1
|
Zhang TM, Jiao MN, Yang K, Wang HL, Zhang CS, Wang SH, Zhang GM, Miao HJ, Shen J, Yan YB. YAP promotes the early development of temporomandibular joint bony ankylosis by regulating mesenchymal stem cell function. Sci Rep 2024; 14:12704. [PMID: 38830996 PMCID: PMC11148065 DOI: 10.1038/s41598-024-63613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China
- Tianjin Medical University, 22 Qi-Xiang-Tai Road, Heping District, Tianjin, 300070, China
| | - Mai-Ning Jiao
- Department of Oral and Maxillofacial Surgery, Weifang People's Hospital, 151 GuangWen Street, KuiWen District, Weifang, 261100, ShanDong Province, China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 261100, China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, 22 Communist Youth League Road, Rencheng District, Jining, 261100, ShanDong Province, China
| | - Chang-Song Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Shi-Hua Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China
| | - He-Jing Miao
- Department of Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 1 Jiazi Road, Shunde District, Foshan, 528300, GuangDong Province, China
| | - Jun Shen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
- Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
2
|
Zhang TM, Yang K, Jiao MN, Zhao Y, Xu ZY, Zhang GM, Wang HL, Liang SX, Yan YB. Temporal gene expression profiling during early-stage traumatic temporomandibular joint bony ankylosis in a sheep model. BMC Oral Health 2024; 24:284. [PMID: 38418977 PMCID: PMC10903020 DOI: 10.1186/s12903-024-03971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Investigating the molecular biology underpinning the early-stage of traumatic temporomandibular joint (TMJ) ankylosis is crucial for discovering new ways to prevent the disease. This study aimed to explore the dynamic changes of transcriptome from the intra-articular hematoma or the newly generated ankylosed callus during the onset and early progression of TMJ ankylosis. METHODS Based on a well-established sheep model of TMJ bony ankylosis, the genome-wide microarray data were obtained from samples at postoperative Days 1, 4, 7, 9, 11, 14 and 28, with intra-articular hematoma at Day 1 serving as controls. Fold changes in gene expression values were measured, and genes were identified via clustering based on time series analysis and further categorised into three major temporal classes: increased, variable and decreased expression groups. The genes in these three temporal groups were further analysed to reveal pathways and establish their biological significance. RESULTS Osteoblastic and angiogenetic genes were found to be significantly expressed in the increased expression group. Genes linked to inflammation and osteoclasts were found in the decreased expression group. The various biological processes and pathways related to each temporal expression group were identified, and the increased expression group comprised genes exclusively involved in the following pathways: Hippo signaling pathway, Wnt signaling pathway and Rap 1 signaling pathway. The decreased expression group comprised genes exclusively involved in immune-related pathways and osteoclast differentiation. The variable expression group consisted of genes associated with DNA replication, DNA repair and DNA recombination. Significant biological pathways and transcription factors expressed at each time point postoperatively were also identified. CONCLUSIONS These data, for the first time, presented the temporal gene expression profiling and reveal the important process of molecular biology in the early-stage of traumatic TMJ bony ankylosis. The findings might contributed to identifying potential targets for the treatment of TMJ ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, PR China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 443001, PR China
| | - Mai-Ning Jiao
- Department of Oral and Maxillofacial Surgery, Weifang people's Hospital, 151 GuangWen Street, KuiWen District, Weifang, ShanDong Province, 261000, PR China
| | - Yan Zhao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, PR China
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, 22 Communist Youth League Road, Rencheng District, Jining, ShanDong Province, 272000, PR China
| | - Su-Xia Liang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
| |
Collapse
|
3
|
Nedrelow DS, Rassi A, Ajeeb B, Jones CP, Huebner P, Ritto FG, Williams WR, Fung KM, Gildon BW, Townsend JM, Detamore MS. Regenerative Engineering of a Biphasic Patient-Fitted Temporomandibular Joint Condylar Prosthesis. Tissue Eng Part C Methods 2023; 29:307-320. [PMID: 37335050 PMCID: PMC10402699 DOI: 10.1089/ten.tec.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
Regenerative medicine approaches to restore the mandibular condyle of the temporomandibular joint (TMJ) may fill an unmet patient need. In this study, a method to implant an acellular regenerative TMJ prosthesis was developed for orthotopic implantation in a pilot goat study. The scaffold incorporated a porous, polycaprolactone-hydroxyapatite (PCL-HAp, 20wt% HAp) 3D printed condyle with a cartilage-matrix-containing hydrogel. A series of material characterizations was used to determine the structure, fluid transport, and mechanical properties of 3D printed PCL-HAp. To promote marrow uptake for cell seeding, a scaffold pore size of 152 ± 68 μm resulted in a whole blood transport initial velocity of 3.7 ± 1.2 mm·s-1 transported to the full 1 cm height. The Young's modulus of PCL was increased by 67% with the addition of HAp, resulting in a stiffness of 269 ± 20 MPa for etched PCL-HAp. In addition, the bending modulus increased by 2.06-fold with the addition of HAp to 470 MPa for PCL-HAp. The prosthesis design with an integrated hydrogel was compared with unoperated contralateral control and no-hydrogel group in a goat model for 6 months. A guide was used to make the condylectomy cut, and the TMJ disc was preserved. MicroCT assessment of bone suggested variable tissue responses with some regions of bone growth and loss, although more loss may have been exhibited by the hydrogel group than the no-hydrogel group. A benchtop load transmission test suggested that the prosthesis was not shielding load to the underlying bone. Although variable, signs of neocartilage formation were exhibited by Alcian blue and collagen II staining on the anterior, functional surface of the condyle. Overall, this study demonstrated signs of functional TMJ restoration with an acellular prosthesis. There were apparent limitations to continuous, reproducible bone formation, and stratified zonal cartilage regeneration. Future work may refine the prosthesis design for a regenerative TMJ prosthesis amenable to clinical translation.
