1
|
Carbon dots as Reactive Nitrogen Species nanosensors. Anal Chim Acta 2022; 1202:339654. [DOI: 10.1016/j.aca.2022.339654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022]
|
2
|
Carrizo AF, Argüello JE, Schmidt LC, Colomer JP. Thioglucopyranose Ligands Promote Phase‐Transfer of Cadmium Selenide Quantum Dots from Organic Solvents to Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonella F. Carrizo
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| | - Juan E. Argüello
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| | - Luciana C. Schmidt
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| | - Juan P. Colomer
- Department of Organic Chemistry INFIQC-CONICET-UNC Haya de la Torre esq. Medina Allende s/n Ciudad Universitaria Córdoba Argentina
| |
Collapse
|
3
|
Pardeshi CV, Agnihotri VV, Patil KY, Pardeshi SR, Surana SJ. Mannose-anchored N,N,N-trimethyl chitosan nanoparticles for pulmonary administration of etofylline. Int J Biol Macromol 2020; 165:445-459. [PMID: 32987078 DOI: 10.1016/j.ijbiomac.2020.09.163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 01/13/2023]
Abstract
Drug delivery to lungs via pulmonary administration offers potential for the development of new drug delivery systems. Here we fabricated the etofylline (ETO) encapsulated mannose-anchored N,N,N-trimethyl chitosan nanoparticles (Mn-TMC NPs). The prominent characteristics like biocompatibility, controlled release, targeted delivery, high penetrability, enhanced physical stability, and scalability mark Mn-TMC NPs as a viable alternative to various nanoplatform technologies for effective drug delivery. Mannosylation of TMC NPs leads to the evolution of new drug delivery vehicle with gratifying characteristics, and potential benefits in efficient drug therapy. It is widely accepted that following pulmonary administration, the introduction of mannose to the surface of drug nanocarriers provide selective macrophage targeting via receptor-mediated endocytosis. The fabricated Mn-TMC NPs exhibited particle size of 223.3 nm, PDI 0.490, and ζ-potential -19.1 mV, drug-loading capacity 76.26 ± 1.2%, and encapsulation efficiency of 91.75 ± 0.88%. Sustained drug release, biodegradation studies, stability, safety, and aerodynamic behavior revealed the effectiveness of prepared nanoformulation for pulmonary administration. In addition, the in vivo pharmacokinetic studies in Wistar rat model revealed a significant improvement in therapeutic efficacy of ETO, illustrating mannosylation a promising approach for efficient therapy of airway diseases following pulmonary administration.
Collapse
Affiliation(s)
- Chandrakantsing V Pardeshi
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| | - Vinit V Agnihotri
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| | - Kusumakar Y Patil
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| | - Sagar R Pardeshi
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425 001, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacognosy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| |
Collapse
|
4
|
Cervantes-Jiménez R, Sánchez-Segura L, Estrada-Martínez LE, Topete-Camacho A, Mendiola-Olaya E, Rosas-Escareño AN, Saldaña-Gutiérrez C, Figueroa-Cabañas ME, Dena-Beltrán JL, Kuri-García A, Blanco-Labra A, García-Gasca T. Quantum Dot Labelling of Tepary Bean ( Phaseolus acutifolius) Lectins by Microfluidics. Molecules 2020; 25:E1041. [PMID: 32110921 PMCID: PMC7179211 DOI: 10.3390/molecules25051041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in homogeneous complexes, whose visualization was achieved using multiphoton and transmission electron microscopy. The average particle size (380 nm) and the average zeta potential (-18.51 mV) were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10-3 and 1.7 × 10-3 mg/mL, respectively. The microfluidic technique allowed control of the coupling between the QD and the protein, substantially improving the labelling process, providing a rapid and efficient method that enabled the traceability of lectins. Future studies will focus on the potential use of the QD-labelled lectin to recognize tumor tissues.
