1
|
Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkhorasani F, Rasool Riyadh Abdulwahid AH, Rezaei-Tazangi F, Kavei M, Rezaei R, Mobarak H, Aref AR, Fang W. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. ENVIRONMENTAL RESEARCH 2023; 239:117263. [PMID: 37797672 DOI: 10.1016/j.envres.2023.117263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | | | - Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Amirali Momayezi
- School of Chemical Engineering, Iran University of Science, and Technology, Tehran, Iran
| | | | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Mohammed Kavei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Pratumyot K, Yuntasiri P, Khunsuk PO, Phuangkaew T, Sittplangkoon C, Pattarakankul T, Palaga T, Kiatkamjornwong S, Hoven VP. Pyrene-Labeled and Quaternized Chitosan: Synthesis, Characterization, and Its Potential Application for Fluorescently Trackable Nucleic Acid Delivery into Cells. Biomacromolecules 2023; 24:4005-4018. [PMID: 37549394 DOI: 10.1021/acs.biomac.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
A chitosan derivative (Pyr-CS-HTAP) having pyrene (Pyr) and N-[(2-hydroxyl-3-trimethylammonium)] propyl (HTAP) units conjugated at C6 and C2 positions, respectively, was synthesized and characterized. Dynamic light scattering and scanning electron microscopy revealed that Pyr-CS-HTAP self-assembled into spherical nanoparticles with a hydrodynamic diameter of 211 ± 5 nm and a ζ-potential of +49 mV. The successful binding of Pyr-CS-HTAP with nucleic acid was ascertained by fluorescence resonance energy-transfer analysis and gel electrophoresis. Pyr-CS-HTAP facilitated the cellular uptake of nucleic acid up to 99%. Co-localization analysis using fluorescence microscopy revealed the endosomal escape of the Pyr-CS-HTAP/nucleic acid complexes and the successful release of the nucleic acid cargoes from the polyplexes into the nucleus. It is strongly believed that Pyr-CS-HTAP can potentially be developed into a fluorescently trackable gene delivery system in the future.
Collapse
Affiliation(s)
- Kornkanya Pratumyot
- Organic Synthesis, Electrochemistry and Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Pongsakorn Yuntasiri
- Organic Synthesis, Electrochemistry and Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Phim-On Khunsuk
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tinnakorn Phuangkaew
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Chutamath Sittplangkoon
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Suda Kiatkamjornwong
- FRST, Academy of Science, Office of the Royal Society, Sanam Suea Pa, Khet Dusit, Bangkok 10300, Thailand
- Office of Research Affairs, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022; 14:pharmaceutics14081586. [PMID: 36015212 PMCID: PMC9415718 DOI: 10.3390/pharmaceutics14081586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Collapse
|
4
|
Cardoso JF, Perasoli FB, Almeida TC, Marques MBDF, Toledo CR, Gil PO, Tavares HDS, Da Paz MC, Mussel WDN, Magalhães JT, Silva GND, Da Silva-Cunha A, Granjeiro PA, Klibanov AM, Da Silva GR. Vancomycin-loaded N,N-dodecyl,methyl-polyethylenimine nanoparticles coated with hyaluronic acid to treat bacterial endophthalmitis: Development, characterization, and ocular biocompatibility. Int J Biol Macromol 2020; 169:330-341. [PMID: 33310092 DOI: 10.1016/j.ijbiomac.2020.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
Vancomycin-loaded N,N-dodecyl,methyl-polyethylenimine nanoparticles coated with hyaluronic acid (VCM-DMPEI nanoparticles/HA) were synthesized as an adjuvant for the treatment of bacterial endophthalmitis. The nanoparticles were formulated by experimental statistical design, thoroughly characterized, and evaluated in terms of bactericidal activity and both in vitro and in vivo ocular biocompatibility. The VCM-DMPEI nanoparticles/HA were 154 ± 3 nm in diameter with a 0.197 ± 0.020 polydispersity index; had a + 26.4 ± 3.3 mV zeta potential; exhibited a 93% VCM encapsulation efficiency; and released 58% of the encapsulated VCM over 96 h. VCM and DMPEI exhibited a synergistic bactericidal effect. The VCM-DMPEI nanoparticles/HA were neither toxic to ARPE-19 cells nor irritating to the chorioallantoic membrane. Moreover, the VCM-DMPEI nanoparticles/HA did not induce modifications in retinal functions, as determined by electroretinography, and in the morphology of the ocular tissues. In conclusion, the VCM-DMPEI nanoparticles/HA may be a useful therapeutic adjuvant to treat bacterial endophthalmitis.
Collapse
Affiliation(s)
- Jéssica Ferreira Cardoso
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35.400-000, Brazil
| | | | - Tamires Cunha Almeida
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35.400-000, Brazil
| | | | - Cibele Rodrigues Toledo
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | | | | | - Mariana Campos Da Paz
- Federal University of São João del-Rei, Divinópolis, Minas Gerais 35.501-296, Brazil
| | - Wagner Da Nova Mussel
- Chemistry Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | | | - Glenda Nicioli Da Silva
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35.400-000, Brazil.
| | - Armando Da Silva-Cunha
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31.270-901, Brazil.
| | | | - Alexander M Klibanov
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
5
|
Mainini F, Eccles MR. Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy. Molecules 2020; 25:E2692. [PMID: 32532030 PMCID: PMC7321291 DOI: 10.3390/molecules25112692] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) uses small interfering RNAs (siRNAs) to mediate gene-silencing in cells and represents an emerging strategy for cancer therapy. Successful RNAi-mediated gene silencing requires overcoming multiple physiological barriers to achieve efficient delivery of siRNAs into cells in vivo, including into tumor and/or host cells in the tumor micro-environment (TME). Consequently, lipid and polymer-based nanoparticle siRNA delivery systems have been developed to surmount these physiological barriers. In this article, we review the strategies that have been developed to facilitate siRNA survival in the circulatory system, siRNA movement from the blood into tissues and the TME, targeted siRNA delivery to the tumor or specific cell types, cellular uptake, and escape from endosomal degradation. We also discuss the use of various types of lipid and polymer-based carriers for cancer therapy, including a section on anti-tumor nanovaccines enhanced by siRNAs. Finally, we review current and recent clinical trials using NPs loaded with siRNAs for cancer therapy. The siRNA cancer therapeutics field is rapidly evolving, and it is conceivable that precision cancer therapy could, in the relatively near future, benefit from the combined use of cancer therapies, for example immune checkpoint blockade together with gene-targeting siRNAs, personalized for enhancing and fine-tuning a patient's therapeutic response.