Collapse
Affiliation(s)
- David S. Nedrelow
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ali Rassi
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Boushra Ajeeb
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Cameron P. Jones
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Pedro Huebner
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Fabio G. Ritto
- Department of Oral and Maxillofacial Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wendy R. Williams
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bradford W. Gildon
- Department of Medical Imaging and Radiation Sciences, University of Oklahoma College of Allied Health, Oklahoma City, Oklahoma, USA
| | - Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
4
|
Ma Z, Wang Y, Xue Y, Zhang W, Li D, Li Y, Li G, Zhou H, Hu X, Deng T, Hu K. Traumatic temporomandibular joint bony ankylosis in growing rats. BMC Oral Health 2022; 22:585. [PMID: 36494653 PMCID: PMC9733295 DOI: 10.1186/s12903-022-02560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pathogenesis of traumatic temporomandibular joint (TMJ) bony ankylosis remains unknown. This study aimed to explore the pathogenesis of traumatic TMJ bony ankylosis in a rat model. METHODS Twenty-four 3-week-old male Sprague-Dawley rats were used in this study. Excision of the whole disc, the fibrocartilage damage of the condyle and glenoid fossa, and narrowed joint space were performed in the left TMJ of the operation group to induce TMJ bony ankylosis (experimental side). The right TMJ underwent a sham operation (sham side). The control group did not undergo any operations. At 1, 4, and 8 weeks postoperatively, rats of the operation group were sacrificed and TMJ complexes were evaluated by gross observation, Micro-CT, histological examinations, and immunofluorescence microscopy. Total RNA of TMJ complexes in the operation group were analyzed using RNA-seq. RESULTS Gross observations revealed TMJ bony ankylosis on the experimental side. Micro-CT analysis demonstrated that compared to the sham side, the experimental side showed a larger volume of growth, and a considerable calcified bone callus formation in the narrowed joint space and on the rougher articular surfaces. Histological examinations indicated that endochondral ossification was observed on the experimental side, but not on the sham side. RNA-seq analysis and immunofluorescence revealed that Matrix metallopeptidase 13 (MMP13) and Runt-related transcription factor 2 (RUNX2) genes of endochondral ossification were significantly more downregulated on the experimental side than on the sham side. The primary pathways related to endochondral ossification were Parathyroid hormone synthesis, secretion and action, Relaxin signaling pathway, and IL-17 signaling pathway. CONCLUSIONS The present study provided an innovative and reliable rat model of TMJ bony ankylosis by compound trauma and narrowed joint space. Furthermore, we demonstrated the downregulation of MMP13 and RUNX2 in the process of endochondral ossification in TMJ bony ankylosis.
Collapse
Affiliation(s)
- Zhen Ma
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Yiming Wang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Yang Xue
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Wuyang Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Dengke Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Yuan Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Guowei Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Hongzhi Zhou
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Xiangxiang Hu
- grid.410711.20000 0001 1034 1720Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27514 USA
| | - Tiange Deng
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Kaijin Hu
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| |
Collapse
|
5
|
Zhang M, Jin M, Gao Z, Yu W, Zhang W. High COL10A1 expression potentially contributes to poor outcomes in gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal 2022; 36:e24612. [PMID: 35929139 PMCID: PMC9459277 DOI: 10.1002/jcla.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background COL10A1 is a secreted, short‐chain collagen found in several types of cancer. Studies have shown that COL10A1 aberrant expression is considered an oncogenic factor. However, its underlying mechanisms and regulation of gastric cancer remain undefined. Methods The data on the expression of COL10A1, clinicopathological characteristics, and outcome of patients with GC were obtained from The Cancer Genome Atlas. The ALGGEN‐PROMO database defined the related transcription factors. Quantitative real‐time reverse transcription‐polymerase chain reaction and western blotting analysis were used to identify the differential expression levels of COL10A1 and related transcription factors. Results We found that high COL10A1 expression is an independent risk factor for gastric cancer. Upregulation of LEF1 and Wnt2 was also observed in gastric cancer, suggesting a potential correlation between LEF1/COL10A1 regulation in the Wnt2 signaling pathway. Conclusion High COL10A1 expression may contribute to poor outcomes via upregulation of LEF1 and Wnt2 in gastric cancer.
