1
|
Gomes-Ferreira PHS, Frigério PB, Duarte ND, de Moura J, Monteiro NG, Fabris ALDS, Okamoto R. Evaluation of Peri-Implant Bone Repair in Ovariectomized Rats Submitted to the Implant Placement Functionalized with Anti-Sclerostin. Bioengineering (Basel) 2025; 12:358. [PMID: 40281718 PMCID: PMC12024908 DOI: 10.3390/bioengineering12040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
(1) Background: The challenges in Implantology involve the development of alternative methods to enhance bone repair in patients with systemic conditions, such as osteoporosis. This study aimed to evaluate the effect of a local anti-sclerostin monoclonal antibody (Scl-Ab) on the functionalization of titanium implant surfaces through a dip-coating technique in peri-implant bone repair. (2) Methods: A total of 32 female rats were separated into four groups (n = 8): SHAM NT (Sham surgery), OVX NT (ovariectomy), SHAM Scl-Ab (SHAM; implants functionalized with Scl-Ab), and OVX Scl-Ab (OVX; implants functionalized with Scl-Ab). Implant surgery was executed 30 days after ovariectomy, and the rats were euthanized 28 days postoperatively. The right tibia was used for removal torque and RT-PCR, while the left tibia was collected for micro-CT and laser confocal microscopy. (3) Results: Functionalization with Scl-Ab significantly increased the gene expression of bone markers, especially ALP, in the SHAM Scl-Ab group compared to the other groups (p < 0.05). (4) Conclusions: Some parameters of this study indicate that implants functionalized with anti-sclerostin bone anabolic drug enhance peri-implant bone repair, especially in healthy rats. However, more studies must be carried out to confirm the therapeutic benefits of this approach.
Collapse
Affiliation(s)
| | - Paula Buzo Frigério
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Nathália Dantas Duarte
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Juliana de Moura
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Naara Gabriela Monteiro
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - André Luis da Silva Fabris
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| |
Collapse
|
2
|
Wu Y, Liu C, Liu J, Wang W, Qin B, Liu H. Osteogenic function of BMP2-modified PEEK scaffolds for orbital fracture repair. Biomed Mater 2025; 20:035008. [PMID: 40101367 DOI: 10.1088/1748-605x/adc220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
This study aimed to investigate the osteogenic function of polyetheretherketone (PEEK) scaffolds modified with bone morphogenetic protein 2 (BMP2) and its possibility for orbital fracture repair. The 3D-printed PEEK sheets were combined with BMP2-loaded hyaluronic acid hydrogel (HAH) to fabricate PEEK-BMP2-HAH composite scaffolds. Bone marrow mesenchymal stem cells (BMSCs) were seeded onto PEEK or PEEK-BMP2-HAH scaffolds. Cell adhesion and cell proliferation were measured by transmission electron microscopy and CCK-8 assay. Alkaline phosphatase (ALP) chromogenic, alizarine red S staining, and PCR analysis of Runt-related transcription factor 2 (Runx2), collagen-I (Col-I), Osterix, and osteopontin (OPN) were performed to assess osteogenic activity. The rat orbital fracture defect model is proposed for evaluating the biocompatibility, osteogenic integration, and functional recovery of PEEK orbital implants. Compared with PEEK, cell adhesion and cell proliferation were increased in PEEK-BMP2-HAH scaffolds. ALP activity and mineralized nodule formation were increased in PEEK-BMP2-HAH scaffolds than that in PEEK the mRNA expression of Runx2, Osterix, Col-I and OPN was increased on PEEK-BMP2-HAH scaffolds than that on PEEK at 14 d of osteogenic induction. Besides, a bone defect animal model revealed that BMP2-HAH-modified PEEK scaffolds could effectively facilitate the repair of the orbital bone defect, with increased expression of OPN and Runx2. BMP2-loaded HAH effectively increased adhesion, proliferation, and osteogenic differentiation of BMSCs on PEEK. PEEK-BMP2-HAH scaffolds are expected to become new materials for orbital fracture repair.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Cuihong Liu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Jinhua Liu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Wenwen Wang
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Bixuan Qin
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Honglei Liu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| |
Collapse
|
3
|
Al‐Azzawi HMA, Paolini R, Celentano A. Is Hydrogel an Appropriate Bioadhesive Material for Sutureless Oral Wound Closure? Health Sci Rep 2024; 7:e70249. [PMID: 39659817 PMCID: PMC11628734 DOI: 10.1002/hsr2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Background and Aims An effective surgical adhesive must possess strength, biodegradability, flexibility, non-toxicity, and the ability to accommodate to tissue movement. However, existing adhesives in the market lack some of these crucial properties. Both synthetic cyanoacrylate and natural fibrin glue have been explored for sutureless oral surgery, but they come with specific limitations. This perspective review aims to explore the novel potential of hydrogels as bioadhesives for wound closure in the oral cavity. Methods This review thoroughly examines the properties, applications, and limitations of hydrogels as bioadhesive materials for wound closure within the human body. Results We first provide a comprehensive description of materials used for sutureless oral surgery. Next, drawing on our expertise in the field of oral surgery, we propose novel potential applications for hydrogels in oral wound closure. We showed that Hydrogels represent promising bioadhesives in medical field and are undergoing continuous enhancement to expand their applications in wound closure. Conclusion Although hydrogels have been utilized in various dental conditions, their potential for closing wounds in the oral cavity remains unexplored.