Collapse
Affiliation(s)
- Ricardo Cervantes-Jiménez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Laura Elena Estrada-Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Antonio Topete-Camacho
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Elizabeth Mendiola-Olaya
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Abraham Noé Rosas-Escareño
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Carlos Saldaña-Gutiérrez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Mónica Eugenia Figueroa-Cabañas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - José Luis Dena-Beltrán
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Aarón Kuri-García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| |
Collapse
|
5
|
Patil TS, Deshpande AS. Mannosylated nanocarriers mediated site-specific drug delivery for the treatment of cancer and other infectious diseases: A state of the art review. J Control Release 2020; 320:239-252. [PMID: 31991156 DOI: 10.1016/j.jconrel.2020.01.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
The non-modified nanocarriers-based therapies for the treatment of cancer and other infectious diseases enhanced the chemical stability of therapeutically active agents, protected them from enzymatic degradation and extended their blood circulation time. However, the lack of specificity and off-target effects limit their applications. Mannose receptors overexpressed on antigen presenting cells such as dendritic cells and macrophages are one of the most desirable targets for treating cancer and other infectious diseases. Therefore, the development of mannosylated nanocarrier formulation is one of the most extensively explored approaches for targeting these mannose receptors. The present manuscript gives readers the background information on C-type lectin receptors followed by the roles, expression, and distribution of the mannose receptors. It further provides a detailed account of different mannosylated nanocarrier formulations. It also gives the tabular information on most relevant and recently granted patents on mannosylated systems. The overview of mannosylated nanocarrier formulations depicted site-specific targeting, enhanced pharmacokinetic/pharmacodynamic profiles, and improved transfection efficiency of the therapeutically active agents. This suggests the bright future ahead for mannosylated nanocarriers in the treatment of cancer and other infectious diseases. Nevertheless, the mechanism behind the enhanced immune response by mannosylated nanocarriers and their thorough clinical and preclinical evaluation need to explore further.
Collapse
Affiliation(s)
- Tulshidas S Patil
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India.
| |
Collapse
|
6
|
Hashida M. Role of pharmacokinetic consideration for the development of drug delivery systems: A historical overview. Adv Drug Deliv Rev 2020; 157:71-82. [PMID: 32565225 DOI: 10.1016/j.addr.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022]
Abstract
Drug delivery system is defined as a system or technology to achieve optimum therapeutic effects of drugs through precise control of their movements in the body. In order to optimize function of drug delivery systems aiming at targeting, their whole-body distribution profiles should be systematically evaluated and analyzed, where pharmacokinetic analysis based on the clearance concepts plays important role. Organ perfusion experiments combined with statistical moment analysis further supply detailed information on drug disposition at organ and cellular levels. Based on general relationship between physicochemical properties and distribution profile, macromolecular prodrugs or polymer conjugates of proteins are rationally designed and further introduction of ligand structure brings cell-specific delivery for them. These approaches are also applicable for particulate carriers such as liposomes and offer various opportunities for biological drugs such as nucleic acid drugs for their delivery. Mechanistic approach for dermal absorption analysis based on physiological skin model offers another opportunity in rational design of drug delivery. Potential of drug delivery technology in future medicines such as cell therapy and nanomaterial platform application is further discussed in relation to pharmacokinetic consideration.
Collapse
|
7
|
Cunha C, Oliveira A, Firmino T, Tenório D, Pereira G, Carvalho L, Santos B, Correia M, Fontes A. Biomedical applications of glyconanoparticles based on quantum dots. Biochim Biophys Acta Gen Subj 2018; 1862:427-439. [DOI: 10.1016/j.bbagen.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/07/2023]
|
8
|
Cao Q, Yan X, Chen K, Huang Q, Melancon MP, Lopez G, Cheng Z, Li C. Macrophages as a potential tumor-microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials 2017; 152:63-76. [PMID: 29111494 DOI: 10.1016/j.biomaterials.2017.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/30/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
As a result of therapy-induced apoptosis, peripheral blood monocytes are recruited to tumors, where they become tumor-associated macrophages (TAMs). To date, few studies have investigated noninvasive molecular imaging for assessment of macrophage infiltration in response to therapy-induced apoptosis. Here, noninvasive assessment of changes in tumor accumulation of TAMs was proposed as a new way to measure early tumor response to anticancer therapy. Three different nanoparticles, QD710-Dendron quantum dots (QD710-D), Ferumoxytol, and PG-Gd-NIR813, were used for near-infrared fluorescence imaging, T2-weighted magnetic resonance imaging, and dual optical/T1-weighted MR imaging, respectively, in the MDA-MB-435 tumor model. Treatment with Abraxane induced tumor apoptosis and infiltrating macrophages. In spite of markedly different physicochemical properties among the nanoparticles, in vivo imaging revealed increased uptake of all three nanoparticles in Abraxane-treated tumors compared with untreated tumors. Moreover, imaging visualized increased uptake of QD710-D in MDA-MB-435 tumors but not in drug-resistant MDA-MB-435R tumors grown in the mice treated with Abraxane. Our results suggest that infiltration of macrophages due to chemotherapy-induced apoptosis was partially responsible for increased nanoparticle uptake in treated tumors. Noninvasive imaging techniques in conjunction with systemic administration of imageable nanoparticles that are taken up by macrophages are a potentially useful tool for assessing early treatment response.