Collapse
Affiliation(s)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
6
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Huang G, Chen Q, Wu W, Wang J, Chu PK, Bai H, Tang G. Reconstructed chitosan with alkylamine for enhanced gene delivery by promoting endosomal escape. Carbohydr Polym 2019; 227:115339. [PMID: 31590870 DOI: 10.1016/j.carbpol.2019.115339] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 11/25/2022]
Abstract
Poor buffering capacity of chitosan (CS) results in insufficient intracellular gene release which poses the major barrier in gene delivery. Herein, we reconstructed pristine CS with propylamine (PA), (diethylamino) propylamine (DEAPA), and N, N-dimethyl- dipropylenetriamine (DMAMAPA) to obtain a series of alkylamine-chitosan (AA-CS). The introduction of multiple amino groups with rational ratios functionally enhance the buffering capacity of AA-CS, among which DMAPAPA-CS showed buffering capacity of 1.58 times that of chitosan. The reconstructed AA-CS functionally enhance the ability of gene binding and endosomal escape. It was observed that the DMAPAPA-CS/pDNA complexes exhibit a notable gene delivery efficiency, which promotes the functionalization of loaded pDNA. Importantly, the in vivo delivery assay reveals that the deep penetration issue can be resolved using DMAPAPA-CS gene delivery vector. Finally, the DMAPAPA-CS is applied to deliver the therapeutic p53 gene in A549 bearing mice, showing efficient therapeutic potential for cancer.
Collapse
Affiliation(s)
- Guojun Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wangteng Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; School of Medicine, Zhejiang University, Hangzhou 310019, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Dhandapani RK, Gurusamy D, Howell JL, Palli SR. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci Rep 2019; 9:8775. [PMID: 31217512 PMCID: PMC6584730 DOI: 10.1038/s41598-019-45019-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023] Open
Abstract
Mosquito-borne diseases are a major threat to human health and are responsible for millions of deaths globally each year. Vector control is one of the most important approaches used in reducing the incidence of these diseases. However, increasing mosquito resistance to chemical insecticides presents challenges to this approach. Therefore, new strategies are necessary to develop the next generation vector control methods. Because of the target specificity of dsRNA, RNAi-based control measures are an attractive alternative to current insecticides used to control disease vectors. In this study, Chitosan (CS) was cross-linked to sodium tripolyphosphate (TPP) to produce nano-sized polyelectrolyte complexes with dsRNA. CS-TPP-dsRNA nanoparticles were prepared by ionic gelation method. The encapsulation efficiency, protection of dsRNA from nucleases, cellular uptake, in vivo biodistribution, larval mortality and gene knockdown efficiency of CS-TPP-dsRNA nanoparticles were determined. The results showed that at a 5:1 weight ratio of CS-TPP to dsRNA, nanoparticles of less than 200 nm mean diameter and a positive surface charge were formed. Confocal microscopy revealed the distribution of the fed CS-TPP-dsRNA nanoparticles in midgut, fat body and epidermis of yellow fever mosquito, Aedes aegypti larvae. Bioassays showed significant mortality of larvae fed on CS-TPP-dsRNA nanoparticles. These assays also showed knockdown of a target gene in CS-TPP-dsRNA nanoparticle fed larvae. These data suggest that CS-TPP nanoparticles may be used for delivery of dsRNA to mosquito larvae.
Collapse
Affiliation(s)
| | - Dhandapani Gurusamy
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA.
| |
Collapse
|
9
|
Iranpur Mobarakeh V, Modarressi MH, Rahimi P, Bolhassani A, Arefian E, Atyabi F, Vahabpour R. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int J Biol Macromol 2019; 129:305-315. [PMID: 30738164 DOI: 10.1016/j.ijbiomac.2019.02.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Chitosan has emerged as a promising polysaccharide for gene/siRNA delivery. However, additional works will be required to modify chitosan nanoparticles. In the present study, chitosan nanoparticles were well modified to introduce anti-HIV siRNA into two mammalian cell lines, macrophage RAW 264.7 and HEK293. We first generated two stable cell lines expressing HIV-1 Tat, and then designed and generated an efficient anti-tat siRNA. The nanoparticles were prepared by using different concentrations of chitosan, polyethylenimine (PEI) and carboxymethyl dextran (CMD) in various formulations and then their physicochemical and biological properties were investigated. The results demonstrated that the combination of chitosan with both CMD and PEI significantly improved both cell viability and siRNA delivery. The modified chitosan nanoparticles (ChNPs) at the N:P ratio of 50 were approximately uniform spheres with sizes ranging from 100 to 150 nm and a positive zeta potential of about +22 mV. In both cell types, the nanoparticles noticeably increased siRNA delivery efficiency with no significant cytotoxicity or apoptosis-inducing effects compared to the control cells. In addition, the nanoparticles significantly reduced the RNA and protein expression of HIV-1 tat in both stable cells. These data show that the nanoparticle formulation could potentially be used in gene therapy, especially against HIV infection.
