1
|
Cousseau CPV, Sorroche BP, de Jesus Teixeira R, de Carvalho AC, Melendez ME, de Castro Capuzzo R, Laus AC, da Silva LS, de Menezes NS, Carvalho AL, Arantes LMRB. miR-99a-5p as a biomarker for lymph node metastasis prediction in oral squamous cell carcinoma patients. Head Neck 2023; 45:2489-2497. [PMID: 37522839 DOI: 10.1002/hed.27459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Metastatic lymph node involvement influences therapy decisions and serves as a prognostic indicator in oral squamous cell carcinoma (OSCC). However, many early-stage patients with clinically negative lymph nodes exhibit no metastasis upon surgical staging. This study aimed to identify differentially expressed miRNAs capable of distinguishing pathologically positive (pN+) from negative (pN0) nodes in OSCC patients without clinical evidence of lymph node metastases (cN0). METHODS Expression levels of 798 miRNAs were assessed in tumor samples from 10 pN+ and 10 pN0 patients using the Nanostring nCounter platform. Validation was performed in an independent cohort of 15 pN+ and 24 pN0 patients through RT-qPCR. RESULTS Eight miRNAs exhibited differential expression between pN0 and pN+ patients. Notably, hsa-miR-99a-5p demonstrated high sensitivity and specificity in predicting patients at higher risk of positive lymph nodes. CONCLUSIONS These findings highlight hsa-miR-99a-5p as a potential biomarker for detecting lymph node metastasis in primary OSCC tumors.
Collapse
Affiliation(s)
| | | | | | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | |
Collapse
|
2
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
3
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
4
|
Sais D, Munger K, Tran N. The dynamic interactome of microRNAs and the human papillomavirus in head and neck cancers. Curr Opin Virol 2021; 51:87-95. [PMID: 34627109 DOI: 10.1016/j.coviro.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
The Human Papillomavirus type 16 is a major etiologic factor for a subset of Head and Neck cancers. These cancers of the oropharyngeal region are growing, and it is expected to exceed cervical cancers in the near future. The major oncogenes E6 and E7 mediate many of the early transformation stages targeting p53 and other tumour suppressor genes. The majority of this regulation is centred on protein coding genes but more recently small non-coding RNAs, such as miRNAs are also regulated by HPV16. However, the system-wide impact of HPV16 on miRNAs is yet to be fully understood. To fully gauge the overall relationship between HPV16 and miRNAs, several studies have devised dynamic interactomes which encompass viral oncogenes, miRNAs and gene targets. These interactomes map potential pathways which permit the identification of possible mechanistic links. Our review will discuss the latest developments in using viral interactomes to understand viral mechanisms and how these approaches may aid in the elucidation of potential druggable pathways.
Collapse
Affiliation(s)
- Dayna Sais
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Karl Munger
- Biochemistry Program, Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nham Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, New South Wales, Australia.
| |
Collapse
|
5
|
Chen W, Zhou Y, Ma Z, Xie Y. Expressions of miR-590 in Oral Lichen Planus and Oral Squamous Cell Carcinoma Tissues and Clinical Values. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wanlu Chen
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Fujian Medical University
| | - Yong Zhou
- Department of Implantology, School and Hospital of Stomatology, Fujian Medical University
| | - Zhongxiong Ma
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Fujian Medical University
| | - Yunde Xie
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Fujian Medical University
| |
Collapse
|
6
|
Zhao G, Li CX, Guo C, Zhu H. [MicroRNA model that can predict the prognosis of oral squamous cell carcinoma based on bioinformatics analysis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:622-627. [PMID: 33377337 DOI: 10.7518/hxkq.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The microRNA (miRNA) prognostic model can predict the prognosis of patients with oral squamous cell carcinoma (OSCC) on the basis of bioinformatics. Moreover, it can accurately group OSCC patients to improve targeted treatment. METHODS We downloaded the miRNA and mRNA expression profile and clinical data of OSCC from The Cancer Genome Atlas (TCGA). The risk score model of miRNA was screened and established by univariate and multivariate Cox regression models. The performance of this prognostic model was tested by receiver operating characteristic (ROC) curves and area under the curve (AUC). The target genes of six miRNAs were predicted and intersected with differential mRNA for enrichment analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and gene ontology (GO) enrichment analysis. A protein protein interaction network (PPI) was constructed to screen hub genes. RESULTS By using univariate and multivariate Cox regression analyses, the prognostic risk model was obtained. The AUC of the ROC curve for predicting 5-year survival in the training group, test group, and whole cohort were 0.757, 0.673, and 0.724, respectively. Furthermore, univariate Cox regression and multivariate Cox regression considering other clinical factors showed that the six-miRNAs signature could serve as an independent prognostic factor (P<0.001). The top 10 hub genes in the PPI network screened by intersecting target genes include CCNB1, EGF, KIF23, MCM10, ITGAV, MELK, PLK4, ADCY2, CENPF, and TRIP13. EGF and ADCY2 were associated with survival prognosis (P<0.05). CONCLUSIONS The six-miRNAs signature could efficiently function as a novel and independent prognostic model for OSCC patients, which may be a new method to guide the accurate targeting treatment of OSCC.
