1
|
Fang Y, Bai Z, Cao J, Zhang G, Li X, Li S, Yan Y, Gao P, Kong X, Zhang Z. Low-intensity ultrasound combined with arsenic trioxide induced apoptosis of glioma via EGFR/AKT/mTOR. Life Sci 2023; 332:122103. [PMID: 37730111 DOI: 10.1016/j.lfs.2023.122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS This study aimed to explore whether low-intensity ultrasound (LIUS) combined with low-concentration arsenic trioxide (ATO) could inhibit the proliferation of glioma and, if so, to clarify the potential mechanism. MAIN METHODS The effects of ATO and LIUS alone or in combination on glioma were examined by CCK8, EdU, and flow cytometry assays. Western blot analysis was used to detect changes in expression of apoptosis-related proteins and their effects on the EGFR/AKT/mTOR pathway. The effects of ATO and LIUS were verified in vivo in orthotopic xenograft models, and tumor size, arsenic content in brain tissue, survival, and immunohistochemical changes were observed. KEY FINDINGS LIUS enhanced the inhibitory effect of ATO on the proliferation of glioma, and EGF reversed the proliferation inhibition and protein changes induced by ATO and LIUS. The anti-glioma effect of ATO combined with LIUS was related to downstream AKT/mTOR pathway changes caused by inhibition of EGFR activation, which enhanced apoptosis of U87MG and U373 cells. In vivo experiments showed significant increases in arsenic content in brain tissue, as well as decreased tumor sizes and longer survival times in the combined treatment group compared with other groups. The trends of immunohistochemical protein changes were consistent with the in vitro results. SIGNIFICANCE This study showed that LIUS enables ATO to exert anti-glioma effects at a safe dose by inhibiting the activation of EGFR and the downstream AKT/mTOR pathway to regulate apoptosis. LIUS in combination with ATO is a promising novel method for treating glioma and could improve patient prognosis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhiqun Bai
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jibin Cao
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Gaosen Zhang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xiang Li
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Shufeng Li
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Peirong Gao
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiangkai Kong
- Department of Ultrasound, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Zhen Zhang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
3
|
Xianghong LMD, Jianhui ZMD, Sihui SMD, Rong WMD, Lianfang DMD, Jie YP, Zhaojun LMD. Improving Ultrasound Gene Transfection Efficiency in Vitro. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
4
|
Abstract
Broadly speaking, acoustic streaming is generated by a nonlinear acoustic wave with a finite amplitude propagating in a viscid fluid. The fluid volume elements of molecules, d V , are forced to oscillate at the same frequency as the incident acoustic wave. Due to the nature of the nonlinearity of the acoustic wave, the second-order effect of the wave propagation produces a time-independent flow velocity (DC flow) in addition to a regular oscillatory motion (AC motion). Consequently, the fluid moves in a certain direction, which depends on the geometry of the system and its boundary conditions, as well as the parameters of the incident acoustic wave. The small scale acoustic streaming in a fluid is called “microstreaming”. When it is associated with acoustic cavitation, which refers to activities of microbubbles in a general sense, it is often called “cavitation microstreaming”. For biomedical applications, microstreaming usually takes place in a boundary layer at proximity of a solid boundary, which could be the membrane of a cell or walls of a container. To satisfy the non-slip boundary condition, the flow motion at a solid boundary should be zero. The magnitude of the DC acoustic streaming velocity, as well as the oscillatory flow velocity near the boundary, drop drastically; consequently, the acoustic streaming velocity generates a DC velocity gradient and the oscillatory flow velocity gradient produces an AC velocity gradient; they both will produce shear stress. The former is a DC shear stress and the latter is AC shear stress. It was observed the DC shear stress plays the dominant role, which may enhance the permeability of molecules passing through the cell membrane. This phenomenon is called “sonoporation”. Sonoporation has shown a great potential for the targeted delivery of DNA, drugs, and macromolecules into a cell. Acoustic streaming has also been used in fluid mixing, boundary cooling, and many other applications. The goal of this work is to give a brief review of the basic mathematical theory for acoustic microstreaming related to the aforementioned applications. The emphasis will be on its applications in biotechnology.
Collapse
|
5
|
Yang Q, Chen H, Bai Y, Cao Y, Hu W, Zhang L. Facile Synthesis of Lipid-Perfluorocarbon Nanoemulsion Coated with Silica Shell as an Ultrasound Imaging Agent. Adv Healthc Mater 2018; 7. [PMID: 29266872 DOI: 10.1002/adhm.201700816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/21/2017] [Indexed: 01/03/2023]
Abstract
A novel organic/inorganic hybrid nanovesicle as an ultrasound imaging agent is synthesized via facile emulsion and silica deposition methods. This nanovesicle, hyaluronate (HA)-docetaxel (DTX)/perfluoro-n-pentane (PFP)@SNC, consists of an encapsulated liquid PFP core, loaded DTX, and an HA-decorated silica shell. The HA-DTX/PFP@SNC has a narrow size distribution of 274.5 ± 3.25 nm, a negative zeta potential of -11.6 ± 0.47 mV, and an entrapment efficiency of 86.70% ± 1.42%. HA-DTX/PFP@SNC possesses an ultrasound (US)-triggered drug release and a temperature-dependent size change behavior. Compared with DTX/PFP@soybean phosphatidylcholine (SPC), which has no silica shell, the HA-DTX/PFP@SNC is more stable under various conditions. The MTT assay indicates that the blank HA-PFP@SNC vehicle has no cytotoxicity to A549 cells. Furthermore, due to the HA-mediated tumor-targeting ability, the HA-DTX/PFP@SNC shows obvious cytotoxicity to A549 cells. In vitro and in vivo US imaging results indicate that HA-DTX/PFP@SNC has a stronger and more durable echo signal than DTX/PFP@SPC. Moreover, the in vivo echo signal of HA-DTX/PFP@SNC is stronger than that of DTX/PFP@SNC due to the HA-mediated tumor targeting. Therefore, this novel organic/inorganic hybrid vesicle is a US contrast agent candidate.
Collapse
Affiliation(s)
- Qiang Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Yan Bai
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Institute of Ultrasound Imaging; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital; Chongqing 400030 P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| |
Collapse
|
6
|
Ultrasound-Mediated Mesenchymal Stem Cells Transfection as a Targeted Cancer Therapy Platform. Sci Rep 2017; 7:42046. [PMID: 28169315 PMCID: PMC5294424 DOI: 10.1038/srep42046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential as a targeted cell-based delivery platform for inflammatory and cancer therapy. Genetic manipulation of MSCs, however, is challenging, and therefore, most studies using MSCs as therapeutic cell carriers have utilized viral vectors to transduce the cells. Here, we demonstrate, for the first time, an alternative approach for the efficient transfection of MSCs; therapeutic ultrasound (TUS). Using TUS with low intensities and moderate frequencies, MSCs were transfected with a pDNA encoding for PEX, a protein that inhibits tumor angiogenesis, and studied as a cell vehicle for in vivo tumor therapy. TUS application did not alter the MSCs' stemness or their homing capabilities, and the transfected MSCs transcribed biologically active PEX. Additionally, in a mouse model, 70% inhibition of prostate tumor growth was achieved following a single I.V. administration of MSCs that were TUS-transfected with pPEX. Further, the repeated I.V. administration of TUS-pPEX transfected-MSCs enhanced tumor inhibition up to 84%. Altogether, these results provide a proof of concept that TUS-transfected MSCs can be effectively used as a cell-based delivery approach for the prospective treatment of cancer.