Collapse
Affiliation(s)
- Vahid Iranpur Mobarakeh
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Sharma D, Arora S, dos Santos Rodrigues B, Lakkadwala S, Banerjee A, Singh J. Chitosan-Based Systems for Gene Delivery. FUNCTIONAL CHITOSAN 2019:229-267. [DOI: 10.1007/978-981-15-0263-7_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Alonso S. Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomaterials. J Control Release 2018; 287:216-234. [DOI: 10.1016/j.jconrel.2018.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
|
12
|
Yang Y, Yin Y, Zhang J, Zuo T, Liang X, Li J, Shen Q. Folate and Borneol Modified Bifunctional Nanoparticles for Enhanced Oral Absorption. Pharmaceutics 2018; 10:pharmaceutics10030146. [PMID: 30181518 PMCID: PMC6161164 DOI: 10.3390/pharmaceutics10030146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023] Open
Abstract
Oral delivery is considered the preferred route of administration due to its convenience and favorable compliance. Here, docetaxel (DTX) loaded polylactic-co-glycolic acid (PLGA) nanoparticles, coated with polyethyleneimine⁻folic acid (PEI-FA) and polyethyleneimine⁻borneol (PEI-BO), were designed to enhance oral absorption (FA/BO-PLGA-NPs). The FA/BO-PLGA-NPs were spherical and smooth with an average size of (137.0 ± 2.1) nm. Encapsulation efficiency (EE%) and drug loading (DL%) were (80.3 ± 1.8)% and (2.3 ± 0.3)%, respectively. In vitro release studies showed that approximately 62.1% of DTX was released from FA/BO-PLGA-NPs in media at pH 7.4. The reverted gut sac method showed that the absorption of FA/BO-PLGA-NPs in the intestines was approximately 6.0 times that of DTX. Moreover, cellular uptake suggested that the obtained FA/BO-PLGA-NPs could be efficiently internalized into Caco-2 cells via FA-mediated active targeting and BO-mediated P-glycoprotein (P-gp) inhibition. Pharmacokinetics study demonstrated that after oral administration of DTX at a dose of 10 mg/kg in FA/BO-PLGA-NPs, the bioavailability of FA/BO-PLGA-NPs was enhanced by approximately 6.8-fold compared with that of DTX suspension. FA/BO-PLGA-NPs caused no obvious irritation to the intestines. Overall, the FA/BO-PLGA-NP formulation remarkably improved the oral bioavailability of DTX and exhibited a promising perspective in oral drug delivery.
Collapse
Affiliation(s)
- Yifan Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yunzhi Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiao Liang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jing Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
13
|
Rafael D, Andrade F, Montero S, Gener P, Seras-Franzoso J, Martínez F, González P, Florindo H, Arango D, Sayós J, Abasolo I, Videira M, Schwartz Jr. S. Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. PRECISION NANOMEDICINE 2018. [DOI: 10.29016/180629.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The search for an ideal gene delivery system is a long and laborious process in which several factors from the first idea to final formulation, including main challenges, peaks and troughs, should be deeply taken into consideration to ensure adequate biological safety and in vivo efficacy endpoints. Arachidonate 5-lipoxygenase (ALOX5), a crucial player related with cancer development and in particular with cancer stem cells malignancy. In this work we describe the process behind the development of a small interfering RNA (siRNA) delivery system to inhibit ALOX5 in cancer stem cells (CSC), as a model target gene. We started by screening chitosan polyplexes, among different types of chitosan in different complexation conditions. Due to the low silencing efficacy obtained, chitosan polyplexes were combined with Pluronic®-based polymeric micelles with recognized advantages regarding gene transfection. We tested different types of polymeric particles to improve the biological efficacy of chitosan polyplexes. Nevertheless, limited transfection efficiency was still detected. The well-established polyethyleneimine (PEI) cationic polymer was used in substitution of chitosan, in combination with polymeric micelles, originating PEI-siRNA-Pluronic® systems. The presence of Pluronic® F127 in the formulation showed to be of utmost importance because not only the silencing activity of the polyplexes was improved, but also PEI-associated toxicity was clearly reduced. This, allowed to increase the amount of PEI inside the system and its overall efficacy. Indeed, different types of PEI, N/P ratios and preparation methods were tested until an optimal formulation composed by PEI 10k branched-based polyplexes at an N/P ratio of 50 combined with micelles of Pluronic® F127 was selected. This combined micelle presented adequate technological properties, safety profile, and biological efficacy, resulting in high ALOX5 gene silencing and strong reduction of invasion and transformation capabilities of a stem cell subpopulation isolated from MDA-MB-231 triple negative breast cancer cells.
Collapse
Affiliation(s)
- Diana Rafael
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa
| | - Fernanda Andrade
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Sara Montero
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Petra Gener
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Joaquin Seras-Franzoso
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Francesc Martínez
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Patricia González
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza
| | - Helena Florindo
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa
| | - Diego Arango
- Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona,
| | - Joan Sayós
- Immune Regulation and Immunotherapy, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Mafalda Videira
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa (iMed.ULisboa), Lisbon
| | - Simó Schwartz Jr.
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca
| |
Collapse
|
14
|
Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1872-1891. [PMID: 29103306 DOI: 10.1080/21691401.2017.1395344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.