Collapse
Affiliation(s)
| | - Rita Paolini
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Antonio Celentano
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| |
Collapse
|
4
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Li M, Fan Y, Ran M, Chen H, Han J, Zhai J, Wang Z, Ning C, Shi Z, Yu P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv Healthc Mater 2024; 13:e2401296. [PMID: 38794971 DOI: 10.1002/adhm.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.
Collapse
Affiliation(s)
- Mengqing Li
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Youzhun Fan
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Maofei Ran
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Haoyan Chen
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jien Han
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhifeng Shi
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| |
Collapse
|
6
|
Liu L, Wu D, Tu H, Cao M, Li M, Peng L, Yang J. Applications of Hydrogels in Drug Delivery for Oral and Maxillofacial Diseases. Gels 2023; 9:gels9020146. [PMID: 36826316 PMCID: PMC9956178 DOI: 10.3390/gels9020146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.
Collapse
Affiliation(s)
- Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
|
10
|
Sánchez-Bodón J, Andrade del Olmo J, Alonso JM, Moreno-Benítez I, Vilas-Vilela JL, Pérez-Álvarez L. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers (Basel) 2021; 14:165. [PMID: 35012187 PMCID: PMC8747097 DOI: 10.3390/polym14010165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - Jon Andrade del Olmo
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Jose María Alonso
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Isabel Moreno-Benítez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
11
|
Kravanja KA, Finšgar M. Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants. Biomedicines 2021; 9:1936. [PMID: 34944750 PMCID: PMC8698289 DOI: 10.3390/biomedicines9121936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
The development of bioactive coatings for orthopedic implants has been of great interest in recent years in order to achieve both early- and long-term osseointegration. Numerous bioactive materials have been investigated for this purpose, along with loading coatings with therapeutic agents (active compounds) that are released into the surrounding media in a controlled manner after surgery. This review initially focuses on the importance and usefulness of characterization techniques for bioactive coatings, allowing the detailed evaluation of coating properties and further improvements. Various advanced analytical techniques that have been used to characterize the structure, interactions, and morphology of the designed bioactive coatings are comprehensively described by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 3D tomography, quartz crystal microbalance (QCM), coating adhesion, and contact angle (CA) measurements. Secondly, the design of controlled-release systems, the determination of drug release kinetics, and recent advances in drug release from bioactive coatings are addressed as the evaluation thereof is crucial for improving the synthesis parameters in designing optimal bioactive coatings.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia;
| |
Collapse
|
12
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
13
|
Cervino G, Meto A, Fiorillo L, Odorici A, Meto A, D’Amico C, Oteri G, Cicciù M. Surface Treatment of the Dental Implant with Hyaluronic Acid: An Overview of Recent Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094670. [PMID: 33925742 PMCID: PMC8125310 DOI: 10.3390/ijerph18094670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022]
Abstract
Recently, interest has grown by focusing on the evaluation of a molecule already produced in the human body such as hyaluronic acid (HA), as an application to the surface of the titanium implant. Its osteo-conductive characteristics and positive interaction with the progenitor cells responsible for bone formation, consequently, make it responsible for secondary stability. The aim of this work was to analyze the various surface treatments in titanium implants, demonstrating that the topography and surface chemistry of biomaterials can correlate with the host response; also focusing on the addition of HA to the implant surface and assessing the biological implications during early stages of recovery. Used as a coating, HA acts on the migration, adhesion, proliferation and differentiation of cell precursors on titanium implants by improving the connection between implant and bone. Furthermore, the improvement of the bioactivity of the implant surfaces through HA could therefore facilitate the positioning of the dental prosthesis precisely in the early loading phase, thus satisfying the patients’ requests. It is important to note that all the findings should be supported by further experimental studies in animals as well as humans to evaluate and confirm the use of HA in any field of dentistry.