Collapse
|
7
|
Negishi Y, Endo-Takahashi Y, Maruyama K. Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug Discov Ther 2016; 10:248-255. [PMID: 27795481 DOI: 10.5582/ddt.2016.01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | |
Collapse
|
8
|
López-Marín LM, Millán-Chiu BE, Castaño-González K, Aceves C, Fernández F, Varela-Echavarría A, Loske AM. Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes. J Membr Biol 2016; 250:41-52. [DOI: 10.1007/s00232-016-9921-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/09/2016] [Indexed: 11/30/2022]
|
9
|
Zhang L, Sun Z, Ren P, Lee RJ, Xiang G, Lv Q, Han W, Wang J, Ge S, Xie M. Ultrasound-targeted microbubble destruction (UTMD) assisted delivery of shRNA against PHD2 into H9C2 cells. PLoS One 2015; 10:e0134629. [PMID: 26267649 PMCID: PMC4534091 DOI: 10.1371/journal.pone.0134629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/11/2015] [Indexed: 12/23/2022] Open
Abstract
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.
Collapse
Affiliation(s)
- Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Pingping Ren
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Wei Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SG); (MXX)
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
- * E-mail: (SG); (MXX)
| |
Collapse
|
10
|
Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. ADVANCES IN GENETICS 2014; 89:25-48. [PMID: 25620007 DOI: 10.1016/bs.adgen.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.
Collapse
Affiliation(s)
- Daiki Omata
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yusuke Oda
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
11
|
Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv 2014; 5:467-86. [PMID: 24856171 DOI: 10.4155/tde.14.10] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Ultrasound induced cancer immunotherapy. Adv Drug Deliv Rev 2014; 72:144-53. [PMID: 24680708 DOI: 10.1016/j.addr.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 02/14/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Recently, the use of ultrasound (US) has been shown to have potential in cancer immunotherapy. High intensity focused US destruction of tumors may lead to immunity forming in situ in the body by immune cells being exposed to the tumor debris and immune stimulatory substances that are present in the tumor remains. Another way of achieving anti-cancer immune responses is by using US in combination with microbubbles and nanobubbles to deliver genes and antigens into cells. US leads to bubble destruction and the forces released to direct delivery of the substances into the cytoplasm of the cells thus circumventing the natural barriers. In this way tumor antigens and antigen-encoding genes can be delivered to immune cells and immune response stimulating genes can be delivered to cancer cells thus enhancing immune responses. Combination of bubbles with cell-targeting ligands and US provides an even more sophisticated delivery system whereby the therapy is not only site specific but also cell specific. In this review we describe how US has been used to achieve immunity and discuss the potential and possible obstacles in future development.
Collapse
|
13
|
Duvshani-Eshet M, Haber T, Machluf M. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: increasing cell membrane permeability or interfering with intracellular pathways? Hum Gene Ther 2014; 25:156-64. [PMID: 24251908 PMCID: PMC3922141 DOI: 10.1089/hum.2013.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/15/2013] [Indexed: 11/12/2022] Open
Abstract
Nonviral gene delivery methods encounter major barriers in plasmid DNA (pDNA) trafficking toward the nucleus. The present study aims to understand the role and contribution of therapeutic ultrasound (TUS), if any, in pDNA trafficking in primary cells such as fibroblasts and cell lines (e.g., baby hamster kidney [BHK]) during the transfection process. Using compounds that alter the endocytic pathways and the cytoskeletal network, we show that after TUS application, pDNA trafficking in the cytoplasm is not mediated by endocytosis or by the cytoskeletal network. Transfection studies and confocal analyses showed that the actin fibers impeded TUS-mediated transfection in BHK cells, but not in fibroblasts. Flow cytometric analyses indicated that pDNA uptake by cells occurs primarily when the pDNA is added before and not after TUS application. Taken together, these results suggest that TUS by itself operates as a mechanical force driving the pDNA through the cell membrane, traversing the cytoplasmic network and into the nucleus.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | | | | |
Collapse
|
14
|
Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013; 456:437-45. [PMID: 24008081 DOI: 10.1016/j.ijpharm.2013.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies. It is due to this behaviour that microbubbles are currently being used as ultrasound contrast agents, but their use in therapeutics is still under investigation. For example, microbubbles could play a role in enhancing gene delivery to cells: when combined with clinical ultrasound exposure, microbubbles are able to favour gene entry into cells by cavitation. Two different delivery strategies have been used to date: DNA can be co-administered with the microbubbles (i.e. the contrast agent) or 'loaded' in purposed-built bubble systems - indeed a number of different technological approaches have been proposed to associate genes within microbubble structures. Nanobubbles, bubbles with sizes in the nanometre order of magnitude, have also been developed with the aim of obtaining more efficient gene delivery systems. Their small sizes allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. In contrast, microbubbles, due to their larger sizes, are unable to extravasate, thus and their targeting capacity is limited to specific antigens present within the vascular lumen. This review provides an overview of the use of microbubbles as gene delivery systems, with a specific focus on recent research into the development of nanosystems. In particular, ultrasound delivery mechanisms, formulation parameters, gene-loading approaches and the advantages of nanometric systems will be described.
Collapse
Affiliation(s)
- Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy.
| | | | | |
Collapse
|
15
|
Abstract
A novel remotely triggered drug vehicle having multimodal imaging functionality was developed. It exhibits magnetic resonance (MR) imaging, ultrasound (US) imaging, encapsulation of a hydrophobic agent and US-triggered release behavior. Lipophilic superparamagnetic iron oxide (SPIO) nanoparticles were self-assembled with an amphiphilic chitosan derivative, carboxymethyl hexanoyl chitosan (CHC), to form superparamagnetic CHC/SPIO micelles and then loaded with camptothecin (a hydrophobic anticancer agent). The superparamagnetic micelles were then conjugated with albumin-based microbubbles (MBs) to form superparamagnetic micelle-decorated MBs (CHC/SPIO-decorated MBs). The albumin MBs and CHC/SPIO-decorated MBs both demonstrated in vitro concentration-dependent US imaging contrast. Interestingly, the in vitro US contrast was enhanced by decoration. In vivo US images showed that the B-mode contrast of the proposed vehicles could be clearly observed in the veins and arteries of Sprague-Dawley rats. Moreover, the proposed vehicle exhibited significant US-triggered release behavior under therapeutic US sonication at a frequency of 1MHz and power density of 2.4Wcm(-2) for 30min. However, similar behavior was not observed under diagnostic US bombardment at a frequency of 12MHz and mechanical index of 0.5. On the other hand, in vitro MR images of the CHC/SPIO-micelle-decorated MBs also revealed a significant concentration-dependent T(2) (spin-spin relaxation time) contrast due to their decoration with superparamagnetic micelles. Most importantly, the r(2)(∗)-r(2) value of the CHC/SPIO-decorated MBs decreased after therapeutic US bombardment for 30min. This might be considered as an index to probe destruction of the drug-loaded CHC/SPIO micelles.
