1
|
Wang S, Zhao Z, Zhang Q, Liu C. Biomechanical and histomorphometric evaluation of biodegradable mini-implants for orthodontic anchorage in the mandible of beagle dogs. BMC Oral Health 2025; 25:516. [PMID: 40211253 PMCID: PMC11987449 DOI: 10.1186/s12903-025-05920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
OBJECTIVE To evaluate the effectiveness of a mini-implant composed of unsintered hydroxyapatite, poly (L-lactic acid) and poly(lactic-co-glycolic acid) (u-HA/PLLA/PLGA) composites as an anchorage device under consistent orthodontic force (OF) loading in vivo. METHODS An mandible model in beagle dogs was introduced. 144 mini-implants were implanted in both sides of the mandibles. The mini-implants in the experimental group (left side) were loaded at the magnitude of 200 g to simulate the OF. At 2, 4 and 6 months after implantation, tissue specimens were taken from the implanted sites and biomechanical, histological and histomorphometrical analysis were performed. RESULTS Mini-implants in the group with the highest PLLA ratio showed a 27% non-fracture rate after 4 months and 20.83% after 6 months in beagle dogs, and the non-fractured mini-implants could maintain the tensile force of 200 g, while mini-implants in the other two groups were all fractured. Histomorphological analysis showed that there was no significant relationship between Bone Volume over Total Volume (BV/TV) and the implantation time among the most of the groups. The level of Bone-Implant Contact ratio (BIC) in Medium and Low ratio group were decreased gradually from 2 to 6 months. CONCLUSIONS This study showed the biodegradable mini-implant could work as an alternative to the titanium alloy mini-implant by adjusting the proportion of its ingredients. CLINICAL RELEVANCE Degradable mini-implants for orthodontic anchorage lie in their potential to revolutionize orthodontic treatments by offering a biodegradable alternative that minimizes the need for secondary surgeries for removal, thereby enhancing patient comfort and reducing overall treatment time.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zuodong Zhao
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, UZ Leuven (University Hospitals Leuven), Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital Zhejiang Chinese Medical University, Hangzhou, 310085, China
| | - Chang Liu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Maintz M, Desan N, Sharma N, Beinemann J, Beyer M, Seiler D, Honigmann P, Soleman J, Guzman R, Cattin PC, Thieringer FM. Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment. Int J Comput Assist Radiol Surg 2025; 20:513-524. [PMID: 39671058 PMCID: PMC11929943 DOI: 10.1007/s11548-024-03298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE The use of computer-assisted virtual surgical planning (VSP) for craniosynostosis surgery is gaining increasing implementation in the clinics. However, accurately transferring the preoperative planning data to the operating room remains challenging. We introduced and investigated a fully digital workflow to perform fronto-orbital advancement (FOA) surgery using 3D-printed patient-specific implants (PSIs) and cold-ablation robot-guided laser osteotomy. This novel approach eliminates the need for traditional surgical templates while enhancing precision and customization, offering a more streamlined and efficient surgical process. METHODS Computed tomography data of a patient with craniosynostosis were used to digitally reconstruct the skull and to perform VSP of the FOA. In total, six PSIs per skull were 3D-printed with a medical-grade bioresorbable composite using the Arburg Plastic Freeforming technology. The planned osteotomy paths and the screw holes, including their positions and axis angles, were digitally transferred to the cold-ablation robot-guided osteotome interface. The osteotomies were performed on 3D-printed patient skull models. The implants, osteotomy and final FOA results were scanned and compared to the VSP data. RESULTS The osteotomy deviations for the skulls indicated an overall maximum distance of 1.7 mm, a median deviation of 0.44 mm, and a maximum root mean square (RMS) error of 0.67 mm. The deviation of the point-to-point surface comparison of the FOA with the VSP data resulted in a median accuracy of 1.27 mm. Accessing the orbital cavity with the laser remained challenging. CONCLUSION This in vitro study showcases a novel FOA technique by effectively combining robot-guided laser osteotomy with 3D-printed patient-specific implants, eliminating the need for surgical templates and achieving high accuracy in bone cutting and positioning. The workflow holds promise for reducing preoperative planning time and increasing surgical efficiency. Further studies on bone tissue are required to validate the safety and effectiveness of this approach, especially in addressing the challenges of pediatric craniofacial surgery.
Collapse
Affiliation(s)
- Michaela Maintz
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Clinic Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Nora Desan
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
- Clinic Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland.
| | - Jörg Beinemann
- Clinic Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Michel Beyer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Clinic Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Daniel Seiler
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Philipp Honigmann
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Hand- and Peripheral Nerve Surgery, Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland, Bruderholz Liestal Laufen, Switzerland
- Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
- Division of Pediatric Neurosurgery, Children's University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
- Division of Pediatric Neurosurgery, Children's University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Philippe C Cattin
- Center of Medical Image Analysis and Navigation (CIAN), Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland
| | - Florian M Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Clinic Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Maintz M, Tourbier C, de Wild M, Cattin PC, Beyer M, Seiler D, Honigmann P, Sharma N, Thieringer FM. Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application. 3D Print Med 2024; 10:13. [PMID: 38639834 PMCID: PMC11031859 DOI: 10.1186/s41205-024-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. METHODS This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. RESULTS 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. CONCLUSIONS This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
Collapse
Affiliation(s)
- Michaela Maintz
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Spitalstrasse 21, Basel, Switzerland
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Hegenheimermattweg 167C, Allschwil, Switzerland
- Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW, Hofackerstrasse 30, Muttenz, Switzerland
| | - Céline Tourbier
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Spitalstrasse 21, Basel, Switzerland.
