1
|
Hussain B, Chen JS, Huang SW, Tsai IS, Rathod J, Hsu BM. Underpinning the ecological response of mixed chlorinated volatile organic compounds (CVOCs) associated with contaminated and bioremediated groundwaters: A potential nexus of microbial community structure and function for strategizing efficient bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122215. [PMID: 37473850 DOI: 10.1016/j.envpol.2023.122215] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Understanding the structure, dynamics, and functionality of microbial communities is essential for developing sustainable and effective bioremediation strategies, particularly for sites contaminated with mixed chlorinated volatile organic compounds (CVOCs), which can make the biodegradation process more complex and challenging. In this study, 16S rRNA amplicon sequencing revealed a significant change in microbial distribution in response to CVOCs contamination. The loss of sensitive taxa such as Proteobacteria and Acidobacteriota was observed, while CVOCs-resistant taxa such as Campilobacterota were found significantly enriched in contaminated sites. Additionally, varying abundances of crucial enzymes involved in the sequential biodegradation of CVOCs were expressed depending on the contamination level. Association analysis revealed that specific genera such as Sulfurospirillum, Azospira, Trichlorobacter, Acidiphilium, and Magnetospririllum could relatively survive under higher levels of CVOC contamination, whereas pH, ORP and temperature had a negative influence in their abundance and distribution. However, Dechloromonas, Thiobacillus, Pseudarcicella, Hydrogenophaga, and Sulfuritalea showed a negative relationship with CVOC contamination, highlighting their sensitivity towards CVOC contamination. These findings provide valuable insights into the relationship among ecological responses, the groundwater bacterial community, and their functionality in response to mixed CVOC contamination, offering a fundamental basis for developing effective and sustainable bioremediation strategies for CVOC-contaminated groundwater systems.
Collapse
Affiliation(s)
- Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Shih-Wei Huang
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan
| | - I-Sen Tsai
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi, Taiwan
| | - Jagat Rathod
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance and Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
2
|
Fenyvesi É, Sohajda T. Cyclodextrin-enabled green environmental biotechnologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20085-20097. [PMID: 35064478 DOI: 10.1007/s11356-021-18176-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Most of the organic compounds contaminating the environment can form inclusion complexes with cyclodextrins resulting in enhanced solubility (a benefit in soil remediation) or just the opposite: reduced mobility by sorption (a benefit in wastewater treatment). Combining biotechnologies with cyclodextrin, a renewable and biodegradable material, green environmental technologies of high efficiency were developed. For instance, the cyclodextrin-enabled soil washing/flushing technologies combined with bioremediation have been demonstrated in full-scale field experiments. The efficiency of tertiary wastewater treatment by sorption of non-biodegradable xenobiotics, such as residual pharmaceutics, was proved. The biofilm formation in fouling processes can be prevented or reduced either by applying cyclodextrin-based coatings or by manipulation of quorum sensing (bacterial communication) via capturing signal molecules.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd, Budapest, Hungary.
| | - Tamás Sohajda
- CycloLab Cyclodextrin R&D Laboratory Ltd, Budapest, Hungary
| |
Collapse
|
3
|
Chen WT, Chen KF, Surmpalli RY, Zhang TC, Ou JH, Kao CM. Bioremediation of trichloroethylene-polluted groundwater using emulsified castor oil for slow carbon release and acidification control. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1673. [PMID: 34861087 DOI: 10.1002/wer.1673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the emulsified castor oil (ECO) substrate was developed for a long-term supplement of biodegradable carbon with pH buffering capacity to anaerobically bioremediate trichloroethylene (TCE)-polluted groundwater. The ECO was produced by mixing castor oil, surfactants (sapindales and soya lecithin [SL]), vitamin complex, and a citrate/sodium phosphate dibasic buffer system together for slow carbon release. Results of the emulsification experiments and microcosm tests indicate that ECO emulsion had uniform small droplets (diameter = 539 nm) with stable oil-in-water characteristics. ECO had a long-lasting, dispersive, negative zeta potential (-13 mv), and biodegradable properties (viscosity = 357 cp). Approximately 97% of TCE could be removed with ECO supplement after a 95-day operational period without the accumulation of TCE dechlorination byproducts (dichloroethylene and vinyl chloride). The buffer system could neutralize acidified groundwater, and citrate could be served as a primary substrate. ECO addition caused an abrupt TCE adsorption at the initial stage and the subsequent removal of adsorbed TCE. Results from the next generation sequences and real-time polymerase chain reaction (PCR) indicate that the increased microbial communities and TCE-degrading bacterial consortia were observed after ECO addition. ECO could be used as a pH-control and carbon substrate to enhance anaerobic TCE biodegradation effectively. PRACTITIONER POINTS: Emulsified castor oil (ECO) contains castor oil, surfactants, and buffer for a slow carbon release and pH control. ECO can be a long-term carbon source for trichloroethylene (TCE) dechlorination without causing acidification. TCE removal after ECO addition is due to adsorption and reductive dechlorination mechanisms.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Taiwan