Collapse
Affiliation(s)
- Qizhen Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinrui Yan
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Kai Chen
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marites P Melancon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gabriel Lopez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States.
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Experimental Therapeutics Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States.
| |
Collapse
|
9
|
Yao J, Li L, Li P, Yang M. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. NANOSCALE 2017; 9:13364-13383. [PMID: 28880034 DOI: 10.1039/c7nr05233b] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, nanotechnology has become one of the major forces driving basic and applied research. As a novel class of inorganic fluorochromes, research into quantum dots (QDs) has become one of the fastest growing fields of nanotechnology today. QDs are made of a semiconductor material with tunable physical dimensions as well as unique optoelectronic properties, and have attracted multidisciplinary research efforts to further their potential bioanalytical applications. Recently, numerous optical properties of QDs, such as narrow emission band peaks, broad absorption spectra, intense signals, and remarkable resistance to photobleaching, have made them biocompatible and sensitive for biological assays. In this review, we give an overview of these exciting materials and describe their potential, especially in biomolecules analysis, including fluorescence detection, chemiluminescence detection, bioluminescence detection, electrochemiluminescence detection, and electrochemical detection. Finally, conclusions are made, including highlighting some critical challenges remaining and a perspective of how this field can be expected to develop in the future.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, People's Republic of China.
| | | | | | | |
Collapse
|
10
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
11
|
Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017; 128:69-83. [PMID: 28292726 PMCID: PMC5417338 DOI: 10.1016/j.biomaterials.2017.02.041] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The continued evolution of biomedical nanotechnology has enabled clinicians to better detect, prevent, manage, and treat human disease. In order to further push the limits of nanoparticle performance and functionality, there has recently been a paradigm shift towards biomimetic design strategies. By taking inspiration from nature, the goal is to create next-generation nanoparticle platforms that can more effectively navigate and interact with the incredibly complex biological systems that exist within the body. Of great interest are cellular membranes, which play essential roles in biointerfacing, self-identification, signal transduction, and compartmentalization. In this review, we explore the major ways in which researchers have directly leveraged cell membrane-derived biomaterials for the fabrication of novel nanotherapeutics and nanodiagnostics. Such emerging technologies have the potential to significantly advance the field of nanomedicine, helping to improve upon traditional modalities while also enabling novel applications.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
13
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
14
|
Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209:8-39. [PMID: 24491963 DOI: 10.1016/j.cis.2013.12.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.
Collapse
|
15
|
Yoshida M, Kawakami S, Un K, Kono Y, Higuchi Y, Yamashita F, Hashida M. Evaluation of inflammatory responses due to small interfering RNA transfer using unmodified- and mannose-modified bubble lipoplexes with ultrasound exposure in primary cultured macrophages. J Drug Target 2014; 22:732-8. [PMID: 24830302 DOI: 10.3109/1061186x.2014.916710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Development of an efficient small interfering RNA (siRNA) delivery method using non-viral carriers is necessary to determine potent therapeutic effects of RNA interference. Inflammatory responses induced by siRNA interaction with Toll-like receptors and retinoic-acid-inducible gene I protein/melanoma differentiation-associated gene 5 (RIG-I/MDA-5) are obstacles to the application of siRNAs in clinically. Here, we evaluated the effects on inflammatory responses by our siRNA delivery method using bubble lipoplexes with ultrasound (US) exposure in cultured macrophages. The effective gene suppression effects were obtained under low-toxic conditions in this siRNA transfer method. The interferon (IFN)-α after siRNA transfer using lipoplexes/bubble lipoplexes with US exposure was not detected. However, low levels of type I IFN mRNA production were induced through interaction of siRNA and cytoplasmic RIG-I/MDA-5, but not Toll-like receptors. Our findings indicate that it is possible to develop a safe and efficient siRNA delivery technique using mannosylated bubble lipoplexes and US exposure.