Collapse
|
16
|
Van Ruijssevelt L, Smirnov P, Yudina A, Bouchaud V, Voisin P, Moonen C. Observations on the viability of C6-glioma cells after sonoporation with low-intensity ultrasound and microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:34-45. [PMID: 23287911 DOI: 10.1109/tuffc.2013.2535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrasound (US) and microbubbles can be used to facilitate cellular uptake of drugs through a cavitationinduced enhancement of cell membrane permeability. The mechanism is, however, still incompletely understood. A direct contact between microbubbles and cell membrane is thought to be essential to create membrane perturbations lasting from seconds to minutes after US exposure of the cells. A recent study showed that the effect may even last up to 8 h after cavitation (with residual permeability up to 24 h after cavitation). In view of possible membrane damage, the purpose of this study was to further investigate the evolution of cell viability in the range of the 24-h temporal window. Furthermore, a description of the functional changes in tumor cells after US exposure was initiated to obtain a better understanding of the mechanism of membrane perturbation after sonication with microbubbles. Our results suggest that US does not reduce cell viability up to 24 h post-exposure. However, a perturbation of the entire cell population exposed to US was observed in terms of enzymatic activity and characteristics of the mitochondrial membrane. Furthermore, we demonstrated that US cavitation induces a transient loss of cell membrane asymmetry, resulting in phosphatidylserine exposure in the outer leaflet of the cell membrane.
Collapse
Affiliation(s)
- Lisbeth Van Ruijssevelt
- Laboratory for Molecular and Functional Imaging: from Physiology to Therapy, FRE 3313 CNRS /Universite Bordeaux S egalen, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
17
|
Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB. Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203969 DOI: 10.1152/ajpheart.00265.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential clinical value of developing a novel, nonviral, ultrasound-directed gene and drug delivery system is immense. Investigators soon will initiate clinical trials with the goal of treating a wide variety of maladies using noninvasive, ultrasound-based technology. The ongoing, scientific validation associated with promising preclinical success portents a novel range of therapeutics. The clinical utility and eventual clinical successes await vigorous testing. This review highlights the recent successes and challenges within the field of ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jason Castle
- General Electric Global Research, Niskayuna, New York, USA
| | | | | | | | | | | |
Collapse
|
18
|
Masui T, Ota I, Kanno M, Yane K, Hosoi H. Low-intensity ultrasound enhances the anticancer activity of cetuximab in human head and neck cancer cells. Exp Ther Med 2012; 5:11-16. [PMID: 23251234 PMCID: PMC3524017 DOI: 10.3892/etm.2012.739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022] Open
Abstract
The potential clinical use of ultrasound in inducing cell apoptosis and enhancing the effects of anticancer drugs in the treatment of cancers has previously been investigated. In this study, the combined effects of low-intensity ultrasound (LIU) and cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, on cell killing and induction of apoptosis in HSC-3 and HSC-4 head and neck cancer cells, and its mechanisms were investigated. Experiments were divided into 4 groups: non-treated (CNTRL), cetuximab-treated (CETU), ultrasound-treated (UST) and the combination of cetuximab and US-treated (COMB). Cell viability was assessed by trypan blue staining assay and induction of apoptosis was detected by fluorescein isothiocyanate (FITC)-Annexin V and propidium iodide (PI) staining assay at 24 h after cetuximab and/or US treatment. To elucidate the effect of cetuximab and US on EGFR signaling and apoptosis in head and neck cancer cells after the treatments, the expression of EGFR, phospho-EGFR, and the activation of caspase-3 were evaluated with western blotting. More cell killing features were evident in the COMB group in HSC-3 and HSC-4 cells compared with the other groups. No differences in EGFR expression among the CETU, UST and COMB groups was observed, while the expression of phospho-EGFR in the CETU group was downregulated compared with that in the CNTRL group. Phospho-EGFR expression was much more downregulated in the COMB group compared with that in the other groups. In addition, the activation of caspase-3 in the UST group was upregulated compared with that in the CNTRL group. Caspase-3 activation was much more upregulated in the COMB group than that in the other groups. These data indicated that LIU was able to enhance the anticancer effect of cetuximab in HSC-3 and HSC-4 head and neck cancer cells.
Collapse
Affiliation(s)
- Takashi Masui
- Departments of Otolaryngology-Head and Neck Surgery and
| | | | | | | | | |
Collapse
|
19
|
Zhou Q, Chen JL, Chen Q, Wang X, Deng Q, Hu B, Guo RQ. Optimization of transfection parameters for ultrasound/SonoVue microbubble-mediated hAng-1 gene delivery in vitro. Mol Med Rep 2012; 6:1460-4. [PMID: 23023760 DOI: 10.3892/mmr.2012.1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/20/2012] [Indexed: 11/06/2022] Open
Abstract
This study aimed to explore the effects of microbubble concentration, gene dosage, cell-microbubble mixing mode and fetal bovine serum (FBS) on gene delivery. 293T cells were transfected with Sonovue microbubbles carrying the hAng-1 gene via ultrasound irradiation. Various ultrasound exposure parameters and microbubble and DNA concentrations were investigated. In addition, FBS and the cell suspension or adherent mode was explored. Transfection efficiency and cell viability were used to determine the optimal transfection parameters. hAng-1 gene transfection efficiency gradually increased with elongation of ultrasound exposure and increasing microbubble concentration. However, if ultrasound irradiation exceeded 1.5 W/cm² and 30 sec or the microbubble concentration was over 20%, hAng-1 gene expression was significantly decreased, coupled with extensive cell death. Gene transfection levels were low under DNA concentrations less than 15 µg/ml. Furthermore, the gene transfer rate was significantly increased under cell suspension mode; FBS had no effect on hAng-1 gene transfection. The integrity of hAng-1 DNA was not affected by ultrasonic irradiation under optimal conditions. The optimal transfection parameters for the hAng-1 gene and Sonovue microbubble were ultrasound exposure of 1.5 W/cm² and 30 sec, 20% microbubbles, 15 µg/ml of DNA and under cell suspension mode.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Prophylactic immunization with Bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis. J Control Release 2012; 160:362-6. [DOI: 10.1016/j.jconrel.2011.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/09/2023]
|
21
|
A targeted high-efficiency angiogenesis strategy as therapy for myocardial infarction. Life Sci 2012; 90:695-702. [DOI: 10.1016/j.lfs.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/27/2012] [Accepted: 03/16/2012] [Indexed: 11/23/2022]
|
22
|
CHEN ZHIYI, SUN XIAOFANG, LIU JIANQIAO, SI-TU BING, QIU RIXIANG, LIANG KUN, LIU JIANHUA, LIANG WEIXIANG, ZHOU XINXIN, ZHANG HUA, YU JIANGXIU. Augmentation of transgenic expression by ultrasound‑mediated liposome microbubble destruction. Mol Med Rep 2012; 5:964-70. [PMID: 22294278 PMCID: PMC3493077 DOI: 10.3892/mmr.2012.766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/11/2012] [Indexed: 12/15/2022] Open
Abstract
Non-invasive, efficient and tissue-specific transgenic technologies could be valuable in gene therapy. Although non-viral carriers may be safer and cheaper, they have a much lower transfection efficiency than viral gene carriers. The present study was designed to test the transgenic expression and safety of red fluorescent protein (RFP) in HeLa cells in vitro and in transplanted tumors of nude mice in vivo under ultrasound-mediated liposome microbubble destruction (UMLMD) conditions. Plasmids containing RFP were gently mixed with liposome microbubbles (LMs). The mixture was added to HeLa cells or injected into BALB/c mice by the tail vein under various ultrasound exposure and LM parameters, and then the transfection efficiencies were examined. The results in vivo and in vitro demonstrated that, following a comparison of the plasmid group, the ultrasound + plasmid group and the LM + plasmid group, UMLMD significantly increased the transgenic expression (P<0.01) without causing any apparent detrimental effect. From the study, we concluded that UMLMD could be a non-invasive, effective and promising non-viral technique for gene therapy and transgenic research.