Collapse
Affiliation(s)
- Miaozun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhiqiang Gao
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Zhang
- Department of Gastroenterology, The HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
6
|
Jiao MN, Zhang TM, Yang K, Xu ZY, Zhang GM, Tian YY, Liu H, Yan YB. Absorbance or organization into ankylosis: a microarray analysis of haemarthrosis in a sheep model of temporomandibular joint trauma. BMC Oral Health 2021; 21:668. [PMID: 34961493 PMCID: PMC8713393 DOI: 10.1186/s12903-021-02033-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Traumatic haemarthrosis was hypothesized to be the etiology of temporomandibular (TMJ) ankylosis. Here, taking haematoma absorbance as a control, we aimed to reveal the molecular mechanisms involved in haematoma organizing into ankylosis using transcriptome microarray profiles. Material/methods Disk removal was performed to building haematoma absorbance (HA) in one side of TMJ, while removal of disk and articular fibrous layers was performed to induced TMJ ankylosis through haematoma organization (HO) in the contralateral side in a sheep model. Haematoma tissues harvested at days 1, 4 and 7 postoperatively were examined by histology, and analyzed by Affymetrix OviGene-1_0-ST microarrays. The DAVID were recruited to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Six significant genes screened from PPI analysis, were confirmed by real-time PCR. Results We found 268, 223 and 17 DEGs at least twofold at days 1, 4 and 7, respectively. At day 1, genes promoting collagen ossification (POSTN, BGN, LUM, SPARC), cell proliferation (TGF-β), and osteogenic differentiation of mesenchymal stem cells (BMP-2) were up-regulated in the HO side. At day 4, several genes involved in angiogenesis (KDR, FIT1, TEK) shower higher expression in the HO side. While HA was characterized by a continuous immune and inflammatory reaction. Conclusions Our results provide a comprehensive understanding of the role of haematoma in the onset and progress of TMJ ankylosis. The study will contribute to explaining why few injured TMJs ankylose and most do not from the molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-02033-w.
Collapse
Affiliation(s)
- Mai-Ning Jiao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Tong-Mei Zhang
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Kun Yang
- Department of Oral and Maxillofacial Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 443001, People's Republic of China
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Hao Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.
| |
Collapse
|
7
|
Zhang PP, Liang SX, Wang HL, Yang K, Nie SC, Zhang TM, Tian YY, Xu ZY, Chen W, Yan YB. Differences in the biological properties of mesenchymal stromal cells from traumatic temporomandibular joint fibrous and bony ankylosis: a comparative study. Anim Cells Syst (Seoul) 2021; 25:296-311. [PMID: 34745436 PMCID: PMC8567918 DOI: 10.1080/19768354.2021.1978543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to compare the functional characteristics of mesenchymal stromal cells (MSCs) from a sheep model of traumatic temporomandibular joint (TMJ) fibrous and bony ankylosis. A sheep model of bilateral TMJ trauma-induced fibrous ankylosis on one side and bony ankylosis on the contralateral side was used. MSCs from fibrous ankylosed callus (FA-MSCs) or bony ankylosed callus (BA-MSCs) at weeks 1, 2, 4, and 8 after surgery were isolated and cultured. MSCs derived from the bone marrow of the mandibular condyle (BM-MSCs) were used as controls. The MSCs from the different sources were characterized morphologically, phenotypically, and functionally. Adherence and trilineage differentiation potential were presented in the ovine MSCs. These cell populations highly positively expressed MSC-associated specific markers, namely CD29, CD44, and CD166, but lacked CD31 and CD45 expressions. The BA-MSCs had higher clonogenic and proliferative potentials than the FA-MSCs. The BA-MSCs also showed higher osteogenic and chondrogenic potentials, but lower adipogenic capacity than the FA-MSCs. In addition, the BA-MSCs demonstrated higher chondrogenic, but lower osteogenic capacity than the BM-MSCs. Our study suggests that inhibition of the osteogenic and chondrogenic differentiations of MSCs might be a promising strategy for preventing bony ankylosis in the future.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, Jining, ShanDong, People's Republic of China
| | - Kun Yang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China
| | - Shao-Chen Nie
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Tong-Mei Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China
| | - Yuan-Yuan Tian
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China
| | - Zhao-Yuan Xu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China
| | - Wei Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China