Collapse
Affiliation(s)
- Mitsuru Yoshida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Salgado CL, Mansur AAP, Mansur HS, Monteiro FJM. Fluorescent bionanoprobes based on quantum dot-chitosan–O-phospho-l-serine conjugates for labeling human bone marrow stromal cells. RSC Adv 2014. [DOI: 10.1039/c4ra08247h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescent biocompatible quantum dots functionalized with chitosan–O-phospho-l-serine nanoconjugates were synthesized and characterized for targeting and labeling human bone marrow stromal cells.
Collapse
Affiliation(s)
- Christiane L. Salgado
- INEB
- Instituto Nacional de Engenharia Biomédica
- Porto, Portugal
- FEUP
- Faculdade de Engenharia
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I
- Department of Metallurgical and Materials Engineering
- Federal University of Minas Gerais
- Brazil
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I
- Department of Metallurgical and Materials Engineering
- Federal University of Minas Gerais
- Brazil
| | | |
Collapse
|
17
|
Adak AK, Lin HJ, Lin CC. Multivalent glycosylated nanoparticles for studying carbohydrate–protein interactions. Org Biomol Chem 2014; 12:5563-73. [DOI: 10.1039/c4ob00827h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glyconanoparticles decorated with multiple copies of various biologically relevant carbohydrates serve as scaffolds for protein binding assay, molecular imaging, targeted therapy, and bacterium detection.
Collapse
Affiliation(s)
- Avijit K. Adak
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Hong-Jyune Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| |
Collapse
|
18
|
Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, Umeyama T, Imahori H, Hashida M. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J Control Release 2013; 173:59-66. [PMID: 24211651 DOI: 10.1016/j.jconrel.2013.10.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/15/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are known to have great potential for biomedical applications such as photothermal ablation of tumor cells in combination with near-infrared (NIR) irradiation. In this study, the photothermal activity of a novel SWCNTs composite with a designed peptide having a repeated structure of H-(-Lys-Phe-Lys-Ala-)7-OH [(KFKA)7] against tumor cells was evaluated in vitro and in vivo. The SWCNT-(KFKA)7 composite demonstrated high aqueous dispersibility that enabled SWCNTs to be used in tumor ablation. The NIR irradiation of SWCNT-(KFKA)7 solution resulted in a rapid temperature increase dependent on the SWCNTs concentration up to 50μg/ml. Three minutes of NIR irradiation of a colon 26 or HepG2 cell culture incubated with SWCNT-(KFKA)7 resulted in remarkable cell damage, while that by single treatment with SWCNT-(KFKA)7 or NIR irradiation alone was moderate. The intratumoral injection of SWCNT-(KFKA)7 solution followed by NIR irradiation resulted in a rapid increase of the temperature to 43°C in the subcutaneously inoculated colon 26 tumor based on thermographic observation and remarkable suppression of tumor growth compared with treatment with only SWCNT-(KFKA)7 injection alone or NIR irradiation alone. These results suggest the a great potential of an SWCNT-peptide composite for use in photothermal cancer therapy.
Collapse
Affiliation(s)
- Yasuhiko Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Hironori Tanaka
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuwen Zhou
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuya Murakami
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Tomokazu Umeyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Imahori
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mitsuru Hashida
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions. Talanta 2013; 116:514-9. [PMID: 24148438 DOI: 10.1016/j.talanta.2013.07.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.