Collapse
Affiliation(s)
- ZHI-YI CHEN
- Department of Medical Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - XIAO-FANG SUN
- Department of Obstetrics and Gynecology, Guangzhou Research Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - JIAN-QIAO LIU
- Department of Obstetrics and Gynecology, Guangzhou Research Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - BING SI-TU
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - RI-XIANG QIU
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - KUN LIANG
- Department of Obstetrics and Gynecology, Guangzhou Research Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - JIAN-HUA LIU
- Department of Function Imaging and Ultrasonography, Guangzhou First Municipal People’s Hospital, Guangzhou Medical College, Guangzhou 510180, P.R. China
| | - WEI-XIANG LIANG
- Department of Medical Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - XIN-XIN ZHOU
- Department of Medical Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - HUA ZHANG
- Department of Medical Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| | - JIANG-XIU YU
- Department of Medical Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150
| |
Collapse
|
23
|
Sasaki N, Kudo N, Nakamura K, Lim SY, Murakami M, Kumara WRB, Tamura Y, Ohta H, Yamasaki M, Takiguchi M. Activation of microbubbles by short-pulsed ultrasound enhances the cytotoxic effect of cis-diamminedichloroplatinum (II) in a canine thyroid adenocarcinoma cell line in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:109-118. [PMID: 22104534 DOI: 10.1016/j.ultrasmedbio.2011.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 09/15/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
Ultrasound targeted microbubble destruction has succeeded in delivering drugs and genes. This study was designed to explore characteristics of ultrasound targeted microbubble destruction using short-pulsed diagnostic ultrasound. Canine thyroid adenocarcinoma cells were exposed to short-pulsed diagnostic ultrasound in the presence of cis-diamminedichloroplatinum (II) (cisplatin) and ultrasound contrast agent Sonazoid(®) microbubbles. The cytotoxic effect of cisplatin was enhanced by short-pulsed diagnostic ultrasound and microbubbles. Incubation time with microbubbles influenced the cytotoxic effect of cisplatin. However, exposure duration did not affect the cytotoxic effect of cisplatin. Therefore, short-pulsed diagnostic ultrasound may activate microbubbles near cells and deliver cisplatin into cells. In addition, activation of microbubbles may be concluded in a short time. Our results suggest that short exposure duration could be potentially sufficient to induce efficient drug delivery by ultrasound targeted microbubble destruction using short-pulsed diagnostic ultrasound.
Collapse
Affiliation(s)
- Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wei X, Zhu J, Gong H, Xu J, Xu Y. A novel foam fluid negative contrast medium for clear visualization of the colon wall in CT imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 6:465-73. [PMID: 22144024 DOI: 10.1002/cmmi.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Jiong Zhu
- Department of Radiology; Renji Hospital; Shanghai Jiao Tong University; Shanghai; 200127; People's Republic of China
| | - Hongxia Gong
- Department of Radiology; Renji Hospital; Shanghai Jiao Tong University; Shanghai; 200127; People's Republic of China
| | - Jianrong Xu
- Department of Radiology; Renji Hospital; Shanghai Jiao Tong University; Shanghai; 200127; People's Republic of China
| | - Yuhong Xu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai; 200240; People's Republic of China
| |
Collapse
|
25
|
Yuan QY, Huang J, Chu BC, Li XS, Si LY. A visible, targeted high-efficiency gene delivery and transfection strategy. BMC Biotechnol 2011; 11:56. [PMID: 21600027 PMCID: PMC3112414 DOI: 10.1186/1472-6750-11-56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 05/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To enhance myocardial angiogenic gene expression, a novel gene delivery strategy was tested. Direct intramyocardial injection of an angiogenic gene with microbubbles and insonation were applied in a dog animal model. Dogs received one of the four different treatments in conjunction with either the enhanced green fluorescence protein (EGFP) gene or the hepatocyte growth factor (HGF) gene: gene with microbubbles (MB) and ultrasound (US); gene with US; gene with MB; or the gene alone. RESULTS Distribution of MB and the gene in the myocardium was visualized during the experiment. Compared with the EGFP gene group, an average 14.7-fold enhancement in gene expression was achieved in the EGFP+MB/US group (P < 0.01). Compared with the HGF gene group, an average 10.7-fold enhancement in gene expression was achieved in the HGF+MB/US group (P < 0.01). In addition, capillary density increased from 20.8 ± 3.4/mm2 in the HGF gene group to 146.7 ± 31.4/mm2 in HGF+MB/US group (P < 0.01). CONCLUSIONS Thus, direct intramyocardial injection of an angiogenic gene in conjunction with microbubbles plus insonation synergistically enhances angiogenesis. This method offers an observable gene delivery procedure with enhanced expression efficiency of the delivered gene.
Collapse
Affiliation(s)
- Qiao-Ying Yuan
- Department of Geriatrics, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
26
|
Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. Gene Ther 2011; 18:1006-14. [PMID: 21451579 DOI: 10.1038/gt.2011.34] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultrasound (US) combined with microbubbles (MBs) is a promising technology for non-viral gene delivery. Significant enhancements of gene expression have been obtained in our previous studies. To optimize and prepare for application to larger animal models, the luciferase reporter gene transfer efficacy of lipid-based Definity MBs of various concentrations, pressure amplitudes and a novel unfocused high-intensity therapeutic US (HITU) system were explored. Luciferase expression exhibited a dependence on MB dose over the range of 0-25 vol%, and a strong dependence on acoustic peak negative pressure at over the range of 0-3.2 MPa. Gene expression reached an apparent plateau at MB concentration ≥2.5 vol% or at negative pressures >1.8 MPa. Maximum gene expression in treated animals was 700-fold greater than in negative controls. Pulse train US exposure protocols produced an upward trend of gene expression with increasing quiescent time. The hyperbolic correlation of gene expression and transaminase levels suggested that an optimum gene delivery effect can be achieved by maximizing acoustic cavitation-induced enhancement of DNA uptake and minimizing unproductive tissue damage. This study validated the new HITU system equipped with an unfocused transducer with a larger footprint capable of scanning large tissue areas to effectively enhance gene transfer efficiencies.