| | - Ying-Bin Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, Tianjin, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Zhang TM, Yang K, Liang SX, Tian YY, Xu ZY, Liu H, Yan YB. Microarray Analysis of Differential Gene Expression Between Traumatic Temporomandibular Joint Fibrous and Bony Ankylosis in a Sheep Model. Med Sci Monit 2021; 27:e932545. [PMID: 34400603 PMCID: PMC8379999 DOI: 10.12659/msm.932545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The type of traumatic temporomandibular joint (TMJ) ankylosis depends on the degree of severity of TMJ trauma. Here, we performed comprehensive differential molecular profiling between TMJ fibrous and bony ankylosis. Material/Methods Six sheep were used and a bilateral different degree of TMJ trauma was performed to induce fibrous ankylosis in one side and bony ankylosis in the other side. The ankylosed calluses were harvested at days 14 and 28 postoperatively and analyzed by Affymetrix OviGene-1_0-ST microarrays. DAVID was used to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Ten DEGs, including 7 hub genes from PPI analysis, were confirmed by real-time PCR. Results We found 90 and 323 DEGs at least 2-fold at days 14 and 28, respectively. At day 14, bony ankylosis showed upregulated DEGs, such as TLR8, SYK, NFKBIA, PTPRC, CD86, ITGAM, and ITGAL, indicating a stronger immune and inflammatory response and cell adhesion, while genes associated with anti-adhesion (PRG4) and inhibition of osteoblast differentiation (SFRP1) had higher expression in fibrous ankylosis. At day 28, bony ankylosis showed increased biological process related to new bone formation, while fibrous ankylosis was characterized by a prolonged immune and inflammatory reaction. Conclusions This study provides a differential gene expression profile between TMJ fibrous and bony ankylosis. Further study of these key genes may provide new ideas for future treatment of TMJ bony ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Kun Yang
- Tianjin Medical University, Tianjin, China (mainland)
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Hao Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Ying-Bin Yan
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| |
Collapse
|
9
|
Song CX, Liu SY, Zhu WT, Xu SY, Ni GX. Excessive mechanical stretch‑mediated osteoblasts promote the catabolism and apoptosis of chondrocytes via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2021; 24:593. [PMID: 34165157 PMCID: PMC8222797 DOI: 10.3892/mmr.2021.12232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/05/2021] [Indexed: 02/05/2023] Open
Abstract
Excessive biomechanical loading is considered an important cause of osteoarthritis. Although the mechanical responses of chondrocytes and osteoblasts have been investigated, their communication during mechanical loading and the underlying molecular mechanisms are not yet fully known. The present study investigated the effects of excessive mechanically stretched osteoblasts on the metabolism and apoptosis of chondrocytes, and also assessed the involvement of the Wnt/β‑catenin signaling pathway. In the present study, rat chondrocytes and osteoblasts were subjected to mechanical tensile strain, and an indirect chondrocyte‑osteoblast co‑culture model was established. Reverse transcription‑quantitative PCR and western blotting were performed to determine the expression levels of genes and proteins of interest. An ELISA was performed to investigate the levels of cytokines, including matrix metalloproteinase (MMP) 13, MMP 3, interleukin‑6 (IL‑6) and prostaglandin E2 (PG E2), released from osteoblasts. Flow cytometry was performed to detect the apoptosis of chondrocytes exposed to stretched osteoblast conditioned culture medium. The levels of MMP 13, IL‑6 and PG E2 increased significantly in the supernatants of stretched osteoblasts compared with the un‑stretched group. By contrast, the mRNA expression levels of Collagen 1a and alkaline phosphatase were significantly decreased in osteoblasts subjected to mechanical stretch compared with the un‑stretched group. The mRNA expression level of Collagen 2a was significantly decreased, whereas the expression levels of MMP 13 and a disintegrin and metalloproteinase with thrombospondin‑like motifs 5 were significantly increased in chondrocytes subjected to mechanical stretch compared with the un‑stretched group. In the co‑culture model, the results indicated that excessive mechanically stretched osteoblasts induced the catabolism and apoptosis of chondrocytes, which was partly inhibited by Wnt inhibitor XAV‑939. The results of the present study demonstrated that excessive mechanical stretch led to chondrocyte degradation and inhibited osteoblast osteogenic differentiation; furthermore, excessive mechanically stretched osteoblasts induced the catabolism and apoptosis of chondrocytes via the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Cheng-Xian Song
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Sheng-Yao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wen-Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shao-Yong Xu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guo-Xin Ni
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, P.R. China
| |
Collapse
|
10
|
Xiong Y, Duan H, Zhang B, Ren C, Yu Z, Yan Y. Experimental study on repair of large segmental bone defects of goat femur by nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer membrane tubes. J Biomater Appl 2021; 36:492-502. [PMID: 33673763 DOI: 10.1177/08853282211000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this study was to observe feasibility of nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer (n-CDHA-MAC) membrane tubes in repairing goat femurs' large defects. METHODS Twelve goats were divided into two groups, whose femurs were created 30 mm segmental bone defects and then implants were performed. In experimental group, the bone defect of right femur was reconstructed by n-CDHA-MAC membrane tube, while left side was reconstructed by allogenic bone tube in control group. Every three goats were