Collapse
|
20
|
Tian X, Baek KH, Shin I. Dual-labeled glycoclusters: synthesis and their application in monitoring lectin-mediated endocytosis. MOLECULAR BIOSYSTEMS 2013; 9:978-86. [DOI: 10.1039/c3mb25491g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Zhou X, Zhang M, Yung B, Li H, Zhou C, Lee LJ, Lee RJ. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int J Nanomedicine 2012; 7:5465-74. [PMID: 23093902 PMCID: PMC3476751 DOI: 10.2147/ijn.s33965] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background N-lactosyl-dioleoylphosphatidylethanolamine (Lac-DOPE) was synthesized and evaluated as a liver-specific targeting ligand via asialoglycoprotein receptors for liposomal delivery of doxorubicin. Methods Lactosylated liposomes encapsulating calcein (Lac-L-calcein) or doxorubicin (Lac-L-DOX) composed of egg phosphatidylcholine, cholesterol, monomethoxy polyethylene glycol 2000-distearoyl phosphatidylethanolamine, and Lac-DOPE at 50:35:5:10 (mol/mol) were prepared by polycarbonate membrane extrusion and evaluated in human hepatocellular carcinoma HepG2 cells. Cellular uptake of Lac-L-calcein was monitored by confocal microscopy and by flow cytometry. The cytotoxicity of Lac-L-DOX was evaluated by MTT assay. The pharmacokinetic properties of Lac-L-DOX were studied in normal mice, and its biodistribution and antitumor activity were studied in nude mice with HepG2 xenografts. Results The size of Lac-L-DOX was less than 100 nm and the liposomes demonstrated excellent colloidal stability. In vitro uptake of Lac-L-calcein by HepG2 cells was four times greater than that of non-targeted L-calcein. In the presence of 20 mM lactose, the uptake of Lac-L-calcein was inhibited, suggesting that asialoglycoprotein receptors mediated the observed cellular uptake. Lac-L-DOX exhibited enhanced in vivo cytotoxicity compared with the nontargeted liposomal doxorubicin (L-DOX), and its pharmacokinetic parameters indicate that Lac-L-DOX has a long blood circulation time (t1/2 8.73 hours). Tissue distribution and therapeutic efficacy studies in nude mice bearing HepG2 xenografts show that Lac-L-DOX had significantly stronger tumor inhibitory activity compared with L-DOX and free doxorubicin, along with a higher accumulation of drug within the tumor site and greater cellular uptake by tumor cells. Conclusion These data suggest that lactosylated liposomes are promising drug delivery vehicles for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaoju Zhou
- State Key Laboratory of Virology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University School of Pharmaceutical Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao J, Liu Y, Park HJ, Boggs JM, Basu A. Carbohydrate-Coated Fluorescent Silica Nanoparticles as Probes for the Galactose/3-Sulfogalactose Carbohydrate–Carbohydrate Interaction Using Model Systems and Cellular Binding Studies. Bioconjug Chem 2012; 23:1166-73. [DOI: 10.1021/bc2006169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jingsha Zhao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United
States
| | - Yuanfang Liu
- Molecular Structure
and Function
Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Hyun-Joo Park
- Molecular Structure
and Function
Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Joan M. Boggs
- Molecular Structure
and Function
Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Department of Laboratory Medicine
and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5G 1L5
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United
States
| |
Collapse
|
23
|
|
24
|
Shimizu K, Higuchi Y, Kozu Y, Hashida M, Konishi S. Development of a suction device for stabilizing in vivo real-time imaging of murine tissues. J Biosci Bioeng 2011; 112:508-10. [DOI: 10.1016/j.jbiosc.2011.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
|
25
|
Laurino P, Kikkeri R, Seeberger PH. Continuous-flow reactor-based synthesis of carbohydrate and dihydrolipoic acid-capped quantum dots. Nat Protoc 2011; 6:1209-20. [PMID: 21799489 DOI: 10.1038/nprot.2011.357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A detailed protocol for the large-scale synthesis of carbohydrate and dihydrolipoic acid (DHLA)-coated CdSe/ZnS and CdTe/ZnS nanoparticles using continuous flow reactors is described here. Three continuous flow microreaction systems, operating at three different temperatures, are used for the synthesis of mannose-, galactose- or DHLA-functionalized quantum dots (QDs). In the first step of synthesis, the CdSe and CdTe nanoparticles are prepared. The size and spectral properties of the CdSe core of the nanoparticles are controlled by adjustment of the residence time and the temperature. As a second step, the zinc sulfide capping under homogenous conditions is carried out at a substantially lower temperature than is required for nanoparticle growth in batch processes. Finally, the trioctylphosphine/oleic acid ligand is effectively replaced with either carbohydrate PEG-thiol moieties or DHLA at 60 °C. This new protocol allows the synthesis of biologically active fluorescent QDs in 4 d.