Collapse
|
27
|
Krasovitski B, Frenkel V, Shoham S, Kimmel E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A 2011; 108:3258-63. [PMID: 21300891 PMCID: PMC3044354 DOI: 10.1073/pnas.1015771108] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational (<100 mW · cm(-2)) and therapeutic, potentially cavitational (>100 mW · cm(-2)) spatial peak temporal average intensity levels. The cellular-level model (termed "bilayer sonophore") combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood-brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency (ε A,max ∝ P(A)(0.8f - 0.5) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.
Collapse
Affiliation(s)
- Boris Krasovitski
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; and
| | - Victor Frenkel
- Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064
| | - Shy Shoham
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; and
| | - Eitan Kimmel
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; and
| |
Collapse
|
28
|
Deckers R, Moonen CT. Ultrasound triggered, image guided, local drug delivery. J Control Release 2010; 148:25-33. [DOI: 10.1016/j.jconrel.2010.07.117] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
|
29
|
Suzuki R, Oda Y, Utoguchi N, Maruyama K. Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 2010; 149:36-41. [PMID: 20470839 DOI: 10.1016/j.jconrel.2010.05.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/28/2010] [Accepted: 05/06/2010] [Indexed: 12/11/2022]
Abstract
Recently, ultrasound-mediated gene delivery with nano- and microbubbles was developed as a novel non-viral vector system. In this gene delivery system, microstreams and microjets, which are induced by disruption of nano/microbubbles exposed to ultrasound, are used as the driving force to transfer genes into cells by opening transient pores in the cell membrane. This system can directly deliver plasmid DNA and siRNA into cytosol without endocytosis pathway. Therefore, these genes are able to escape from degradation in lysosome and result in enhancing the efficiency of gene expression. In addition, it is expected that ultrasound-mediated gene delivery using nano/microbubbles would be a system to establish non-invasive and tissue specific gene expression because ultrasound can transdermally expose to target tissues and organs. This review focuses on the current ultrasound-mediated gene delivery system using nano/microbubbles. We discuss about the feasibility of this gene delivery system as novel non-viral vector system.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suwarashi, Midori-ku, Sagamihara, Kanagawa 252-5195, Japan
| | | | | | | |
Collapse
|
30
|
Husseini GA, Stevenson-Abouelnasr D, Pitt WG, Assaleh KT, Farahat LO, Fahadi J. Kinetics and Thermodynamics of Acoustic Release of Doxorubicin from Non-stabilized polymeric Micelles. Colloids Surf A Physicochem Eng Asp 2010; 359:18-24. [PMID: 20495608 PMCID: PMC2872131 DOI: 10.1016/j.colsurfa.2010.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper studies the thermodynamic characteristics of ultrasound-activated release of Doxorubicin (Dox) from micelles. The release and re-encapsulation of Dox into Pluronic® P105 micelles was measured by recording the fluorescence of a solution of 10 µg/ml Dox and 10% wt P105 polymer in phosphate-buffered saline, during and after insonation by ultrasound at three temperatures, (25 °C, 37 °C and 56 °C). The experimental data were modeled using a previously-published model of the kinetics of the system. The model was simplified by the experimental measurement of one of the parameters, the maximum amount of Dox that can be loaded into the poly(propyleneoxide) cores of the micelles, which was found to be 89 mg/ml PPO and 150 mg Dox/ml PPO at 25 °C and 37 °C, respectively. From the kinetic constants and drug distribution parameters, we deduced the thermodynamic activation energy for micelle re-assembly and the residual activation energies for micelle destruction. Our model showed that the residual activation energy for destruction decreased with increasing acoustic intensity. In addition, higher temperatures were found to encourage micelle destruction and hinder micelle re-assembly.
Collapse
Affiliation(s)
- Ghaleb A. Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | | | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602
| | - Khaled T. Assaleh
- Electrical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Lujein O. Farahat
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Fahadi
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
31
|
Chuang YH, Cheng PW, Chen SC, Ruan JL, Li PC. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis. ULTRASONIC IMAGING 2010; 32:81-90. [PMID: 20687276 DOI: 10.1177/016173461003200202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cavitation induced by ultrasound enhances enzymatic fibrinolysis by increasing the transport of reactants. However, the effects of cavitation need to be fully understood before sonothrombolysis can be applied clinically. In order to understand the underlying mechanisms, we examined the effects of combining ultrasound, microbubbles and thrombolytic enzymes on thrombolysis. First, we evaluated the relations between inertial cavitation and the reduction in the weight of a blood clot. Inertial cavitation was varied by changing the amplitude and duration of the transmitted acoustic wave as well as the concentration of microbubbles used to induce cavitation. Second, we studied the combined effects of streptokinase and inertial cavitation on thrombolysis. The results show that inertial cavitation increases the weight reduction of a blood clot by up to 33.9%. With linear regression fitting, the measured differential inertial cavitation dose and the weight reduction had a correlation coefficient of 0.66. Microscopically, enzymatic thrombolysis effects manifest as multiple large cavities within the clot that are uniformly distributed on the side exposed to ultrasound. This suggests that inertial cavitation plays an important role in producing cavities, while microjetting of the microbubbles induces pits on the clot surface. These observations preliminarily demonstrate the clinical potential of sonothrombolysis. The use of the differential inertial cavitation dose as an indicator of blood clot weight loss for controlled sonothrombolysis is also possible and will be further explored.
Collapse
Affiliation(s)
- Yueh-Hsun Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Feinstein SB, Coll B, Staub D, Adam D, Schinkel AFL, ten Cate FJ, Thomenius K. Contrast enhanced ultrasound imaging. J Nucl Cardiol 2010; 17:106-15. [PMID: 19921346 DOI: 10.1007/s12350-009-9165-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Steven B Feinstein
- Rush University Medical Center, Suite 1015 Jelke, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fan Z, Kumon RE, Park J, Deng CX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release 2009; 142:31-9. [PMID: 19818371 DOI: 10.1016/j.jconrel.2009.09.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/02/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
Ultrasound application in the presence of microbubbles is a promising strategy for intracellular drug and gene delivery, but it may also trigger other cellular responses. This study investigates the relationship between the change of cell membrane permeability generated by ultrasound-driven microbubbles and the changes in intracellular calcium concentration ([Ca(2+)](i)). Cultured rat cardiomyoblast (H9c2) cells were exposed to a single ultrasound pulse (1MHz, 10-15cycles, 0.27MPa) in the presence of a Definity(TM) microbubble. Intracellular transport via sonoporation was assessed in real time using propidium iodide (PI), while [Ca(2+)](i) and dye loss from the cells were measured with preloaded fura-2. The ultrasound exposure generated fragmentation or shrinking of the microbubble. Only cells adjacent to the ultrasound-driven microbubble exhibited propidium iodide uptake with simultaneous [Ca(2+)](i) increase and fura-2 dye loss. The amount of PI uptake was correlated with the amount of fura-2 dye loss. Cells with delayed [Ca(2+)](i) transients from the time of ultrasound application had no uptake of PI. These results indicate the formation of non-specific pores in the cell membrane by ultrasound-stimulated microbubbles and the generation of calcium waves in surrounding cells without pores.