Collapse
Affiliation(s)
- Masoud Farshbaf
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| | - Soodabeh Davaran
- b Research Centre for Pharmaceutical Nanotechnology , Tabriz University of Medical Science , Tabriz , Iran
| | - Amir Zarebkohan
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| | - Nasim Annabi
- c Biomaterials Innovation Research Centre , Brigham and Women's Hospital, Harvard Medical School , Cambridge , MA , USA.,d Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Northeastern University , Boston , MA , USA
| | - Abolfazl Akbarzadeh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| | - Roya Salehi
- f Drug Applied Research Centre and Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| |
Collapse
|
15
|
Synthesis and in vitro characterization of a pH-responsive chitosan- polyethylenimine nanosystem for the delivery of therapeutic proteins. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Xiao B, Ma P, Ma L, Chen Q, Si X, Walter L, Merlin D. Effects of tripolyphosphate on cellular uptake and RNA interference efficiency of chitosan-based nanoparticles in Raw 264.7 macrophages. J Colloid Interface Sci 2017; 490:520-528. [PMID: 27918990 PMCID: PMC5222762 DOI: 10.1016/j.jcis.2016.11.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is a major pro-inflammatory cytokine that is mainly secreted by macrophages during inflammation. Here, we synthesized a series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chlorides (HTCCs), and then used a complex coacervation technique or tripolyphosphate (TPP)-assisted ionotropic gelation strategy to complex the HTCCs with TNF-α siRNA (siTNF) to form nanoparticles (NPs). The resultant NPs had a desirable particle size (210-279nm), a slightly positive zeta potential (14-22mV), and negligible cytotoxicity against Raw 264.7 macrophages and colon-26 cells. Subsequent cellular uptake tests demonstrated that the introduction of TPP to the NPs markedly increased their cellular uptake efficiency (to nearly 100%) compared with TPP-free NPs, and yielded a correspondingly higher intracellular concentration of siRNA. Critically, in vitro gene silencing experiments revealed that all of the TPP-containing NPs showed excellent efficiency in inhibiting the mRNA expression level of TNF-α (by approximately 85-92%, which was much higher than that obtained using Oligofectamine/siTNF complexes). Collectively, these results obviously suggest that our non-toxic TPP-containing chitosan-based NPs can be exploited as efficient siTNF carriers for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Science, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta 30302, USA.
| | - Panpan Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Lijun Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Qiubing Chen
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaoying Si
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Lewins Walter
- Institute for Biomedical Science, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta 30302, USA
| | - Didier Merlin
- Institute for Biomedical Science, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur 30033, USA
| |
Collapse
|
17
|
Pandey AP, Sawant KK. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:904-918. [DOI: 10.1016/j.msec.2016.07.066] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022]
|
18
|
Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. NANOSCALE 2016; 8:16091-16156. [PMID: 27714108 DOI: 10.1039/c6nr04489a] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) are novel drug delivery systems that have been attracting more and more attention in recent years, and have been used for the treatment of cancer, infection, inflammation and other diseases. Among the numerous classes of materials employed for constructing NPs, organic polymers are outstanding due to the flexibility of design and synthesis and the ease of modification and functionalization. In particular, NP based amphiphilic polymers make a great contribution to the delivery of poorly-water soluble drugs. For example, natural, biocompatible and biodegradable products like polysaccharides are widely used as building blocks for the preparation of such drug delivery vehicles. This review will detail carbohydrate based amphiphilic polymeric systems for cancer therapy. Specifically, it focuses on the nature of the polymer employed for the preparation of targeted nanocarriers, the synthetic methods, as well as strategies for the application and evaluation of biological activity. Applications of the amphiphilic polymer systems include drug delivery, gene delivery, photosensitizer delivery, diagnostic imaging and specific ligand-assisted cellular uptake. As a result, a thorough understanding of the relationship between chemical structure and biological properties facilitate the optimal design and rational clinical application of the resulting carbohydrate based nano delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland. and CLINAM Foundation for Clinical Nanomedicine, Alemannengasse 12, Basel, CH-4016, Switzerland.
| |
Collapse
|
19
|
Patel BJ, Vignesh NK, Hortelano G. Chitosan DNA nanoparticles for oral gene delivery. World J Med Genet 2016; 6:22-33. [DOI: 10.5496/wjmg.v6.i3.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is a promising technology with potential applications in the treatment of medical conditions, both congenital and acquired. Despite its label as breakthrough technology for the 21st century, the simple concept of gene therapy - the introduction of a functional copy of desired genes in affected individuals - is proving to be more challenging than expected. Oral gene delivery has shown intriguing results and warrants further exploration. In particular, oral administration of chitosan DNA nanoparticles, one the most commonly used formulations of therapeutic DNA, has repeatedly demonstrated successful in vitro and in vivo gene transfection. While oral gene therapy has shown immense promise as treatment options in a variety of diseases, there are still significant barriers to overcome before it can be considered for clinical applications. In this review we provide an overview of the physiologic challenges facing the use of chitosan DNA nanoparticles for oral gene delivery at both the extracellular and intracellular level. From administration at the oral cavity, chitosan nanoparticles must traverse the gastrointestinal tract and protect its DNA contents from significant jumps in pH levels, various intestinal digestive enzymes, thick mucus layers with high turnover, and a proteinaceous glycocalyx meshwork. Once these extracellular barriers are overcome, chitosan DNA nanoparticles must enter intestinal cells, escape endolysosomes, and disassociate from genetic material at the appropriate time allowing transport of genetic material into the nucleus to deliver a therapeutic effect. The properties of chitosan nanoparticles and modified nanoparticles are discussed in this review. An understanding of the barriers to oral gene delivery and how to overcome them would be invaluable for future gene therapy development.