Collapse
Affiliation(s)
- Paola Laurino
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | | |
Collapse
|
26
|
Higuchi Y, Wu C, Chang KL, Irie K, Kawakami S, Yamashita F, Hashida M. Polyamidoamine dendrimer-conjugated quantum dots for efficient labeling of primary cultured mesenchymal stem cells. Biomaterials 2011; 32:6676-82. [PMID: 21700331 DOI: 10.1016/j.biomaterials.2011.05.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/25/2011] [Indexed: 12/13/2022]
Abstract
Monitoring of cells in vivo after transplantation could supply important information for determining the efficacy of stem cell therapy. The use of quantum dots (QDs) has several advantages for in vivo imaging, such as remarkable resistance to photo bleaching, high fluorescence efficiency, and size-tunable emission. After they are taken up by cells via endocytosis, QDs lose their fluorescence intensity in endosomes/lysosomes at low pH because the intensity cannot survive under acidic conditions. Moreover, the amount of QD uptake by mesenchymal stem cells (MSCs) is extremely small. Therefore, for effective labeling of MSCs and long observation of MSCs labeled by QDs in vivo, it is essential both to increase cellular uptake of QDs and to promote endosomal escape into the cytosol. The polyamidoamine (PAMAM) dendrimer had plenty of cationic charge, which promoted cellular uptake though electrostatic interactions, and a "buffering capacity," which enhanced endosomal escape into the cytosol. In this study, QDs were modified with PAMAM dendrimer for the efficient labeling of MSCs by QDs. The uptake efficiency and cytosolic distribution of QDs in primary cultured MSCs were increased by the modification of the PAMAM dendrimer. The fluorescence intensity in MSCs labeled by PAMAM dendrimer-conjugated QDs lasted for a longer time in harvested culture plates or in cell-transplanted mice than that in MSCs labeled by non-conjugated QDs.
Collapse
Affiliation(s)
- Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Tian X, Pai J, Baek KH, Ko SK, Shin I. Fluorophore-labeled, Peptide-based Glycoclusters: Synthesis, Binding Properties for Lectins, and Detection of Carbohydrate-Binding Proteins in Cells. Chem Asian J 2011; 6:2107-13. [DOI: 10.1002/asia.201100319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Indexed: 01/08/2023]
|
28
|
Morais M, Subramanian S, Pandey U, Samuel G, Venkatesh M, Martins M, Pereira S, Correia JDG, Santos I. Mannosylated Dextran Derivatives Labeled with fac-[M(CO)3]+ (M = 99mTc, Re) for Specific Targeting of Sentinel Lymph Node. Mol Pharm 2011; 8:609-20. [DOI: 10.1021/mp100425p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maurício Morais
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | - Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | - Grace Samuel
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | - Meera Venkatesh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | | | | | - João D. G. Correia
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| |
Collapse
|
29
|
Sou K, Goins B, Oyajobi BO, Travi BL, Phillips WT. Bone marrow-targeted liposomal carriers. Expert Opin Drug Deliv 2011; 8:317-28. [PMID: 21275831 DOI: 10.1517/17425247.2011.553218] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Bone marrow-targeted drug delivery systems appear to offer a promising strategy for advancing diagnostic, protective and/or therapeutic medicine for the hematopoietic system. Liposome technology can provide a drug delivery system with high bone marrow targeting that is mediated by specific phagocytosis in bone marrow. AREA COVERED This review focuses on a bone marrow-specific liposome formulation labeled with technetium-99 m. Interspecies differences in bone marrow distribution of the bone marrow-targeted formulation are emphasized. This review provides a liposome technology to target bone marrow. In addition, the selection of proper species for the investigation of bone marrow targeting is suggested. EXPERT OPINION It can be speculated that the bone marrow macrophages have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins for hematopoiesis. This homeostatic system offers a potent pathway to deliver drugs selectively into bone marrow tissues from blood. High selectivity of the present bone marrow-targeted liposome formulation for bone marrow suggests the presence of an active and specific mechanism, but specific factors affecting the uptake of the bone marrow mononuclear phagocyte system are still unknown. Further investigation of this mechanism will increase our understanding of factors required for effective transport of agents to the bone marrow, and may provide an efficient system for bone marrow delivery for therapeutic purposes.