Collapse
Affiliation(s)
- Z Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | | | | | | |
Collapse
|
34
|
Yang F, Li Y, Chen Z, Gu N. The preparation and application of microbubble contrast agent combining ultrasound imaging and magnetic resonance imaging. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0168-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered drug carriers. J Pharm Sci 2009; 98:1935-61. [PMID: 18979536 DOI: 10.1002/jps.21571] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Originally developed as contrast agents for ultrasound imaging and diagnostics, in the past years, microbubbles have made their way back from the patients' bedside to the researcher's laboratory. Microbubbles are currently believed to have great potential as carriers for drugs, small molecules, nucleic acids, and proteins. This review provides insight into this intriguing new frontier from the perspective of the pharmaceutical scientist. First, basic aspects on the application of ultrasound-targeted microbubble destruction for drug delivery will be presented. Next, we will review the recently applied approaches for manufacturing and drug-loading microbubbles. Important quality issues and characterization techniques for advanced microbubble formulation will be discussed. Finally, we will provide an assessment of the prospects for microbubbles in drug and gene therapy, illustrating the problems and requirements for their future development.
Collapse
Affiliation(s)
- Steliyan Tinkov
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University-Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
36
|
Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:976-84. [PMID: 19285783 DOI: 10.1016/j.ultrasmedbio.2008.12.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/04/2008] [Accepted: 12/10/2008] [Indexed: 05/12/2023]
Abstract
In the search for an efficient nonviral gene therapy approach for the treatment of genetic disorders of cardiac and skeletal muscle such as Duchenne muscular dystrophy, ultrasound in combination with contrast enhancing microbubbles has emerged as a promising tool for safe and site-specific enhancement of gene delivery. Indeed, microbubble-enhanced gene transfer (MBGT) has been investigated for a wide variety of target sites using both reporter and therapeutic genes. Although a range of different microbubbles have been used for MBGT studies, comparison of their efficiencies is difficult because microbubble concentration and the ultrasound settings used for the application vary considerably. Only two studies to date have attempted a direct comparison of commercially available microbubbles, and both concluded that not all microbubbles show the same efficiencies with MBGT. Thus far, the reason for this is unclear. Here, the efficiency of three commercially available microbubbles--Optison, SonoVue and Sonazoid--was analyzed to understand the microbubble properties that are important for their function as an effective enhancer for gene transfer in vivo. In this study, plasmid DNA or antisense oligonucleotides were delivered by systemic injection with MBGT, focused on the heart. Gene delivery to the heart with equalized concentrations of the three microbubbles showed that Optison and Sonazoid are more efficient in MBGT compared with SonoVue, which showed the weakest gene transfer to the myocardium. Investigations into the properties of these microbubbles showed that size and shell composition did not directly influence MBGT, whereas the microbubbles with increased stability in an ultrasound field showed better MBGT results than those degrading faster. Moreover, the microbubble concentration used for MBGT was also found to be an important factor influencing the efficiency of MBGT. In conclusion, the stability of a microbubble was shown to be a major influential factor for its performance in MBGT, as is the concentration of the microbubbles used. These findings emphasize the importance of detailed investigations into the properties of microbubbles to allow the production of a microbubble specifically designed for optimum performance with MBGT.
Collapse
Affiliation(s)
- Julia Alter
- Imaging Sciences Department, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Eric C Pua
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27705, USA
| | | |
Collapse
|
38
|
Duvshani-Eshet M, Keren H, Oz S, Radzishevsky IS, Mor A, Machluf M. Effect of peptides bearing nuclear localization signals on therapeutic ultrasound mediated gene delivery. J Gene Med 2008; 10:1150-9. [PMID: 18613288 DOI: 10.1002/jgm.1235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND One of the major limitations of nonviral gene delivery methods is nuclear transport of plasmid DNA (pDNA). Peptides bearing nuclear localization signal (NLS) were shown to mediate nuclear import of macromolecules. We have explored the use of cell-permeable peptides (CPP) bearing NLS sequences to enhance transfection mediated by a nonviral approach: therapeutic ultrasound (TUS). METHODS Two CPP-NLS peptides which differ in the location of the NLS relative to the CPP were used: S4 13-PV and PV-S4 13. The peptides were attached to pDNA using electrostatic interactions. Gel-electrophoresis and fluorescent assays were performed to evaluate pDNA-peptide interactions and condensation effects. Confocal microscopy was used to evaluate pDNA-peptide interaction inside cells. Transfection studies were conducted with the luciferase gene, using pDNA-peptides alone, or with the application of TUS. RESULTS Attachment of both peptides to pDNA condensed the pDNA, with higher affinity for the S4(13)-PV peptide. This interaction protected pDNA from endonucleases, but was also reversible. Both peptides mediated pDNA delivery to cell cytoplasm, but less significantly to the nucleus. Thus, both peptides produced transfection in cells, when added after incubation with DNA, with higher transfection-level for PV-S4 13. Application of TUS increased transfection mediated by these peptides, but was not higher compared to transfection using TUS and pDNA alone. CONCLUSIONS This study suggests that CPP-NLS peptides may be used for condensing pDNA and bringing it into the cell cytoplasm, but their ability to mediate nuclear import of pDNA is insignificant.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- The Faculty of Biotechnology and Food Engineering, The Technion-Israel institute of Technology, Haifa Israel
| | | | | | | | | | | |
Collapse
|
39
|
Watanabe Y, Aoi A, Horie S, Tomita N, Mori S, Morikawa H, Matsumura Y, Vassaux G, Kodama T. Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin. Cancer Sci 2008; 99:2525-31. [PMID: 19018767 PMCID: PMC11159926 DOI: 10.1111/j.1349-7006.2008.00989.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/21/2008] [Accepted: 08/24/2008] [Indexed: 11/28/2022] Open
Abstract
Cell permeabilization using microbubbles (MB) and low-intensity ultrasound (US) have the potential for delivering molecules into the cytoplasm. The collapsing MB and cavitation bubbles created by this collapse generate impulsive pressures that cause transient membrane permeability, allowing exogenous molecules to enter the cells. To evaluate this methodology in vitro and in vivo, we investigated the effects of low-intensity 1-MHz pulsed US and MB combined with cis-diamminedichloroplatinum (II) (CDDP) on two cell lines (Colon 26 murine colon carcinoma and EMT6 murine mammary carcinoma) in vitro and in vivo on severe combined immunodeficient mice inoculated with HT29-luc human colon carcinoma. To investigate in vitro the efficiency of molecular delivery by the US and MB method, calcein molecules with a molecular weight in the same range as that of CDDP were used as fluorescent markers. Fluorescence measurement revealed that approximately 10(6)-10(7) calcein molecules per cell were internalized. US-MB-mediated delivery of CDDP in Colon 26 and EMT6 cells increased cytotoxicity in a dose-dependent manner and induced apoptosis (nuclear condensation and fragmentation, and increase in caspase-3 activity). In vivo experiments with xenografts (HT29-luc) revealed a very significant reduction in tumor volume in mice treated with CDDP + US + MB compared with those in the US + CDDP groups for two different concentrations of CDDP. This finding suggests that the US-MB method combined with chemotherapy has clinical potential in cancer therapy.