Collapse
|
20
|
Xiao B, Ma P, Viennois E, Merlin D. Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages. Colloids Surf B Biointerfaces 2016; 143:186-193. [PMID: 27011348 PMCID: PMC4856589 DOI: 10.1016/j.colsurfb.2016.03.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 01/17/2023]
Abstract
CD98 plays an important role in the development and progression of inflammation. Here, CD98 siRNA (siCD98) was complexed with urocanic acid-modified chitosan (UAC) to form nanoparticles (NPs), which were transfected into Raw 264.7 macrophages in an effort to convey anti-inflammatory effects. Characterization showed that the generated NPs had a desirable particle size (156.0-247.1nm), a slightly positive zeta potential (15.8-17.5mV), and no apparent cytotoxicity against Raw 264.7 macrophages and colon-26 cells compared to control NPs fabricated by Oligofectamine (OF) and siRNA. Cellular uptake experiments demonstrated that macrophages exhibited a time-dependent accumulation profile of UAC/siRNA NPs. Further in vitro gene silencing experiments revealed that UAC/siCD98 NPs with a weight ratio of 60:1 yielded the most efficient knockdowns of CD98 and the pro-inflammatory cytokine, TNF-α. Indeed, the RNAi efficiency obtained with our NPs was even higher than that of the positive control OF/siCD98 NPs. These results suggest that UAC/siCD98 NPs might be a safe, efficient and promising candidate for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta 30302, USA.
| | - Panpan Ma
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Emilie Viennois
- Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur 30033, USA
| | - Didier Merlin
- Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur 30033, USA
| |
Collapse
|
21
|
Kim YD, Pofali P, Park TE, Singh B, Cho K, Maharjan S, Dandekar P, Jain R, Choi YJ, Arote R, Cho CS. Gene therapy for bone tissue engineering. Tissue Eng Regen Med 2016; 13:111-125. [PMID: 30603391 PMCID: PMC6170855 DOI: 10.1007/s13770-016-9063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Gene therapy holds a great promise and has been extensively investigated to improve bone formation and regeneration therapies in bone tissue engineering. A variety of osteogenic genes can be delivered by combining different vectors (viral or non-viral), scaffolds and delivery methodologies. Ex vivo & in vivo gene enhanced tissue engineering approaches have led to successful osteogenic differentiation and bone formation. In this article, we review recent advances of gene therapy-based bone tissue engineering discussing strengths and weaknesses of various strategies as well as general overview of gene therapy.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Prasad Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Tae-Eun Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
|
23
|
Ragelle H, Vanvarenberg K, Vandermeulen G, Préat V. Chitosan Nanoparticles for SiRNA Delivery In Vitro. Methods Mol Biol 2016; 1364:143-50. [PMID: 26472448 DOI: 10.1007/978-1-4939-3112-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RNA interference, the process in which small interfering RNAs (SiRNAs) silence a specific gene and thus inhibit the associated protein, has opened new doors for the treatment of a wide range of diseases. However, efficient delivery of SiRNAs remains a challenge, especially due to their instability in biological environments and their inability to cross cell membranes. To protect and deliver SiRNAs to mammalian cells, a variety of polymeric nanocarriers have been developed. Among them, the polysaccharide chitosan has generated great interests. This derivative of natural chitin is biodegradable and biocompatible, and can complex SiRNAs into nanoparticles on account of its positive charges. However, chitosan presents some limitations that need to be taken into account when designing chitosan/SiRNA nanoparticles. Here, we describe a method to prepare SiRNA/chitosan nanoparticles with high gene silencing efficiency and low cytotoxicity by using the ionic gelation technique.
Collapse
Affiliation(s)
- Héloïse Ragelle
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200, Brussels, Belgium.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin Vanvarenberg
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
24
|
Ragelle H, Colombo S, Pourcelle V, Vanvarenberg K, Vandermeulen G, Bouzin C, Marchand-Brynaert J, Feron O, Foged C, Préat V. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan–poly(ethylene imine) hybrid nanoparticles: A mechanistic insight. J Control Release 2015; 211:1-9. [DOI: 10.1016/j.jconrel.2015.05.274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
25
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 408] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
26
|
Chitosan-mediated non-viral gene delivery with improved serum stability and reduced cytotoxicity. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0450-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Glycosylation-mediated targeting of carriers. J Control Release 2014; 190:542-55. [DOI: 10.1016/j.jconrel.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
|
28
|
Wongrakpanich A, Adamcakova-Dodd A, Xie W, Joshi VB, Mapuskar KA, Geary SM, Spitz DR, Thorne PS, Salem AK. The absence of CpG in plasmid DNA-chitosan polyplexes enhances transfection efficiencies and reduces inflammatory responses in murine lungs. Mol Pharm 2014; 11:1022-31. [PMID: 24494979 PMCID: PMC3993893 DOI: 10.1021/mp400689r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Chitosan
polyplexes containing plasmid DNA (pDNA) have significant potential
for pulmonary gene delivery applications. However, prior to using
chitosan/pDNA polyplexes (CSpp) in clinical applications, their potential
cytotoxicity needs to be investigated. In this study, we formulated
200–400 nm CSpp with amine to phosphate (N/P) ratios that ranged
from 1 to 100. We compared two types of plasmids within CSpp: pDNA
that was free of CpG sequences (CpG(−)) and pDNA that contained
CpG sequences (CpG(+)). Both forms of CSpp showed low cytotoxicity
when cultured with A549 and HEK293 cell lines in vitro. CSpp(CpG(−))
generated higher luciferase expression both in vitro, for A549 cells,
and in vivo, compared with CSpp(CpG(+)). In addition, CSpp(CpG(−))
elicited milder inflammatory responses in mice one day subsequent
to nasal instillation, as determined by proinflammatory cytokine levels
within the bronchoalveolar lavage fluid. Our findings suggest that
to achieve optimal gene expression with minimal cytotoxicity, inflammation,
and oxidative stress, the N/P ratios and CpG sequences in the pDNA
of CSpp need to be considered. These findings will inform the preclinical
safety assessments of CSpp in pulmonary gene delivery systems.
Collapse
Affiliation(s)
- Amaraporn Wongrakpanich
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, ‡Department of Occupational and Environmental Health, College of Public Health, and §Department of Radiation Oncology, Carver College of Medicine, University of Iowa , Iowa City, Iowa 52242, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu H, Dai Y, Lv L, Zhao H. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 2014; 9:e84703. [PMID: 24392152 PMCID: PMC3879331 DOI: 10.1371/journal.pone.0084703] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/17/2013] [Indexed: 12/16/2022] Open
Abstract
The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.