Collapse
Affiliation(s)
- Keitaro Sou
- Waseda University (TWIns), Center for Advanced Biomedical Sciences, Tokyo 162 8480, Japan.
| | | | | | | | | |
Collapse
|
30
|
Dinh TD, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Evaluation of osteoclastogenesis via NFκB decoy/mannosylated cationic liposome-mediated inhibition of pro-inflammatory cytokine production from primary cultured macrophages. Pharm Res 2011; 28:742-51. [PMID: 21253857 DOI: 10.1007/s11095-011-0366-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/06/2011] [Indexed: 01/19/2023]
Abstract
PURPOSE To explore the effect of NFκB activation in macrophages on osteoclastogenesis of bone marrow cells for potential application as a new type of therapy for preventing bone loss. METHODS Primary cultured macrophages and bone marrow cells were prepared from mice. As macrophage-targeted carriers, Mannosylated cationic liposomes (Man-liposomes) were prepared and were allowed to form complexes with NFκB decoy (a double-stranded oligonucleotide). Cellular uptake, inhibition of NFκB activation, and cytokine production were evaluated using macrophages. Osteoclastogenesis was investigated using bone marrow cells, which were cultured in the conditioned medium prepared from macrophages with or without Man-liposome/NFκB decoy complexes treatment. RESULTS Cellular accumulation of NFκB decoy was enhanced by Man-liposome. NFκB activation in macrophages and TNF-α production were suppressed in macrophages by Man-liposome/NFκB decoy complexes but not by the naked NFκB decoy, Gal-liposome/NFκB decoy complexes, or Man-liposome/random decoy complexes. Osteoclastogenesis of bone marrow cells was induced in the conditioned medium prepared from activated macrophages but not by activated macrophages treated with Man-liposome/NFκB decoy complexes. CONCLUSION Osteoclastogenesis induced by activated macrophages could be suppressed by the treatment macrophages with Man-liposome/NFκB decoy complexes. Macrophage-targeted delivery of NFκB decoys using Man-liposomes may be promising in its use for the remediation of bone loss.
Collapse
Affiliation(s)
- Thuy Duong Dinh
- Department of Drug Delivery Research Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Yong KT, Law WC, Roy I, Jing Z, Huang H, Swihart MT, Prasad PN. Aqueous phase synthesis of CdTe quantum dots for biophotonics. JOURNAL OF BIOPHOTONICS 2011; 4:9-20. [PMID: 20878905 DOI: 10.1002/jbio.201000080] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
Over the past few years, CdTe quantum dots have been demonstrated as powerful probes for biophotonics applications. The aqueous phase synthesis technique remains the best approach to make high quality CdTe QDs in a single-pot process. CdTe QDs prepared directly in the aqueous phase can have quantum yield as high as 80%. In addition, the surface of CdTe QDs prepared using the aqueous phase technique is functionalized with reactive groups that enable them to be directly conjugated with specific ligands for targeted delivery and sensing. In this contribution, we review recent progress in fabricating aqueous CdTe QDs and exploiting their optical properties in novel approaches to biomedical imaging and sensing applications.