Collapse
Affiliation(s)
- Yukiko Watanabe
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang F, Gu N, Chen D, Xi X, Zhang D, Li Y, Wu J. Experimental study on cell self-sealing during sonoporation. J Control Release 2008; 131:205-10. [PMID: 18727944 DOI: 10.1016/j.jconrel.2008.07.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/24/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
Abstract
Reparable sonoporation of human breast cancer cells was achieved during exposure to moderate ultrasound (spatial peak acoustic pressure, p(sp)=0.25 MPa, 1 MHz tone-bursts, 20 cycles per tone-burst at pulse repetition frequency of 10 kHz) up to 40 s assisted by the presence of encapsulated microbubbles (EMBs). It was demonstrated that shear stress generated by oscillating EMBs at the cell membranes introduced small transient pores in cell membranes by which cells were able to uptake some extracellular fluid and meanwhile triggered the repairing process through self-sealing during sonoporation. It was also indicated by post-sonoporation analysis using the fluorescent microscopy, scanning electron microscopy, and the Bradford assay which determined the protein content in cell supernatant that the self-sealing might be established by lysosomal-associated membrane protein, LAMP-1, fusing with the plasma membrane under the stressful condition in sonoporation.
Collapse
Affiliation(s)
- Fang Yang
- Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki R, Oda Y, Utoguchi N, Namai E, Taira Y, Okada N, Kadowaki N, Kodama T, Tachibana K, Maruyama K. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. J Control Release 2008; 133:198-205. [PMID: 19000727 DOI: 10.1016/j.jconrel.2008.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/13/2008] [Accepted: 10/16/2008] [Indexed: 12/30/2022]
Abstract
In dendritic cell (DC)-based cancer immunotherapy, it is important that DCs present peptides derived from tumor-associated antigens on MHC class I, and activate tumor-specific cytotoxic T lymphocytes (CTLs). However, MHC class I generally present endogenous antigens expressed in the cytosol. We therefore developed an innovative approach capable of directly delivering exogenous antigens into the cytosol of DCs; i.e., a MHC class I-presenting pathway. In this study, we investigated the effect of antigen delivery using perfluoropropane gas-entrapping liposomes (Bubble liposomes, BLs) and ultrasound (US) exposure on MHC class I presentation levels in DCs, as well as the feasibility of using this antigen delivery system in DC-based cancer immunotherapy. DCs were treated with ovalbumin (OVA) as a model antigen, BLs and US exposure. OVA was directly delivered into the cytosol but not via the endocytosis pathway, and OVA-derived peptides were presented on MHC class I. This result indicates that exogenous antigens can be recognized as endogenous antigens when delivered into the cytosol. Immunization with DCs treated with OVA, BLs and US exposure efficiently induced OVA-specific CTLs and resulted in the complete rejection of E.G7-OVA tumors. These data indicate that the combination of BLs and US exposure is a promising antigen delivery system in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Sagamiko-cho, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J Control Release 2008; 133:146-53. [PMID: 18976686 DOI: 10.1016/j.jconrel.2008.09.088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/04/2008] [Accepted: 09/28/2008] [Indexed: 12/17/2022]
Abstract
Cell therapy is a promising therapeutic strategy for regenerative medicine. However, its current efficacy is insufficient, because of the short lifetime and low engraftment of transplanted cells. Transplantation of genetically modified stem cells has been reported to improve the efficacy of cell therapy. The aim of this study was to elucidate the feasibility of a combination of ultrasound and microbubbles (US-MB) for delivery of small interfering RNA (siRNA) into mesenchymal stem cells (MSC). Although cell damage was observed after US-MB treatment, the transfection efficiency determined using fluorescent-labeled siRNA was significantly increased after US-MB. Furthermore, the intracellular delivery of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) siRNA by US-MB resulted in significant knockdown of PTEN mRNA expression and activation of Akt, a mediator of a survival signaling pathway. Our results indicate that US-MB could serve as a nonviral delivery method of siRNA into MSC. The transplantation of genetically modified MSC by US-MB could be a useful strategy for regenerative medicine in the future.
Collapse
|
43
|
Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K. Effective gene delivery with liposomal bubbles and ultrasound as novel non-viral system. J Drug Target 2008; 15:531-7. [PMID: 17671899 DOI: 10.1080/10611860701499789] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We developed the novel liposomal bubbles (Bubble liposomes) containing ultrasound imaging gas, perfluoropropane. Bubble liposomes were made of pegylated liposomes and were smaller than conventional microbubbles. Bubble liposomes also had a function as imaging agents in cardiosonography. In addition, Bubble liposomes could deliver plasmid DNA into various types of cells in vitro without cytotoxicity by the combination of ultrasound. In vivo gene delivery, Bubble liposomes could deliver plasmid DNA into mouse femoral artery by the transdermally exposure of ultrasound. This transfection efficiency was more effectively than lipofection method. Interestingly, the gene expression was only observed at the site of ultrasound exposure. Therefore, we concluded that Bubble liposomes could be good tools to establish tissue-specific gene delivery system as well as ultrasound imaging agents.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
44
|
Norez C, Pasetto M, Dechecchi MC, Barison E, Anselmi C, Tamanini A, Quiri F, Cattel L, Rizzotti P, Dosio F, Cabrini G, Colombatti M. Chemical conjugation of ΔF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl−channel functions. Am J Physiol Lung Cell Mol Physiol 2008; 295:L336-47. [DOI: 10.1152/ajplung.00059.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most common mutation of the cystic fibrosis (CF) gene, the deletion of Phe508, encodes a protein (ΔF508-CFTR) that fails to fold properly, thus mutated ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR) is recognized and degraded via the ubiquitin-proteasome endoplasmic reticulum-associated degradation pathway. Chemical and pharmacological chaperones and ligand-induced transport open options for designing specific drugs to control protein (mis)folding or transport. A class of compounds that has been proposed as having potential utility in ΔF508-CFTR is that which targets the molecular chaperone and proteasome systems. In this study, we have selected deoxyspergualin (DSG) as a reference molecule for this class of compounds and for ease of cross-linking to human serum albumin (HSA) as a protein transporter. Chemical cross-linking of DSG to HSA via a disulfide-based cross-linker and its administration to cells carrying ΔF508-CFTR resulted in a greater enhancement of ΔF508-CFTR function than when free DSG was used. Function of the selenium-dependent oxidoreductase system was required to allow intracellular activation of HSA-DSG conjugates. The principle that carrier proteins can deliver pharmacological chaperones to cells leading to correction of defective CFTR functions is therefore proven and warrants further investigations.