| | - Rao Y Surmpalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, USA
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan
| |
Collapse
|
4
|
Morillo E, Madrid F, Lara-Moreno A, Villaverde J. Soil bioremediation by cyclodextrins. A review. Int J Pharm 2020; 591:119943. [DOI: 10.1016/j.ijpharm.2020.119943] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/12/2023]
|
5
|
Chaudhuri S, DiScenza DJ, Boving TB, Burke A, Levine M. Use of α-cyclodextrin to Promote Clean and Environmentally Friendly Disinfection of Phenolic Substrates via Chlorine Dioxide Treatment. Front Chem 2020; 8:641. [PMID: 32850657 PMCID: PMC7413072 DOI: 10.3389/fchem.2020.00641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 12/04/2022] Open
Abstract
The use of chlorine dioxide to disinfect drinking water and ameliorate toxic components of wastewater has significant advantages in terms of providing safe water. Nonetheless, significant drawbacks toward such usage remain. These drawbacks include the fact that toxic byproducts of the disinfection agents are often formed, and the complete removal of such agents can be challenging. Reported herein is one approach to solving this problem: the use of α-cyclodextrin to affect the product distribution in chlorine dioxide-mediated decomposition of organic pollutants. The presence of α-cyclodextrin leads to markedly more oxidation and less aromatic chlorination, in a manner that is highly dependent on analyte structure and other reaction conditions. Mechanistic hypotheses are advanced to explain the cyclodextrin effect, and the potential for use of α-cyclodextrin for practical wastewater treatment is also discussed.
Collapse
Affiliation(s)
- Sauradip Chaudhuri
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dana J DiScenza
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Thomas B Boving
- Department of Geosciences/Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, United States
| | - Alan Burke
- Independent Researcher, North Kingstown, RI, United States
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
6
|
Khan NA, Johnson MD, Kubicki JD, Holguin FO, Dungan B, Carroll KC. Cyclodextrin-enhanced 1,4-dioxane treatment kinetics with TCE and 1,1,1-TCA using aqueous ozone. CHEMOSPHERE 2019; 219:335-344. [PMID: 30551099 DOI: 10.1016/j.chemosphere.2018.11.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Enhanced reactivity of aqueous ozone (O3) with hydroxypropyl-β-cyclodextrin (HPβCD) and its impact on relative reactivity of O3 with contaminants were evaluated herein. Oxidation kinetics of 1,4-dioxane, trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA) using O3 in single and multiple contaminant systems, with and without HPβCD, were quantified. 1,4-Dioxane decay rate constants for O3 in the presence of HPβCD increased compared to those without HPβCD. Density functional theory molecular modeling confirmed that formation of ternary complexes with HPβCD, O3, and contaminant increased reactivity by increasing reactant proximity and through additional reactivity within the HPβCD cavity. In the presence of chlorinated co-contaminants, the oxidation rate constant of 1,4-dioxane was enhanced. Use of HPβCD enabled O3 reactivity within the HPβCD cavity and enhanced 1,4-dioxane treatment rates without inhibition in the presence of TCE, TCA, and radical scavengers including NaCl and bicarbonate. Micro-environmental chemistry within HPβCD inclusion cavities mediated contaminant oxidation reactions with increased reaction specificity.
Collapse
Affiliation(s)
- Naima A Khan
- Water Science and Management Program, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA; Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Michael D Johnson
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C P.O. Box 30001, Las Cruces, NM 88003, USA
| | - James D Kubicki
- Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA
| | - F Omar Holguin
- Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Barry Dungan
- Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA
| | - Kenneth C Carroll
- Water Science and Management Program, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA; Plant & Environmental Science, New Mexico State University, MSC 3Q P.O. Box 30003, Las Cruces, NM 88003, USA.
| |
Collapse
|
7
|
Khan NA, Johnson MD, Carroll KC. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 210:31-41. [PMID: 29478672 DOI: 10.1016/j.jconhyd.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.
Collapse
Affiliation(s)
- Naima A Khan
- Water Science and Management, Plant & Environmental Science, New Mexico State University, MSC 3167, P.O. Box 30001, Las Cruces, NM 88003-8001, United States
| | - Michael D Johnson
- Department of Chemistry of and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8003, United States
| | - Kenneth C Carroll
- Water Science and Management, Plant & Environmental Science, New Mexico State University, MSC 3167, P.O. Box 30001, Las Cruces, NM 88003-8001, United States.
| |
Collapse
|