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Hegenheimermattweg 167C, Allschwil, Switzerland.
| | - Michael de Wild
- Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW, Hofackerstrasse 30, Muttenz, Switzerland
| | - Philippe C Cattin
- Department of Biomedical Engineering, Center of Medical Image Analysis and Navigation (CIAN), University of Basel, Hegenheimermattweg 167C, Allschwil, Basel, Switzerland
| | - Michel Beyer
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Spitalstrasse 21, Basel, Switzerland
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Hegenheimermattweg 167C, Allschwil, Switzerland
| | - Daniel Seiler
- Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW, Hofackerstrasse 30, Muttenz, Switzerland
| | - Philipp Honigmann
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Hegenheimermattweg 167C, Allschwil, Switzerland
- Department of Orthopaedic Surgery and Traumatology, Hand- and peripheral Nerve Surgery, Kantonsspital Baselland, Bruderholz| Liestal| Laufen, Switzerland
- Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Neha Sharma
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Spitalstrasse 21, Basel, Switzerland
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Hegenheimermattweg 167C, Allschwil, Switzerland
| | - Florian M Thieringer
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Spitalstrasse 21, Basel, Switzerland
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Hegenheimermattweg 167C, Allschwil, Switzerland
| |
Collapse
|
4
|
Reconstructive Surgery. J Oral Maxillofac Surg 2023; 81:E263-E299. [PMID: 37833026 DOI: 10.1016/j.joms.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
|
5
|
Titanium or Biodegradable Osteosynthesis in Maxillofacial Surgery? In Vitro and In Vivo Performances. Polymers (Basel) 2022; 14:polym14142782. [PMID: 35890557 PMCID: PMC9316877 DOI: 10.3390/polym14142782] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosynthesis systems are used to fixate bone segments in maxillofacial surgery. Titanium osteosynthesis systems are currently the gold standard. However, the disadvantages result in symptomatic removal in up to 40% of cases. Biodegradable osteosynthesis systems, composed of degradable polymers, could reduce the need for removal of osteosynthesis systems while avoiding the aforementioned disadvantages of titanium osteosyntheses. However, disadvantages of biodegradable systems include decreased mechanical properties and possible foreign body reactions. In this review, the literature that focused on the in vitro and in vivo performances of biodegradable and titanium osteosyntheses is discussed. The focus was on factors underlying the favorable clinical outcome of osteosyntheses, including the degradation characteristics of biodegradable osteosyntheses and the host response they elicit. Furthermore, recommendations for clinical usage and future research are given. Based on the available (clinical) evidence, biodegradable copolymeric osteosyntheses are a viable alternative to titanium osteosyntheses when applied to treat maxillofacial trauma, with similar efficacy and significantly lower symptomatic osteosynthesis removal. For orthognathic surgery, biodegradable copolymeric osteosyntheses are a valid alternative to titanium osteosyntheses, but a longer operation time is needed. An osteosynthesis system composed of an amorphous copolymer, preferably using ultrasound welding with well-contoured shapes and sufficient mechanical properties, has the greatest potential as a biocompatible biodegradable copolymeric osteosynthesis system. Future research should focus on surface modifications (e.g., nanogel coatings) and novel biodegradable materials (e.g., magnesium alloys and silk) to address the disadvantages of current osteosynthesis systems.
Collapse
|
6
|
Santos Silva T, Melo Soares M, Oliveira Carreira AC, de Sá Schiavo Matias G, Coming Tegon C, Massi M, de Aguiar Oliveira A, da Silva Júnior LN, Costa de Carvalho HJ, Doná Rodrigues Almeida GH, Silva Araujo M, Fratini P, Miglino MA. Biological Characterization of Polymeric Matrix and Graphene Oxide Biocomposites Filaments for Biomedical Implant Applications: A Preliminary Report. Polymers (Basel) 2021; 13:3382. [PMID: 34641197 PMCID: PMC8512758 DOI: 10.3390/polym13193382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Carbon nanostructures application, such as graphene (Gr) and graphene oxide (GO), provides suitable efforts for new material acquirement in biomedical areas. By aiming to combine the unique physicochemical properties of GO to Poly L-lactic acid (PLLA), PLLA-GO filaments were produced and characterized by X-ray diffraction (XRD). The in vivo biocompatibility of these nanocomposites was performed by subcutaneous and intramuscular implantation in adult Wistar rats. Evaluation of the implantation inflammatory response (21 days) and mesenchymal stem cells (MSCs) with PLLA-GO took place in culture for 7 days. Through XRD, new crystallographic planes were formed by mixing GO with PLLA (PLLA-GO). Using macroscopic analysis, GO implanted in the subcutaneous region showed particles' organization, forming a structure similar to a ribbon, without tissue invasion. Histologically, no tissue architecture changes were observed, and PLLA-GO cell adhesion was demonstrated by scanning electron microscopy (SEM). Finally, PLLA-GO nanocomposites showed promising results due to the in vivo biocompatibility test, which demonstrated effective integration and absence of inflammation after 21 days of implantation. These results indicate the future use of PLLA-GO nanocomposites as a new effort for tissue engineering (TE) application, although further analysis is required to evaluate their proliferative capacity and viability.