Collapse
|
45
|
Li YS, Reid CN, McHale AP. Enhancing ultrasound-mediated cell membrane permeabilisation (sonoporation) using a high frequency pulse regime and implications for ultrasound-aided cancer chemotherapy. Cancer Lett 2008; 266:156-62. [PMID: 18367324 DOI: 10.1016/j.canlet.2008.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Delivering ultrasound to HeLa cells at 1MHz using a high frequency pulse regime (40kHz) and at a maximum energy density of 270Jcm(-2) resulted in significant cell membrane permeabilisation. Using FITC-dextran as a fluorogenic marker, optimally up to 64% of treated populations were permeabilised with cell viability remaining above 80%. Although cell membrane permeabilisation was observed in the presence of the microbubble-based ultrasound contrast agent, SonoVue, cell viability was severely compromised. Using the high frequency pulse regime in the absence of microbubbles, the LD50 of the cancer chemotherapeutic agent, camptothecin, was reduced from 58 to 18nM.
Collapse
Affiliation(s)
- Ying Suet Li
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Derry BT52 1SA, Northern Ireland, United Kingdom
| | | | | |
Collapse
|
46
|
Meijering BDM, Henning RH, Van Gilst WH, Gavrilovic I, Van Wamel A, Deelman LE. Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells. J Drug Target 2008; 15:664-71. [PMID: 18041634 DOI: 10.1080/10611860701605088] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ultrasound and microbubbles targeted gene delivery (UMTGD) is a promising technique for local gene delivery. As the endothelium is a primary target for systemic UMTGD, this study aimed at establishing the optimal parameters of UMTGD to primary endothelial cells. For this, an in vitro ultrasound (US) setup was employed in which individual UMTGD parameters were systematically optimized. The criteria for the final optimized protocol were: (1) relative high reporter gene expression levels, restricted to the US exposed area and (2) induction of not more than 5% cell death. US frequency and timing of medium replacement had a strong effect on UMTGD efficiency. Furthermore, US intensity, DNA concentration and total duration of US all affected UMTGD efficiency. Optimal targeted gene delivery to primary endothelial cells can be accomplished with Sonovue microbubbles, using 20 microg/ml plasmid DNA, a 1 MHz US exposure of Ispta 0.10 W/cm(2) for 30 s with immediate medium change after UMTGD. This optimized protocol resulted in both an increase in the number of transfected cells (more than three fold) and increased levels of transgene expression per cell (170%).
Collapse
Affiliation(s)
- Bernadet D M Meijering
- Department of Clinical Pharmacology, Groningen Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J Control Release 2007; 126:265-73. [PMID: 18237813 DOI: 10.1016/j.jconrel.2007.12.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/24/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Short interfering RNA (siRNA) attracts much attention for the treatment of various diseases. However, its delivery, especially via systemic routes, remains a challenge. Indeed, naked siRNAs are rapidly degraded, while complexed siRNAs massively aggregate in the blood or are captured by macrophages. Although this can be circumvented by PEGylation, we found that PEGylation had a strong negative effect on the gene silencing efficiency of siRNA-liposome complexes (siPlexes). Recently, ultrasound combined with microbubbles has been used to deliver naked siRNA but the gene silencing efficiency is rather low and very high amounts of siRNA are required. To overcome the negative effects of PEGylation and to enhance the efficiency of ultrasound assisted siRNA delivery, we coupled PEGylated siPlexes (PEG-siPlexes) to microbubbles. Ultrasound radiation of these microbubbles resulted in massive release of unaltered PEG-siPlexes. Interestingly, PEG-siPlexes loaded on microbubbles were able to enter cells after exposure to ultrasound, in contrast to free PEG-siPlexes, which were not able to enter cells rapidly. Furthermore, these PEG-siPlex loaded microbubbles induced, in the presence of ultrasound, much higher gene silencing than free PEG-siPlexes. Additionally, the PEG-siPlex loaded microbubbles only silenced the expression of genes in the presence of ultrasound, which allows space and time controlled gene silencing.
Collapse
Affiliation(s)
- Roosmarijn E Vandenbroucke
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Nonviral gene delivery is a promising, safe, therapeutic tool in regenerative medicine. This study is the first to achieve nonviral, ultrasound-based, osteogenic gene delivery that leads to bone tissue formation, in vivo. We hypothesized that direct in vivo sonoporation of naked DNA encoding for the osteogenic gene, recombinant human bone morphogenetic protein-9 (rhBMP-9) would induce bone formation. A luciferase plasmid (Luc), encoding rhBMP-9 or empty pcDNA3 vector mixed with microbubbles, was injected into the thigh muscles of mice. After injection, noninvasive sonoporation was applied. Luc activity was monitored noninvasively, and quantitatively using bioluminescence imaging in vivo, and found for 14 days with a peak expression on day 7. To examine osteogenesis in vivo, rhBMP-9 plasmid was sonoporated into the thigh muscles of transgenic mice that express the Luc gene under the control of a human osteocalcin promoter. Following rhBMP-9 sonoporation, osteocalcin-dependent Luc expression lasted for 24 days and peaked on day 10. Bone tissue was formed in the site of rhBMP-9 delivery, as was shown by micro-computerized tomography and histology. The sonoporation method was also compared with previously developed electrotransfer-based gene delivery and was found significantly inferior in its efficiency of gene delivery. We conclude that ultrasound-mediated osteogenic gene delivery could serve as a therapeutic solution in conditions requiring bone tissue regeneration after further development that will increase the transfection efficiency.
Collapse
|
49
|
Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int J Pharm 2007; 354:49-55. [PMID: 18082343 DOI: 10.1016/j.ijpharm.2007.10.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
From the viewpoint of safety, non-viral vector systems represent an attractive gene delivery system for gene therapy. However, the transfection efficiency of non-viral vectors in vivo is generally very low. Previously, it was reported that microbubbles, utilized as imaging agents for diagnostic echocardiography, could promote gene delivery into cells when combined with ultrasound exposure. We therefore developed novel liposomal bubbles (Bubble liposomes) containing the lipid nanobubbles of perfluoropropane which is used as ultrasound imaging agent. These Bubble liposomes were smaller in diameter than conventional microbubbles and induced cavitation upon exposure to ultrasound. These results suggested that cavitation of these Bubble liposomes could be an efficient approach for delivering plasmid DNA into cells. In addition, in in vivo gene delivery, the combination of Bubble liposomes and ultrasound provided more effective gene delivery than conventional lipofection methods, further suggesting that Bubble liposomes could be effective as a non-viral vector system in in vivo gene delivery. In this review, we discuss the characteristics of Bubble liposomes and their potential utility as a gene delivery tool in vitro and in vivo.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suwarashi, Sagamiko, Sagamihara, Kanagawa 229-0195, Japan
| | | | | | | | | |
Collapse
|
50
|
Sonoperméabilisation : alternative thérapeutique par ultrasons et microbulles. ACTA ACUST UNITED AC 2007; 88:1777-86. [DOI: 10.1016/s0221-0363(07)73957-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|