Our study presents a novel concept for the prevention and treatment of NGPV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NGPV.
Collapse
Affiliation(s)
- Mandi Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Fengjun Xiang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Jialu Pan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Yongzhi Xue
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Maoyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China
| | - Peipei Gao
- Guye Agriculture and Rural Affairs Bureau, Tangshan, China
| | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China.
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, China.
| |
Collapse
|
4
|
Zhang X, Zhou L, Qian X. The Mechanism of "Treating Different Diseases with the Same Treatment" by Qiangji Jianpi Decoction in Ankylosing Spondylitis Combined with Inflammatory Bowel Disease: A Comprehensive Analysis of Multiple Methods. Gastroenterol Res Pract 2024; 2024:9709260. [PMID: 38808131 PMCID: PMC11132832 DOI: 10.1155/2024/9709260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Background Ankylosing spondylitis (AS) and inflammatory bowel disease (IBD) are prevalent autoimmune disorders that often co-occur, posing significant treatment challenges. This investigation adopts a multidisciplinary strategy, integrating bioinformatics, network pharmacology, molecular docking, and Mendelian randomization, to elucidate the relationship between AS and IBD and to investigate the potential mechanisms of traditional Chinese medicine formulations, represented by Qiangji Jianpi (QJJP) decoction, in treating these comorbid conditions. Methods We utilized databases to pinpoint common targets among AS, IBD, and QJJP decoction's active compounds through intersection analysis. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we mapped a network in Cytoscape, isolating critical targets. Molecular docking with AutoDock validated the affinity between targets and compounds. ROC analysis and dataset validation assessed diagnostic performance, while Gene Set Enrichment Analysis (GSEA) offered pathway insights. Mendelian randomization explored the AS-IBD causal relationship. Results Screening identified 105 targets for QJJP decoction, 414 for AS, and 2420 for IBD, with 85 overlapping. These targets predominantly participate in organismal responses and DNA transcription factor binding, with a significant cellular presence in the endoplasmic reticulum and vesicle lumen. Molecular docking, facilitated by Cytoscape, confirmed IL1A, IFNG, TGFB1, and EDN1 as critical targets, with IFNG demonstrating diagnostic potential through GEO dataset validation. The integration of GSEA with network pharmacology highlighted the therapeutic significance of the relaxin, osteoclast differentiation, HIF-1, and AGE-RAGE signaling pathways in QJJP decoction's action. Mendelian randomization analysis indicated a positive causal relationship between IBD and AS, pinpointing rs2193041 as a key SNP influencing IFNG. Conclusion Based on the principle of "treating different diseases with the same method" in traditional Chinese medicine theory, we explored the intricate mechanisms through which QJJP decoction addresses AS and IBD comorbidity. Our research spotlighted the pivotal role of the IFNG gene. IFNG emerges not only as a key therapeutic target but also assumes significance as a potential diagnostic biomarker through its genetic underpinnings. This investigation establishes a solid base for subsequent experimental inquiries. Our findings introduce novel approaches for incorporating traditional Chinese medicine into the treatment of AS-IBD comorbidity, setting the stage for groundbreaking research directions.
Collapse
Affiliation(s)
- Xuhong Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Lamei Zhou
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Xian Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Huang SC, He YF, Chen P, Liu KL, Shaukat A. Gut microbiota as a target in the bone health of livestock and poultry: roles of short-chain fatty acids. ANIMAL DISEASES 2023; 3:23. [DOI: 10.1186/s44149-023-00089-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 01/03/2025] Open
Abstract
AbstractThe regulation and maintenance of bone metabolic homeostasis are crucial for animal skeletal health. It has been established that structural alterations in the gut microbiota and ecological dysbiosis are closely associated with bone metabolic homeostasis. The gut microbiota and its metabolites, especially short-chain fatty acids (SCFAs), affect almost all organs, including the bone. In this process, SCFAs positively affect bone healing by acting directly on cells involved in bone repair after or by shaping appropriate anti-inflammatory and immunomodulatory responses. Additionally, SCFAs have the potential to maintain bone health in livestock and poultry because of their various biological functions in regulating bone metabolism, including immune function, calcium absorption, osteogenesis and osteolysis. This review primarily focuses on the role of SCFAs in the regulation of bone metabolism by gut microbiota and provides insight into studies related to bone health in livestock and poultry.
Collapse
|
6
|
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11:31. [PMID: 37296111 PMCID: PMC10256815 DOI: 10.1038/s41413-023-00264-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis (OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the development of innovative GM-targeted therapies for OP.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Bone Loss in Intestinal Inflammation Disease Yields to Osteoclastogenesis Inhibition. Cell Mol Gastroenterol Hepatol 2022; 14:945-946. [PMID: 35948074 PMCID: PMC9500436 DOI: 10.1016/j.jcmgh.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022]
|