Collapse
Affiliation(s)
- Huading Lu
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail:
| | - Yuhu Dai
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Lulu Lv
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Huiqing Zhao
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
30
|
Alonso S, Rendueles M, Díaz M. Bio-production of lactobionic acid: Current status, applications and future prospects. Biotechnol Adv 2013; 31:1275-91. [DOI: 10.1016/j.biotechadv.2013.04.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 12/19/2022]
|
31
|
Darvishi MH, Nomani A, Amini M, Shokrgozar MA, Dinarvand R. Novel biotinylated chitosan-graft-polyethyleneimine copolymer as a targeted non-viral vector for anti-EGF receptor siRNA delivery in cancer cells. Int J Pharm 2013; 456:408-16. [DOI: 10.1016/j.ijpharm.2013.08.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 11/29/2022]
|
32
|
Zarogoulidis P, Darwiche K, Hohenforst-Schmidt W, Huang H, Li Q, Freitag L, Zarogoulidis K. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer. Future Oncol 2013; 9:1171-94. [PMID: 23902248 DOI: 10.2217/fon.13.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lung cancer still remains one of the leading causes of death among cancer patients. Although novel targeted therapies have been established in everyday treatment practice, and conventional platinum-based doublets have demonstrated effective results regarding overall and progression-free survival, we have still failed to achieve long-term survival. Therefore, several strategies of applying locoregional therapy are under investigation. Aerosol chemotherapy is already under investigation and, taking this a step further, aerosol gene therapies with multiple delivery systems are being developed. Several efforts have demonstrated its efficiency and effectiveness, but there are still multiple factors that have to be considered and combined to achieve an overall more effective multifunctional treatment. In the current review, we present data regarding aerosol delivery systems, transporters, carriers, vectors, genes, toxicity, efficiency, specificity, lung microenvironment and delivery gene therapy systems. Finally, we present current studies and future perspectives.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
33
|
Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release 2013; 172:207-218. [PMID: 23965281 DOI: 10.1016/j.jconrel.2013.08.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/27/2022]
Abstract
Recently, chitosan has attracted significant attention in the formulation of small interfering RNA (siRNA). Because of its cationic nature, chitosan can easily complex siRNA, thus readily forming nanoparticles. Moreover, chitosan is biocompatible and biodegradable, which make it a good candidate for siRNA delivery in vivo. However, chitosan requires further development to achieve high efficiency. This review will describe the major barriers that impair the efficiency of the chitosan-based siRNA delivery systems, including the stability of the delivery system in biological fluids and endosomal escape. Several solutions to counteract these barriers have been developed and will be discussed. The parameters to consider for designing powerful delivery systems will be described, particularly the possibilities for grafting targeting ligands. Finally, optimized systems that allow in vivo therapeutic applications for both local and systemic delivery will be reviewed. This review will present recent improvements in chitosan-based siRNA delivery systems that overcome many of these system's previous pitfalls and pave the way to a new generation of siRNA delivery systems.
Collapse
Affiliation(s)
- Héloïse Ragelle
- Pharmaceutics and Drug Delivery Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Pharmaceutics and Drug Delivery Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Véronique Préat
- Pharmaceutics and Drug Delivery Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
34
|
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65:1234-70. [PMID: 23872012 PMCID: PMC7103275 DOI: 10.1016/j.addr.2013.07.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 01/19/2023]
Abstract
Alternatives to efficient viral vectors in gene therapy are desired because of their poor safety profiles. Chitosan is a promising non-viral nucleotide delivery vector because of its biocompatibility, biodegradability, low immunogenicity and ease of manufacturing. Since the transfection efficiency of chitosan polyplexes is relatively low compared to viral counterparts, there is an impetus to gain a better understanding of the structure-performance relationship. Recent progress in preparation and characterisation has enabled coupling analysis of chitosans structural parameters that has led to increased TE by tailoring of chitosan's structure. In this review, we summarize the recent advances that have lead to a more rational design of chitosan polyplexes. We present an integrated review of all major areas of chitosan-based transfection, including preparation, chitosan and polyplexes physicochemical characterisation, in vitro and in vivo assessment. In each, we present the obstacles to efficient transfection and the strategies adopted over time to surmount these impediments.
Collapse
Affiliation(s)
- Michael D Buschmann
- Dept. Chemical Engineering and Inst. Biomedical Engineering, Ecole Polytechnique, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Preparation and characterization of oligochitosan-tragacanth nanoparticles as a novel gene carrier. Carbohydr Polym 2013; 97:277-83. [PMID: 23911446 DOI: 10.1016/j.carbpol.2013.04.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023]
Abstract
The nanoparticles of oligochitosan-water soluble tragacanth (OCH-WST) as novel gene carriers have been prepared and their transfection efficiency has been investigated on Hela and HepG2 cell lines. Different OCH:WST weight ratios were prepared to obtain particles with low size distribution and high surface charge, and also in range of below 200 nm. Nanoparticles with 132.5 ± 6.77 nm size, polydispersity index 1.92 ± 0.061, surface charge 30.45 ± 1.84 and spherical morphology, have been chosen as gene carrier. Nanoparticle-DNA complexes (nanoplexes) showed better transfection efficiency in both Hela and HepG2 cells than chitosan polyplexes, with 1.26 × 10(6) versus 9.05 × 10(5) and 7.76 × 10(5) versus 2.16 × 10(5), respectively. Higher transfection efficiency of nanoplexes could be attributed to their weaker complexation. Decreasing of transfection in presence of galactose in HepG2 cells, indicated receptor mediated endocytosis of nanoplexes. These properties all together, make OCH-WST nanoparticles as potential gene carrier for active gene delivery into cells containing sugar receptors.
Collapse
|
36
|
Abstract
To review the progress on chitosan nanoparticles as drug delivery carriers, the application of chitosan nanoparticles in the fields of organ targeting, DNA transfection, and non-injection administration are summarized according to recent references. The results showed that chitosan nanoparticles as a new drug carrier have important value of research and extensively development prospect.