sacrificed at 4, 8, 16, 24 weeks after operation respectively. General observation, X-ray analysis, histology, Scanning electron microscope (SEM) examination and protein level comparison of BMP-2 were conducted to evaluate the effects of repairing segmental bone defects. RESULTS All goats recovered well from anesthesia and surgical interventions. The radiographic evaluations showed that periosteal reaction outside of the membrane tubes and allogenic bone tubes were observed 4 weeks after surgery. At 16 weeks, callus was continuously increased in experimental group, which was more obvious than control group. At 24 weeks, callus outside of the membrane tubes connected together. Histologic evaluation showed fibro-cartilage callus was evolved into bony callus in experimental group, which was more obvious than control group at 8 and 16 weeks. The protein expression level of BMP-2 increased at 4, 8 weeks and peaked at 16 weeks in experimental groups. There were statistical differences at 8 and 16 weeks (P < 0.05). At each time point in 8, 16, 24 weeks after surgery, the bending stiffness, torsional stiffness and compressive strength of the two groups were similar, and there was no significant difference (P > 0.05). CONCLUSIONS This novel surface degradation n-CDHA-MAC membrane tube has good ability to maintain enough membrane space, which can provide long-term and stable biomechanical support for large bone defects and integrate well with the surrounding bone.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Bin Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Ren
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Zeping Yu
- Department of Orthopedics, West China Hospital, Sichuan University, Sichuan, China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Sichuan, China
| |
Collapse
|
11
|
He L, Zhang Z, Xiao E, He Y, Zhang Y. Pathogenesis of traumatic temporomandibular joint ankylosis: a narrative review. J Int Med Res 2020; 48:300060520972073. [PMID: 33213251 PMCID: PMC7686630 DOI: 10.1177/0300060520972073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To comprehensively review the literature and summarize the results from human and animal studies related to the possible causes and pathogenesis of traumatic temporomandibular joint ankylosis (TMJA). MATERIALS AND METHODS The Google Scholar, Embase, and Web of Science databases were used to search for articles related to traumatic TMJA from 2011 to 2020. All articles were screened according to the inclusion and exclusion criteria, collected, and analyzed. RESULTS Nineteen relevant articles were collected. These articles were classified into three groups: predisposing and etiological factors, cellular studies, and molecular studies. CONCLUSION The pathological mechanisms are similar between TMJA and nonunion hypertrophy. Aberrant structural and etiological factors as well as disordered cellular and molecular mechanisms might contribute to TMJA formation. Although preclinical and clinical data have provided new evidence on the pathogenesis of traumatic TMJA, the molecular mechanisms and biological events require further exploration.
Collapse
Affiliation(s)
- Linhai He
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhiyong Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
12
|
Monteiro JLGC, Guastaldi FPS, Troulis MJ, McCain JP, Vasconcelos BCDE. Induction, Treatment, and Prevention of Temporomandibular Joint Ankylosis-A Systematic Review of Comparative Animal Studies. J Oral Maxillofac Surg 2020; 79:109-132.e6. [PMID: 32800758 DOI: 10.1016/j.joms.2020.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Several animal models of temporomandibular joint ankylosis (TMJA) have been described for more than the past 2 decades. The aim of this study was 2-fold: 1) to compile and summarize the evidence of animal studies that compare different forms to induce, treat (disease already established), or prevent (after trauma) TMJA; and 2) to address the following focused question: what is the quality of reporting in these studies? MATERIALS AND METHODS A systematic review was conducted. Animal studies conducted up to October 2019 comparing at least 2 procedures to induce, treat (disease already established), or prevent (after trauma) TMJA were considered. Compliance with the Animal Research Reporting In Vivo Experiments guidelines was checked for all studies. Studies evaluating treatment of TMJA or preventive measures also were evaluated using the SYstematic Review Center for Laboratory animal Experimentation's risk of bias tool for animal studies. RESULTS A total of 24 studies were included. The studies were evaluated for feasibility regarding data synthesis, and a meta-analysis was not suitable because of methodological differences, mainly regarding the animal model chosen and surgical procedures performed to induce TMJA. In 17 articles, authors aimed to investigate different procedures to induce TMJA (fibrous, fibro-osseous, or bony). In 7 articles, different treatment or preventive strategies were compared. The sheep was the most used animal in models of TMJA. Only 25% (6 of 24) of studies reported some step to minimize bias (ie, blinding of investigators, randomization procedures, or allocation concealment). Approximately 54% (13 of 24) of articles clearly commented on study limitations and potential sources of bias. Further animal studies on TMJA should consider improving their reporting standards to increase their validity and improve the reproducibility of animal experiments.
