1
|
Li Z, Yang B, Long M, Chen J, Zhi Y, Li R, Cao L, Yang S, Sun J, Meng Z, Wu W, Mai Y, Zhang X, Huang Y, Chen Q, Liu A. Silencing GRHL3 promotes multiple organ distant metastasis of lung squamous cell carcinoma cells by enhancing SOX2 stability via SIRT1. J Pathol 2025; 265:302-315. [PMID: 39804049 DOI: 10.1002/path.6385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/10/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025]
Abstract
Aberrant expression of grainyhead-like transcription factor 3 (GRHL3) has been extensively reported in the development and progression of several squamous cell carcinomas, such as cutaneous, head and neck, and esophageal squamous cell carcinoma. However, the clinical significance and biological roles of GRHL3 in lung squamous cell (LUSC) carcinoma are largely unclear. Herein, we report that GRHL3 was significantly upregulated in lung squamous epithelium of LUSC tissues, bronchiole, and bronchus. Moreover, expression levels of GRHL3 were decreased with the advance of pathological grade, and low GRHL3 level presented poor overall survival and short progression-free and distant metastasis-free survival in LUSC patients but had no prognostic significance in LUAD patients. Functional experiments in vivo showed that downregulating GRHL3 promoted not only lung colonization and growth but also multiple organ distant metastasis of LUSC cells, including bone, brain, and liver. Moreover, silencing GRHL3 promoted anoikis resistance and cancer stem cell (CSCs) characteristics of LUSC cells in vitro. Mechanistically, silencing GRHL3 stabilized SOX2 via SIRT1-mediated decreasing acetylation and subsequent ubiquitination-dependent degradation in LUSC cells. Thus, in-depth understanding of the underlying mechanism of GRHL3 in the progression of LUSC will facilitate the development of prognostic biomarker and therapeutic avenues against LUSC, which will present favorable prospects in improving outcomes of LUSC patients. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China
| | - Meihua Long
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China
| | - Jiarong Chen
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, PR China
| | - Yaofeng Zhi
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, PR China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, PR China
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, PR China
| | - Shasha Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China
| | - Jingyi Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zijie Meng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, PR China
| | - Wanting Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, PR China
| | - Yanyang Mai
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, PR China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, PR China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Jiangmen, PR China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
2
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Zhou L, Gan L, Sun C, Chu A, Yang M, Liu Z. Bioinformatics analysis and experimental verification of NLRX1 as a prognostic factor for esophageal squamous cell carcinoma. Oncol Lett 2024; 27:264. [PMID: 38659420 PMCID: PMC11040542 DOI: 10.3892/ol.2024.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Nucleotide binding and oligomeric domain-like receptor X1 (NLRX1), a member of the NLR family, is associated with the physiological and pathological processes of inflammation, autophagy, immunity, metabolism and mitochondrial regulation, and has been demonstrated to have pro- or antitumor effects in various tumor types. However, the biological function of NLRX1 in esophageal squamous cell carcinoma (ESCC) has remained elusive. In the present study, by using bioinformatics methods, the differential expression of NLRX1 at the mRNA level was examined. Overall survival, clinical correlation, receiver operating characteristic curve, Cox regression, co-expression, enrichment, immune infiltration and drug sensitivity analyses were carried out. A nomogram and a calibration curve were constructed. Changes in protein expression levels were investigated by immunohistochemistry and western blotting. The impact of NLRX1 on i) cell proliferation was evaluated by Cell Counting Kit-8 assays; ii) migration was examined by wound-healing assays; iii) migration and invasion were evaluated by Transwell assays; and iv) apoptosis was assessed by Annexin V/PI staining and flow cytometry. The results revealed that, compared to normal adjacent tissue, NLRX1 was lowly expressed in ESCC, and patients with low NLRX1 expression had a shorter survival time. NLRX1 was an independent prognostic factor for ESCC and was associated with tumor grading. Patients in the low-NLRX1 group showed a decrease in the infiltration of activated natural killer cells, monocytes and M0 macrophages, and these immune-cell infiltration levels were positively correlated with NLRX1 expression. Knocking down NLRX1 promoted the proliferation of KYSE450 cells, while overexpression of NLRX1 inhibited the proliferation of ECA109 cells. NLRX1 negatively regulated the PI3K/AKT signaling pathway in ESCC. These findings indicate that, through several mechanisms, NLRX1 suppresses tumor growth in ESCC, which offers new insight for investigating the causes and progression of ESCC, as well as for identifying more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Lu Zhou