Collapse
|
37
|
Cho CS. Design and Development of Degradable Polyethylenimines for Delivery of DNA and Small Interfering RNA: An Updated Review. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/798247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyethylenimine (PEI), considered as the most potent and promising alternative carrier to viral vectors, has been studied as the “state of the art” among various polymers for nonviral gene delivery applications for many years. Although PEI-based carrier minimizes the bottlenecks associated with viral vectors such as unwanted immunogenicity and production problems, the toxic side effects of PEI prevent its rapid advancements due to nondegradable nature. In this regard, various degradable cross-linking and/or grafting agents have been linked to synthesize degradable PEIs in order to minimize the toxicity and improve the efficacy of PEI-mediated gene carriers. This paper describes an update on various cross-linkers and grafting agents in the design and development of degradable PEI derivatives and their potential applications for effective delivery of DNA in vitro and in vivo. The molecular weight (MW) of PEI and the structural relationship to its cellular toxicity and transfection ability were also discussed. Finally, the potential applications of various degradable PEIs for small interfering RNA (siRNA)-mediated gene silencing were also covered.
Collapse
Affiliation(s)
- Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
38
|
Pereira P, Jorge AF, Martins R, Pais AA, Sousa F, Figueiras A. Characterization of polyplexes involving small RNA. J Colloid Interface Sci 2012; 387:84-94. [DOI: 10.1016/j.jcis.2012.07.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
39
|
Effect of peptides and their introduction methods on target gene transfer of gene vector based on disulfide-containing polyethyleneimine. Int J Pharm 2012; 438:191-201. [DOI: 10.1016/j.ijpharm.2012.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/19/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
|
40
|
Cationic core–shell liponanoparticles for ocular gene delivery. Biomaterials 2012; 33:7621-30. [DOI: 10.1016/j.biomaterials.2012.06.079] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
|
41
|
Chen YZ, Yao XL, Ruan GX, Zhao QQ, Tang GP, Tabata Y, Gao JQ. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol Appl Biochem 2012; 59:346-52. [DOI: 10.1002/bab.1036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/06/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Yu-Zhe Chen
- Institute of Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; Zhejiang; People's Republic of China
| | - Xing-Lei Yao
- Institute of Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; Zhejiang; People's Republic of China
| | - Gui-Xin Ruan
- Institute of Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; Zhejiang; People's Republic of China
| | - Qing-Qing Zhao
- Institute of Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; Zhejiang; People's Republic of China
| | - Gu-Ping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry; Zhejiang University; Hangzhou; Zhejiang; People's Republic of China
| | - Yasuhiko Tabata
- Department of Biomaterials; Field of Tissue Engineering; Institute for Frontier Medical Sciences; Kyoto University; Kyoto; Japan
| | | |
Collapse
|
42
|
Efficient reduction of serum cholesterol by combining a liver-targeted gene delivery system with chemically modified apolipoprotein B siRNA. J Control Release 2012; 163:119-24. [DOI: 10.1016/j.jconrel.2012.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 12/19/2022]
|
43
|
Hu FQ, Chen WW, Zhao MD, Yuan H, Du YZ. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles. Gene Ther 2012; 20:597-606. [PMID: 22951455 DOI: 10.1038/gt.2012.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-viral vesicle composing of low-molecular weight polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide (CSOSA-g-PEI) was synthesized for gene delivery and therapy. The synthesized CSOSA-g-PEI had good ion-buffer capabilities and DNA-binding capacity, which could form positively charged nano-sized particles (100-150 nm) with plasmid DNA; in vitro gene transfection tests demonstrated that CSOSA-g-PEI presented much lower cytotoxicity and corresponding transfection efficiency in comparison with Lipofectamine 2000 in both human cancer cells (Hela and MCF-7). The gene transfection of CSOSA-g-PEI/pDNA could be further enhanced in the presence of serum or by adding arginine during incubation of CSOSA-g-PEI micelles with plasmid DNA. The biodistribution experiments demonstrated CSOSA-g-PEI conjugate highly localized in the tumor tissue and indicated a persistently increased accumulation. In vivo antitumor activity results showed that CSOSA-g-PEI/plasmid pigment epithelium-derived factor formulation could effectively suppress the tumor growth (above 60% tumor inhibition) without systematic toxicity against animal body after intravenous injection.
Collapse
Affiliation(s)
- F-Q Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PRC
| | | | | | | | | |
Collapse
|
44
|
Huang SJ, Sun SL, Chiu CC, Wang LF. Retinol-encapsulated water-soluble succinated chitosan nanoparticles for antioxidant applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:315-29. [PMID: 23565650 DOI: 10.1080/09205063.2012.690278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to stabilize all-trans-retinol (RE) by complexification with chitosan derivatives through H-bonding. Succinated chitosan (CHI-succ) with three different degrees (5, 10, 20 mol%) of succinylation were synthesized to form complexes with RE. Various weight ratios (w/w) of CHI-succ/RE complexes were prepared and characterized to produce stable complexes in nanometer size. The CHI-succ(0.20)/RE complex with approximate 250 nm in diameter was obtained using a CHI-succ(0.20) concentration of 0.005% (w/v) in double deionized water with various contents of RE. From fine-tuning the degree of succinylation and the weight ratio of the CHI-succ and RE, the formation of supramolecular complexes simultaneously improved water solubility and stability of RE. The cell viability of CHI-succ polymers and their RE complexes in 3T3 cells were all>85% relative to the control. The antioxidant ability of the CHI-succ(0.20)/RE complexes was significantly greater than that of pure RE using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay (p<0.01).