Collapse
Affiliation(s)
- Ge Zhao
- Dept. of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Chang-Xue Li
- Dept. of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Chao Guo
- Dept. of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hui Zhu
- Dept. of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
7
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Deutsch FT, Khoury SJ, Sunwoo JB, Elliott MS, Tran NT. Application of salivary noncoding microRNAs for the diagnosis of oral cancers. Head Neck 2020; 42:3072-3083. [PMID: 32686879 DOI: 10.1002/hed.26348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Oral cancer is on the rise globally and survival rates, despite improvements in clinical care, have not significantly improved. Early detection followed by immediate intervention is key to improving patient outcomes. The use of biomarkers has changed the diagnostic landscape for many cancers. For oral cancers, visual inspection followed by a tissue biopsy is standard practice. The discovery of microRNAs as potential biomarkers has attracted clinical interest but several challenges remain. These microRNAs can be found in bodily fluids such as blood and saliva which have been investigated as potential sources of biomarker discovery. As oral cancer is localized within the oral cavity, saliva may contain clinically relevant molecular markers for disease detection. Our review provides an outline of the current advances for the application of salivary microRNAs in oral cancer. We also provide a technical guide for the processing of salivary RNAs to ensure accurate clinical measurement and validation.
Collapse
Affiliation(s)
- Fiona T Deutsch
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Samantha J Khoury
- Office of the Deputy Vice Chancellor Innovation and Enterprise, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Michael S Elliott
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Nham T Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, New South Wales, Australia.,The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
9
|
Park IJ, Yu YS, Mustafa B, Park JY, Seo YB, Kim GD, Kim J, Kim CM, Noh HD, Hong SM, Kim YW, Kim MJ, Ansari AA, Buonaguro L, Ahn SM, Yu CS. A Nine-Gene Signature for Predicting the Response to Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Cancers (Basel) 2020; 12:cancers12040800. [PMID: 32225122 PMCID: PMC7226472 DOI: 10.3390/cancers12040800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Preoperative chemoradiotherapy (PCRT) and subsequent surgery is the standard multimodal treatment for locally advanced rectal cancer (LARC), albeit PCRT response varies among the individuals. This creates a dire necessity to identify a predictive model to forecast treatment response outcomes and identify patients who would benefit from PCRT. In this study, we performed a gene expression study using formalin-fixed paraffin-embedded (FFPE) tumor biopsy samples from 156 LARC patients (training cohort n = 60; validation cohort n = 96); we identified the nine-gene signature (FGFR3, GNA11, H3F3A, IL12A, IL1R1, IL2RB, NKD1, SGK2, and SPRY2) that distinctively differentiated responders from non-responders in the training cohort (accuracy = 86.9%, specificity = 84.8%, sensitivity = 81.5%) as well as in an independent validation cohort (accuracy = 81.0%, specificity = 79.4%, sensitivity = 82.3%). The signature was independent of all pathological and clinical features and was robust in predicting PCRT response. It is readily applicable to the clinical setting using FFPE samples and Food and Drug Administration (FDA) approved hardware and reagents. Predicting the response to PCRT may aid in tailored therapies for respective responders to PCRT and improve the oncologic outcomes for LARC patients.
Collapse
Affiliation(s)
- In Ja Park
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Yun Suk Yu
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Bilal Mustafa
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21565, Korea;
| | - Jin Young Park
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Yong Bae Seo
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Gun-Do Kim
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Jinpyo Kim
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Chang Min Kim
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Hyun Deok Noh
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.W.K.); (M.-J.K.)
| | - Yeon Wook Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.W.K.); (M.-J.K.)
| | - Mi-Ju Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.W.K.); (M.-J.K.)
| | - Adnan Ahmad Ansari
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Incheon 21565, Korea;
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”-IRCCS, 80131 Naples, Italy;
| | - Sung-Min Ahn
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (S.-M.A.); (C.-S.Y.); Tel.: +82-010-3648-7437 (S.-M.A.); +82-2-3010-3494 (C.-S.Y.)
| | - Chang-Sik Yu
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (S.-M.A.); (C.-S.Y.); Tel.: +82-010-3648-7437 (S.-M.A.); +82-2-3010-3494 (C.-S.Y.)
| |
Collapse
|
10
|
Chen S, Shi F, Zhang W, Zhou Y, Huang J. miR-744-5p Inhibits Non-Small Cell Lung Cancer Proliferation and Invasion by Directly Targeting PAX2. Technol Cancer Res Treat 2020; 18:1533033819876913. [PMID: 31522607 PMCID: PMC6747846 DOI: 10.1177/1533033819876913] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer is one of the leading causes of cancer-related death worldwide. MicroRNAs have been characterized as critical regulators for cancer progression including non-small cell lung cancer. This work explored microRNA-744-5p expression in non-small cell lung cancer cell lines and normal cell line using quantitative real-time polymerase chain reaction. Connection of microRNA-744-5p and paired box 2 was analyzed with bioinformatic analysis, luciferase activity reporter assay, and Western blot. Effects of microRNA-744-5p or paired box 2 expression on non-small cell lung cancer cell behaviors were analyzed using a series of in vitro experiments. MicroRNA-744-5p was found to have decreased expression in non-small cell lung cancer cell lines compared with normal cell line. Paired box 2 was identified as a direct target for microRNA-744-5p in non-small cell lung cancer. Overexpression of microRNA-744-5p inhibits non-small cell lung cancer cell proliferation, colony formation, and cell invasion in vitro through targeting paired box 2. The present study provided novel insights into the biological functions of microRNA-744-5p in non-small cell lung cancer.
Collapse
Affiliation(s)
- Shaolin Chen
- Emergency Department, Jinan University, The Second Clinical Medical College, Shenzhen, People's Republic of China
| | - Fei Shi
- Emergency Department, Jinan University, The Second Clinical Medical College, Shenzhen, People's Republic of China
| | - Weixing Zhang
- Emergency Critical Center, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Yuqi Zhou
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|