Collapse
Affiliation(s)
- Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Agron Meto
- Department of Implantology, Faculty of Dentistry, University of Aldent, 1000 Tirana, Albania;
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy
- Correspondence:
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Aida Meto
- Department of Dental Therapy, Faculty of Dental Medicine, University of Medicine, 1005 Tirana, Albania;
| | - Cesare D’Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| |
Collapse
|
14
|
Liu H, Gan C, Shi H, Qu K, Jing L, Lu M, Su B, Yu H, Yuan H, Chen J, Zhang R, Zeng W. Gastric floating pill enhances the bioavailability and drug efficacy of dihydromyricetin in vivo. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol 2020; 151:1224-1239. [PMID: 31751713 DOI: 10.1016/j.ijbiomac.2019.10.169] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Hyaluronic acid (HA) exists naturally as an important component of the extracellular matrix (ECM) in the human body. In recent decades, HA has been widely used in bone regeneration, and is currently a popular topic, particularly in the craniofacial and dental fields. From maxilla augmentation to craniofacial bone trauma, there is now a large demand for bone regenerative therapy. Serving as a cell-seeding scaffold or a carrier for bioactive components, hyaluronic acid-incorporated scaffolds and carriers in bone regeneration can be fabricated into either rigid or colloidal forms. Since the type of material used is a critical factor in the biological properties of a scaffold, HA derivatives or HA-incorporated composite scaffolds have shown excellent potential for improving osteogenesis and mineralization. Furthermore, in order to better enhance osteogenesis, local delivery carriers based on hyaluronic acid derivatives, rather than specifically serving as scaffolds, can be established by loading different osteoinductive or osteogenetic components and acquiring different release patterns. Such osteoinductive carriers immobilized on implant surfaces are also effective in improving osseointegration. Thus, as such a competent biomaterial, hyaluronic acid should be considered a promising tool in bone regeneration.
Collapse
Affiliation(s)
- Peisong Zhai
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Xiaoxing Peng
- Radiology Department of Hospital Attached to Changchun University of Chinese Medicine, Changchun, PR China
| | - Baoquan Li
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Yiping Liu
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Hongchen Sun
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Xiangwei Li
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
16
|
Liu X, Chen J, Luo Y, Tang Z, He Y. Osteogenic inducer sustained-release system promotes the adhesion, proliferation, and differentiation of osteoblasts on titanium surface. Ann Anat 2020; 231:151523. [PMID: 32380194 DOI: 10.1016/j.aanat.2020.151523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Biomaterial can be locally applied to promote the osseointegration of dental implants. This study aimed to fabricate an osteogenic inducer (OI) sustained-release system and to evaluate its effects on the adhesion, proliferation, and differentiation of osteoblasts on titanium surfaces. METHODS First of all, different contents of OI solution were added to the poly (lactic-co-glycolic acid) (PLGA) gel individually to investigate the best physical properties and drug-release rate. Moreover, osteoblasts were isolated from the calvaria of two-month-old New Zealand rabbits through sequential enzymatic digestion. Osteoblasts were seeded onto the surface of Ti disks (control group), Ti coated with PLGA gel (PLGA group), and Ti coated with the OI sustained-release system (PLGA+OI group). Cell adhesion was observed by scanning electron microscopy. Cell proliferation was analyzed by cell counting kit-8. Cell differentiation was tested by alizarin red staining, alkaline phosphatase (ALP) activity and osteogenic-related gene expression. RESULTS The OI sustained-release system contained 15% OI solution had appropriate physical properties and drug-release rate. The osteoblasts in the PLGA+OI group were in a typical spindle shape with a considerable number indicating the promotion of adhesion and proliferation. The expression of early and late stage osteoblast differentiation genes in the PLGA+OI group were significantly higher than that of the control group and PLGA group at each time point. The PLGA group showed accelerated adhesion and differentiation but reduced proliferation compared with the control. CONCLUSION The OI sustained-release system promotes the adhesion, proliferation, and differentiation of osteoblasts on titanium surfaces. This system is a cost-effective osteoconductive biomaterial that might be promising for use in dental implantation.
Collapse
Affiliation(s)
- Xulin Liu
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yonghua Luo
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Ziqiao Tang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
17
|
Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Healthc Mater 2018; 7:e1701213. [PMID: 29388356 PMCID: PMC6248342 DOI: 10.1002/adhm.201701213] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Indexed: 12/21/2022]
Abstract
In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.
Collapse
Affiliation(s)
- Arti Vashist
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Anujit Ghosal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Y. K. Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India, 110025
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
18
|
Chang AR, Cho TH, Hwang SJ. Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Local Osteoporotic Canine Mandible Model for the Evaluation of Peri-Implant Bone Regeneration. Tissue Eng Part C Methods 2017; 23:781-794. [DOI: 10.1089/ten.tec.2017.0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ah Ryum Chang
- Department of Oral and Maxillofacial Surgery, BK 21 Plus, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, BK 21 Plus, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|