Collapse
Affiliation(s)
- João Luiz Gomes Carneiro Monteiro
- PhD Student, Department of Oral and Maxillofacial Surgery, School of Dentistry, Universidade de Pernambuco, Brazil, and Research Fellow, Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA
| | - Fernando P S Guastaldi
- Instructor, Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA.
| | - Maria J Troulis
- Walter C. Guralnick Distinguished Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA
| | - Joseph P McCain
- Director of Endoscopic Maxillofacial Surgery Fellowship, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA
| | | |
Collapse
|
13
|
Zavodovskaya R, Vapniarsky N, Garcia T, Verstraete FJM, Hatcher DC, Arzi B. Intra- and Extra-articular Features of Temporomandibular Joint Ankylosis in the Cat (Felis catus). J Comp Pathol 2020; 175:39-48. [PMID: 32138841 DOI: 10.1016/j.jcpa.2019.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
Temporomandibular joint (TMJ) ankylosis is an uncommon clinical entity in human and veterinary medicine. However, the condition is severely debilitating and is life-limiting if not treated. This study sought to characterize the intra- and extra-articular features of naturally occurring TMJ ankylosis in cats. TMJs from client-owned cats (n = 5) that underwent bilateral TMJ gap arthroplasty were examined and compared with TMJs from healthy, age-matched feline cadavers (n = 2) by cone-beam computed tomography (CBCT), micro-computed tomography (μCT) and histologically. Features of bilateral intra- and extra-articular ankylosis compounded by degenerative joint lesions were identified radiographically and histologically in all affected cats. Features of TMJ 'true' ankylosis included variable intracapsular fibro-osseous bridging, degeneration of the disc and the articular surfaces, narrowing of the joint space and flattening of the condylar process of the mandible. Extra-articular features of TMJ ankylosis included periarticular bone formation and fibro-osseous bridging between the mandible, zygomatic arch and coronoid process. In addition, subchondral bone loss or sclerosis, irregular and altered joint contours and irregularly increased density of the medullary bone characterized the degenerative changes of the osseous components of the TMJ. Complex radiological and histological features of both ankylosis and pseudoankylosis were identified that clinically manifested in complete inability to open the mouth.
Collapse
Affiliation(s)
- R Zavodovskaya
- California Animal Health and Food Safety Laboratory System, USA
| | - N Vapniarsky
- Department of Pathology, Microbiology and Immunology, USA
| | - T Garcia
- Department of Anatomy, Physiology and Cell Biology, USA
| | - F J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - D C Hatcher
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - B Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA.
| |
Collapse
|
14
|
Zhao L, Xiao E, He L, Duan D, He Y, Chen S, Zhang Y, Gan Y. Reducing macrophage numbers alleviates temporomandibular joint ankylosis. Cell Tissue Res 2019; 379:521-536. [PMID: 31522279 DOI: 10.1007/s00441-019-03087-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Abstract
Temporomandibular joint (TMJ) ankylosis is a severe joint disease mainly caused by trauma that leads to a series of oral and maxillofacial function disorders and psychological problems. Our series of studies indicate that TMJ ankylosis development is similar to fracture healing and that severe trauma results in bony ankylosis instead of fibrous ankylosis. Macrophages are early infiltrating inflammatory cells in fracture and play a critical role in initiating fracture repair. We hypothesize that the large numbers of macrophages in the early phase of TMJ ankylosis trigger ankylosed bone mass formation and that the depletion of these macrophages in the early phase could inhibit the development of TMJ ankylosis. By analysing human TMJ ankylosis specimens, we found large numbers of infiltrated macrophages in the less-than-1-year ankylosis samples. A rabbit model of TMJ bony ankylosis was established and large numbers of infiltrated macrophages were found at 4 days post-operation. Local clodronate liposome (CLD-lip) injection, which depleted macrophages, alleviated the severity of ankylosis compared with local phosphate-buffered saline (PBS)-loaded liposome (PBS-lip) injection (macrophage number, PBS-lips vs. CLD-lips: 626.03 ± 164.53 vs. 341.4 ± 108.88 n/mm2; ankylosis calcification score, PBS-lips vs. CLD-lips: 2.11 ± 0.78 vs. 0.78 ± 0.66). Histological results showed that the cartilage area was reduced in the CLD-lip-treated side (PBS-lips vs. CLD-lips: 6.82 ± 4.42% vs. 2.71 ± 2.78%) and that the Wnt signalling regulating cartilage formation was disrupted (Wnt5a expression decreased 60% and Wnt4 expression decreased 73%). Thus, our study showed that large numbers of macrophages infiltrated during the early phase of ankylosis and that reducing macrophage numbers alleviated ankylosis development by reducing cartilage formation.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Peking University Hospital of Stomatology First Clinical Division, 37A Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Denghui Duan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yehua Gan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
15
|
Liang SX, Wang HL, Zhang PP, Shen J, Yang K, Meng L, Liu H, Yan YB. Differential regulation of blood vessel formation between traumatic temporomandibular joint fibrous ankylosis and bony ankylosis in a sheep model. J Craniomaxillofac Surg 2019; 47:1739-1751. [PMID: 31439411 DOI: 10.1016/j.jcms.2019.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Clinical and experimental studies show that the etiology of traumatic temporomandibular joint (TMJ) fibrous ankylosis and bony ankylosis are associated with the severity of trauma. However, how the injury severity affects the tissue differentiation is not clear. We tested the hypothesis that angiogenesis affects the outcomes of TMJ trauma, and that enhanced neovascularization after severe TMJ trauma would promote the development of bony ankylosis. METHODS Bilateral condylar sagittal fracture and discectomy were performed for each sheep, with the glenoid fossa receiving either severe trauma to induce bony ankylosis or minor trauma to induce fibrous ankylosis. At days 7, 14, 28, and 56 after surgery, total RNA was extracted from the ankylosed callus. Temporal gene expressions of several molecules functionally important for blood vessel formation were studied by real-time PCR. RESULTS Histological examination revealed a prolonged hematoma phase and a lack of cartilage formation in fibrous ankylosis. mRNA expression levels of HIF-1α, VEGF, VEGFR2, SDF1, Ang1, Tie2, vWF, CYR61, FGF2, TIMP1, MMP2, and MMP9 were distinctly lower in fibrous ankylosis compared with bony ankylosis at several time points. CONCLUSIONS Our study indicates that inhibition of angiogenesis after TMJ trauma might be a promising strategy for preventing bony ankylosis in the future.