Collapse
Affiliation(s)
- Thamires Santos Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Marcelo Melo Soares
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Carolina Coming Tegon
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Marcos Massi
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Andressa de Aguiar Oliveira
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Leandro Norberto da Silva Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Hianka Jasmyne Costa de Carvalho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| |
Collapse
|
7
|
A Novel Technique to Secure the Skull Post in a Thin Skull Allowing for Surgical Navigation in Infants. J Oral Maxillofac Surg 2019; 78:284.e1-284.e4. [PMID: 31705863 DOI: 10.1016/j.joms.2019.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 11/23/2022]
Abstract
Several surgical procedures have been described to correct the deformities associated with craniosynostosis. To simplify the prediction of results, virtual planning techniques and image-guided surgery have been used. Digital planning can be transferred to the operating room using osteotomy and cutting guides or surgical navigation. We describe a novel bone fixation method that allows for anchoring of a cranial dynamic reference frame (DRF) in a steady manner. DRF can be used for registration and as a reference for surgical navigation in an infant's skull. We describe this novel technique to overcome the problems of DRF fixation on an infant's thin and weak calvarium. We fixed the DRF to the cranium using this new system. A 6-hole X-shaped miniplate was placed using 5 screws, leaving 1 of the central holes free. The self-drilling screw that anchors the DRF in position was placed in the free central hole, avoiding calvarial bone breakage and allowing for surgical navigation. To the best of our knowledge, the present study is the first report of this DRF anchorage modification for surgical navigation during surgery of craniosynostosis in an infant.
Collapse
|
8
|
Wagner M, Gander T, Blumer M, Valdec S, Schumann P, Essig H, Rücker M. [CAD/CAM Revolution in Craniofacial Reconstruction]. PRAXIS 2019; 108:321-328. [PMID: 30940044 DOI: 10.1024/1661-8157/a003185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CAD/CAM Revolution in Craniofacial Reconstruction Abstract. The face is an important part of the personality and at the same time fulfils a variety of tasks. Aesthetics and function form a unique unit. The formation of the field of oral and maxillofacial surgery began in the first decades of the last century. It includes the prevention, diagnosis, therapy and rehabilitation of diseases, injuries, malformations and changes of the complex structures of the face, oral cavity, jaw and teeth. In the meantime, oral and maxillofacial surgery has arrived in the 21st century. Today's oral and maxillofacial surgery is a link between medicine and dentistry and a protagonist in the implementation of digital workflows in clinical care. Individual solutions with patient-specific implants are the rule, computer-assisted techniques support the surgeon in the planning and performing of surgical procedures. This article intends to give you an insight into how our patients benefit from advanced technologies.
Collapse
Affiliation(s)
- Maximilian Wagner
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| | - Thomas Gander
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| | - Michael Blumer
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| | - Silvio Valdec
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| | - Paul Schumann
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| | - Harald Essig
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| | - Martin Rücker
- 1 Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsspital Zürich
| |
Collapse
|
9
|
Oh JH. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg 2018; 40:2. [PMID: 29430438 PMCID: PMC5797724 DOI: 10.1186/s40902-018-0141-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.
Collapse
Affiliation(s)
- Ji-Hyeon Oh
- Department of Oral and MaxilloFacial Surgery, Dental Hospital, Gangneung-Wonju National University, Gangneung, South Korea
| |
Collapse
|
10
|
Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation. Int J Biomater 2017. [PMID: 29056968 DOI: 10.1155/2017/1256537.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.
Collapse
|
11
|
Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation. Int J Biomater 2017; 2017:1256537. [PMID: 29056968 PMCID: PMC5606095 DOI: 10.1155/2017/1256537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022] Open
Abstract
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.
Collapse
|
12
|
Linz C, Collmann H, Kübler A, Böhm H, Schweitzer T. Patient-specific biodegradable implant in pediatric craniofacial surgery. J Craniomaxillofac Surg 2017; 45:1111. [PMID: 28601300 DOI: 10.1016/j.jcms.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022] Open
Affiliation(s)
- Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, 97070 Würzburg, Germany.
| | - Hartmut Collmann
- Department of Neurosurgery, Section of Pediatric Neurosurgery, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Alexander Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Hartmut Böhm
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Tilmann Schweitzer
- Department of Neurosurgery, Section of Pediatric Neurosurgery, University Hospital Würzburg, 97070 Würzburg, Germany
| |
Collapse
|