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lanlan Gan
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chen Sun
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Alan Chu
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Menglin Yang
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Zongwen Liu
- Tumor Radiotherapy Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
4
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
5
|
Huang F, Xue F, Wang Q, Huang Y, Wan Z, Cao X, Zhong L. Transcription factor-target gene regulatory network analysis in human lung adenocarcinoma. J Thorac Dis 2023; 15:6996-7012. [PMID: 38249888 PMCID: PMC10797383 DOI: 10.21037/jtd-23-1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Background Transcription factors (TFs) play a crucial role in the occurrence and progression of lung adenocarcinoma (LUAD), and targeting TFs is an important direction for treating LUAD. However, targeting a single TF often fails to achieve satisfactory therapeutic outcomes. Furthermore, the regulatory TF-target gene networks involved in the development of LUAD is complex and not yet fully understood. Methods In this study, we performed RNA sequencing (RNA-seq) to analyze the transcriptome profile of human LUAD tissues and matched adjacent nontumor tissues. We selected the differentially expressed TFs, performed enrichment analysis and survival curve analysis, and predicted the regulatory networks of the top differential TFs with their target genes. Finally, alternative splicing analyses were also performed. Results We found that TFs GRHL3, SIX1, SIX2, SPDEF, and ETV4 were upregulated, while TAL1, EPAS1, SOX17, NR4A1, and EGR3 were significantly downregulated in LUAD tissues compared to normal tissues. We propose a potential GRHL3-CDH15-Wnt-β-catenin pro-oncogenic signaling axis and a potential TAL1-ADAMTS1-vascular antioncogenic signaling axis. In addition, we found that alternative splicing of intron retention (IR), approximate IR (XIR), multi-IR (MIR), approximate MIR (XMIR), and approximate alternative exon ends (XAE) showed abnormally increased frequencies in LUAD tissues. Conclusions These findings revealed a novel TF-target gene regulatory axis related to tumorigenesis and provided potential therapeutic targets and mechanisms for LUAD.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fangsu Xue
- Department of Respiration, Binhai County People’s Hospital, Yancheng, China
| | - Qing Wang
- Department of Thoracic surgery, Nantong Tumor Hospital/Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yuchen Huang
- Department of Clinical Medicine, Medical College of Nantong University, Nantong, China
| | - Zixin Wan
- Department of Clinical Medicine, Medical College of Nantong University, Nantong, China
| | - Xiaowen Cao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Zhou L, Gan L, Liu Z. Expression and prognostic value of AIM1L in esophageal squamous cell carcinoma. Medicine (Baltimore) 2023; 102:e34677. [PMID: 37653730 PMCID: PMC10470706 DOI: 10.1097/md.0000000000034677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Absent in melanoma 1-like (AIM1L), also known as crystalline beta gamma domain containing 2. The relationship between AIM1L and tumors has not been fully investigated, and the biological function of AIM1L in different tumors is unknown, so we bioinformatically explored a possible relationship between AIM1L and esophageal squamous cell carcinoma (ESCC). METHODS AIM1L mRNA expression was detected by the Gene Expression Omnibus database (GSE20347, GSE161533, and GSE53625), and protein level expression was detected by immunohistochemistry. The correlation between AIM1L expression and clinical pathological characteristics was evaluated by the Wilcoxon signed rank test or chi-square test. Kaplan-Meier analysis and Cox proportional risk regression model were used to determine the prognostic value of AIM1L in ESCC patients and establish and verify a nomogram. Find genes highly related to the expression of AIM1L, conduct GO and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and conduct GSEA analysis on the gene set. The "CIBERSORT" R package was used to explore the relationship between AIM1L and immune infiltration, and the "OncoPredict" R package was used to explore the relationship between AIM1L and drug sensitivity. RESULTS Compared with the matched adjacent non-cancer tissues, the expression of AIM1L was down-regulated in ESCC tissues, and correlated with tumor grade. Kaplan-Meier survival analysis and Cox analysis showed that the low expression of AIM1L was related to the poor prognosis of ESCC patients. Enrichment analysis explained the possible function of AIM1L, GSEA determined the highly correlated signal pathway of AIM1L low expression phenotype, immune infiltration analysis determined that AIM1L was related to activated NK cells and macrophage M2, and drug sensitivity analysis determined that the low expression of AIM1L might be related to EGFR targeted drug resistance. CONCLUSION AIM1L may be a candidate tumor suppressor gene for ESCC and an independent molecular biomarker for the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Lu Zhou
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Gan
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongwen Liu
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|