Collapse
Affiliation(s)
- Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Hua-Lun Wang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Pei-Pei Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Jun Shen
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Li Meng
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Hao Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| |
Collapse
|
16
|
Tatara AM, Koons GL, Watson E, Piepergerdes TC, Shah SR, Smith BT, Shum J, Melville JC, Hanna IA, Demian N, Ho T, Ratcliffe A, van den Beucken JJJP, Jansen JA, Wong ME, Mikos AG. Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proc Natl Acad Sci U S A 2019; 116:6954-6963. [PMID: 30886100 PMCID: PMC6452741 DOI: 10.1073/pnas.1819246116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large mandibular defects are clinically challenging to reconstruct due to the complex anatomy of the jaw and the limited availability of appropriate tissue for repair. We envision leveraging current advances in fabrication and biomaterials to create implantable devices that generate bone within the patients themselves suitable for their own specific anatomical pathology. The in vivo bioreactor strategy facilitates the generation of large autologous vascularized bony tissue of customized geometry without the addition of exogenous growth factors or cells. To translate this technology, we investigated its success in reconstructing a mandibular defect of physiologically relevant size in sheep. We fabricated and implanted 3D-printed in vivo bioreactors against rib periosteum and utilized biomaterial-based space maintenance to preserve the native anatomical mandibular structure in the defect site before reconstruction. Nine weeks after bioreactor implantation, the ovine mandibles were repaired with the autologous bony tissue generated from the in vivo bioreactors. We evaluated tissues generated in bioreactors by radiographic, histological, mechanical, and biomolecular assays and repaired mandibles by radiographic and histological assays. Biomaterial-aided mandibular reconstruction was successful in a large superior marginal defect in five of six (83%) sheep. Given that these studies utilized clinically available biomaterials, such as bone cement and ceramic particles, this strategy is designed for rapid human translation to improve outcomes in patients with large mandibular defects.
Collapse
Affiliation(s)
- Alexander M Tatara
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | | | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James C Melville
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Issa A Hanna
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nagi Demian
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Tang Ho
- Department of Otorhinolaryngology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | | | | | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030;
| |
Collapse
|
17
|
A New Method To Reposition the Displaced Articular Disc For a Patient With Comminuted Condylar Fracture. J Craniofac Surg 2019; 30:e373-e376. [PMID: 30839468 DOI: 10.1097/scs.0000000000005384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Repositioning the displaced articular disc is the key procedure that prevents ankylosis of the temporomandibular mandibular joint (TMJ) in the treatment of patients with comminuted condylar fractures. The conventional procedure performed clinically is to use two anchors and sutures to reposition the displaced articular disc. Therefore, this paper introduces a new and economical method to reposition the articular disc without metallic implantation materials. CLINICAL PRESENTATION A 60-year-old male patient who had fainted suddenly 3 days before came to our hospital to complain of pain of the bilateral TMJ areas and limited mouth opening. Clinical examination revealed severe restriction of mouth opening and the disappearance of bilateral condylar movements. Preoperational 3-dimensional computed tomography (3-DCT) indicated bilateral intracapsular comminuted fractures of the mandibular condyles. The patient was operated in a bilateral preauricular approach for repositioning of the bilateral articular discs and removal of the fracture fragments. Instead of repositioning the displaced disc with anchors, we designed a method to use sutures to stabilize the TMJ disc and to assess the disc's position using a magnetic resonance imaging (MRI) scan when following up. There were no severe complications during the operation. Results of an MRI scan 1 month after operation showed that post-operation articular discs kept their normal position, the mouth opening and the lateral and protrusive movements of the mandible recovered when followed up for 3 months. CONCLUSION The method of using sutures to reposition and stabilize the articular disc for a patient with comminuted fractures is effective. There is great significance not only for patients with comminuted condylar fractures but for treatment of TMJ dysfunction especially for patients with high psychological pressure who persist in requiring the removal of metallic anchors although there are no clinical symptoms.