Collapse
Affiliation(s)
- Shih-Jer Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | | | | | | |
Collapse
|
45
|
Zhao QQ, Hu YL, Zhou Y, Li N, Han M, Tang GP, Qiu F, Tabata Y, Gao JQ. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity. Int J Nanomedicine 2012; 7:3191-202. [PMID: 22811604 PMCID: PMC3394466 DOI: 10.2147/ijn.s30909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity. Methods A liver cancer-targeted specific peptide (FQHPSF sequence) was successfully synthesized and linked with chitosan-linked polyethylenimine (CP) to form a new targeted gene delivery vector called CPT (CP/peptide). The structure of CPT was confirmed by 1H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/ DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model. Results The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT was confirmed and the vector showed low cytotoxicity and strong targeting specificity to liver tumors in vitro. The in vivo study results showed that interleukin-12 delivered by the new gene vector CPT/DNA significantly enhanced the antitumor effect on ascites tumor-bearing imprinting control region mice as compared with polyethylenimine (25 kDa), CP, and other controls, which further demonstrate the targeting specificity of the new synthesized polymer. Conclusion The synthesized CPT copolymer was proven to be an effective liver cancer-targeted vector for therapeutic gene delivery, which could be a potential candidate for targeted cancer gene therapy.
Collapse
Affiliation(s)
- Qing-Qing Zhao
- Institute of Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing. Int J Mol Sci 2012; 13:516-533. [PMID: 22312268 PMCID: PMC3269702 DOI: 10.3390/ijms13010516] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/08/2011] [Accepted: 12/28/2011] [Indexed: 02/01/2023] Open
Abstract
Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.
Collapse
|
47
|
Nanoparticles for Gene Delivery into Stem Cells and Embryos. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2012. [DOI: 10.1007/12_2012_194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Ma K, Shen H, Shen S, Xie M, Mao C, Qiu L, Jin Y. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery. J Gene Med 2011; 13:290-301. [PMID: 21574214 DOI: 10.1002/jgm.1569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A successful gene delivery system needs to breakthrough several barriers to allow efficient transgenic expression. In the present study, successive targeting liposomes (STL) were constructed by integrating various targeting groups into a nanoparticle to address this issue. METHODS Polyethylenimine (PEI) 1800-triamcinolone acetonide (TA) with nuclear targeting capability was synthesized by a two-step reaction. Lactobionic acid was connected with cholesterol to obtain a compound of [(2-lactoylamido) ethylamino]formic acid cholesterol ester (CHEDLA) with hepatocyte-targeting capability. The liposome was modified with PEI 1800-TA and CHEDLA to prepare successive targeting liposome (STL). Its physicochemical properties and transfection efficiency were investigated both in vitro and in vivo. RESULTS The diameter of STL was approximately 100 nm with 20 mV of potential. The confocal microscopy observation and potential assay verified that lipid bilayer of STL was decorated with PEI 1800-TA. Cytotoxicity of STL was significantly lower than that of PEI 1800-TA and PEI 25K. The transfection efficiency of 10% CHEDLA STL in HepG2 cells was the higher than of the latter two with serum. Its transfection efficiency was greatly reduced with excessive free galactose, indicating that STL was absorbed via galactose receptor-mediated endocytosis. The in vivo study in mice showed that 10% CHEDLA STL had better transgenic expression in liver than the other carriers. CONCLUSIONS STL with multi-ligand was able to overcome the various barriers to target nucleus and special cells and present distinctive transgenic expression. Therefore, it has a great potential for gene therapy as a nonviral carrier.
Collapse
Affiliation(s)
- Kun Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Nie C, Liu C, Chen G, Dai J, Li H, Shuai X. Hepatocyte-targeted psiRNA delivery mediated by galactosylated poly(ethylene glycol)-graft-polyethylenimine in vitro. J Biomater Appl 2011; 26:255-75. [PMID: 20511388 DOI: 10.1177/0885328210364678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Gene silencing in liver disease could be achieved by delivering siRNA with nonviral vectors. However, the transfection efficiency of plasmid siRNA (psiRNA) applied through this approach in hepatocytes is generally low. Based on the fact that the asialoglycoprotein receptors present on hepatocytes can recognize galactose, we synthesized galactosylated poly(ethylene glycol)-graft-polyethylenimine (Gal-PEG-PEI) as a nonviral psiRNA carrier for hepatocyte targeting. Our results indicate that 0.2% (molar percentage) of amine groups of PEI was conjugated with PEG having galactose on its distal end. Increasing the molar ratios of Gal-PEG-PEI to psiRNA in complexation led to a decrease in particle size but an increase in zeta potential of complexes. The transfection efficiency of nanocomplexes, that is, Gal-PEG-PEI/psiRNA, in HepG2 cell line depends on the N/P value, which reflects the molar ratio of Gal-PEG-PEI to psiRNA in the complex. The highest transfection efficiency was 37.34%, which was obtained at N/P 8. At the same N/P value, the transfection efficiency with the nontargeting PEG-PEI/psiRNA or Lipofectamine 2000/psiRNA was much lower. The transfection efficiency of Gal-PEG-PEI/psiRNA dropped to 3.60% from 37.34% after an excessive amount of free galactose was added into the medium for HepG2 cell incubation. By contrast, the similar phenomenon was observed neither when using PEG-PEI or Lipofectamine 2000 as a delivery vector nor in human embryonic kidney 293 cell line lacking ASGR. Real-time PCR analysis and western blot assay demonstrate that the knockdown of HLA-E gene expression by psiRNA/Gal-PEG-PEI (N/P 8) can reach about 60% in HepG2 cells after a 48-h transfection.
Collapse
Affiliation(s)
- Changfu Nie
- Liver Transplantation Center, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Chaturvedi K, Ganguly K, Kulkarni AR, Kulkarni VH, Nadagouda MN, Rudzinski WE, Aminabhavi TM. Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin Drug Deliv 2011; 8:1455-68. [DOI: 10.1517/17425247.2011.610790] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|