Collapse
|
18
|
Ouyang N, Zhu X, Li H, Lin Y, Shi J, Dai J, Shen G. Effects of a single condylar neck fracture without condylar cartilage injury on traumatic heterotopic ossification around the temporomandibular joint in mice. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:120-125. [DOI: 10.1016/j.oooo.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/30/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
|
19
|
Tatara AM, Shah SR, Demian N, Ho T, Shum J, van den Beucken JJJP, Jansen JA, Wong ME, Mikos AG. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors. Acta Biomater 2016; 45:72-84. [PMID: 27633319 DOI: 10.1016/j.actbio.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/05/2016] [Accepted: 09/10/2016] [Indexed: 01/20/2023]
Abstract
Reconstruction of large mandibular defects is clinically challenging due to the need for donor tissue of appropriate shape and volume to facilitate high fidelity repair. In order to generate large vascularized tissues of custom geometry, bioreactors were implanted against the rib periosteum of 3-4year-old sheep for nine weeks. Bioreactors were filled with either morcellized autologous bone, synthetic ceramic particles, or a combination thereof. Tissues generated within synthetic graft-filled bioreactors were transferred into a large right-sided mandibular angle defect as either avascular grafts (n=3) or vascularized free flaps (n=3). After twelve additional weeks, reconstructed mandibular angles were harvested and compared to contralateral control angles. Per histologic and radiologic evaluation, a greater amount of mineralized tissue was generated in bioreactors filled with autologous graft although the quality of viable bone was not significantly different between groups. Genetic analyses of soft tissue surrounding bioreactor-generated tissues demonstrated similar early and late stage osteogenic biomarker expression (Runx2 and Osteocalcin) between the bioreactors and rib periosteum. Although no significant differences between the height of reconstructed and control mandibular angles were observed, the reconstructed mandibles had decreased bone volume. There were no differences between mandibles reconstructed with bioreactor-generated tissues transferred as flaps or grafts. Tissues used for mandibular reconstruction demonstrated integration with native bone as well as evidence of remodeling. In this study, we have demonstrated that synthetic scaffolds are sufficient to generate large volumes of mineralized tissue in an in vivo bioreactor for mandibular reconstruction. STATEMENT OF SIGNIFICANCE A significant clinical challenge in craniofacial surgery is the reconstruction of large mandibular defects. In this work, we demonstrated that vascularized tissues of large volume and custom geometry can be generated from in vivo bioreactors implanted against the rib periosteum in an ovine model. The effects of different bioreactor scaffold material on tissue ingrowth were measured. To minimize donor site morbidity, tissues generated from bioreactors filled with synthetic graft were transferred as either vascularized free flaps or avascular grafts to a large mandibular defect. It was demonstrated that synthetic graft in an in vivo bioreactor is sufficient to produce free tissue bone flaps capable of integrating with native tissues when transferred to a large mandibular defect in an ovine model.
Collapse
Affiliation(s)
- Alexander M Tatara
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States; Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor, Houston, TX 77030, United States
| | - Sarita R Shah
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States; Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor, Houston, TX 77030, United States
| | - Nagi Demian
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, TX 77054, United States
| | - Tang Ho
- Department of Otorhinolaryngology, University of Texas Health Science Center at Houston, 6411 Fannin Street, Houston, TX 77030, United States
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, TX 77054, United States
| | - Jeroen J J P van den Beucken
- Department of Biomaterials, Radboud University Medical Center, Philips v Leijdenln 25, 6525 EX Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Philips v Leijdenln 25, 6525 EX Nijmegen, The Netherlands
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, TX 77054, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, United States.
| |
Collapse
|
20
|
Injured condylar cartilage leads to traumatic temporomandibular joint ankylosis. J Craniomaxillofac Surg 2016; 44:294-300. [DOI: 10.1016/j.jcms.2015.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/13/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
|
21
|
Yan YB, Liang SX, Shen J, Zhang JC, Zhang Y. Current concepts in the pathogenesis of traumatic temporomandibular joint ankylosis. Head Face Med 2014; 10:35. [PMID: 25189735 PMCID: PMC4158390 DOI: 10.1186/1746-160x-10-35] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/25/2014] [Indexed: 01/10/2023] Open
Abstract
Traumatic temporomandibular joint (TMJ) ankylosis can be classified into fibrous, fibro-osseous and bony ankylosis. It is still a huge challenge for oral and maxillofacial surgeons due to the technical difficulty and high incidence of recurrence. The poor outcome of disease may be partially attributed to the limited understanding of its pathogenesis. The purpose of this article was to comprehensively review the literature and summarise results from both human and animal studies related to the genesis of TMJ ankylosis.
Collapse
Affiliation(s)
- Ying-Bin Yan
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Jun Shen
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Jian-Cheng Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| |
Collapse
|