Collapse
|
32
|
Suo A, Qian J, Yao Y, Zhang W. Galactosylated poly(ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization. Int J Nanomedicine 2010; 5:1029-38. [PMID: 21170351 PMCID: PMC3000202 DOI: 10.2147/ijn.s14280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biodegradable galactosylated methoxy poly(ethylene glycol)/poly(l-lactide-co-β-malic acid) (Gal-PEG-b-PLMA) block copolymer micelles were successfully prepared by a solvent diffusion method, and could efficiently encapsulate doxorubicin. The Gal-PEG-b-PLMA micelles before and after doxorubicin loading were characterized by size, morphology, in vitro drug release, and in vitro cytotoxicity in HepG2 cells. Transmission electron microscopy and dynamic light scattering results showed that the empty and doxorubicin-loaded micelles were approximately spherical in shape and had mean sizes of about 72 nm and 85 nm, respectively. In vitro release behavior of doxorubicin from the micelles was pH-dependent, with obviously faster release rates at mildly acidic pH 4.5 and 5.5 compared with physiologic pH 7.4. Methylthiazoletetrazolium assay and flow cytometric analysis indicated that the doxorubicin-loaded galactosylated micelles exhibited a greater growth-inhibitory effect on HepG2 cells than the nongalactosylated doxorubicin-loaded micelles, and induced S phase cell cycle arrest. Confocal laser scanning microscope observations revealed that the galactosylated micelles could be efficiently internalized by HepG2 cells through receptor-mediated endocytosis. The results suggest that Gal-PEG-b-PLMA copolymer micelles are a promising carrier system for targeted drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Aili Suo
- Department of Medical Oncology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.
| | | | | | | |
Collapse
|
33
|
|
34
|
Coulon J, Thouvenin I, Aldeek F, Balan L, Schneider R. Glycosylated quantum dots for the selective labelling of Kluyveromyces bulgaricus and Saccharomyces cerevisiae yeast strains. J Fluoresc 2010; 20:591-7. [PMID: 20058182 DOI: 10.1007/s10895-009-0590-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/22/2009] [Indexed: 11/29/2022]
Abstract
Highly fluorescent CdTe quantum dots (QDs) stabilized by thioglycolic acid (TGA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting yeast cells. Sugars (mannose, galactose or glucose) were adsorbed on CdTe@TGA QDs and the interaction of these nanoparticles with yeast cells was studied by fluorescence microscopy. Results obtained demonstrate that galactose and mannose functionalized QDs associate respectively with Kluyveromyces bulgaricus and Saccharomyces cerevisiae yeast strains due to saccharide/lectin specific recognition. Glucose-functionalized CdTe QDs, which are not recognized by cell lectins, preferentially localize in the bud scars of S. cerevisiae.
Collapse
Affiliation(s)
- Joël Coulon
- LCPME, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy-University, CNRS, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France.
| | | | | | | | | |
Collapse
|
35
|
Tang PP, Cai JB, Su QD. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots. CHINESE J CHEM PHYS 2010. [DOI: 10.1088/1674-0068/23/02/195-200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Fluorescent Carbon Dots Capped with PEG200 and Mercaptosuccinic Acid. J Fluoresc 2010; 20:1023-8. [DOI: 10.1007/s10895-010-0652-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
37
|
Kikkeri R, Laurino P, Odedra A, Seeberger P. Synthese von Kohlenhydrat-funktionalisierten Quantenpunkten in Mikroreaktoren. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Kikkeri R, Laurino P, Odedra A, Seeberger P. Synthesis of Carbohydrate-Functionalized Quantum Dots in Microreactors. Angew Chem Int Ed Engl 2010; 49:2054-7. [DOI: 10.1002/anie.200905053] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
|
40
|
Stallforth P, Lepenies B, Adibekian A, Seeberger PH. Carbohydrates: A Frontier in Medicinal Chemistry. J Med Chem 2009; 52:5561-77. [DOI: 10.1021/jm900819p] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pierre Stallforth
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
41
|
Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 2009; 131:2110-2. [PMID: 19199612 DOI: 10.1021/ja807711w] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PEGylated quantum dots (QDs) capped with d-mannose, d-galactose, and d-galactosamine have been synthesized. The stable, high quantum yield fluorescence of QDs was exploited to study specific carbohydrate-protein interactions in vitro and in vivo.
Collapse
Affiliation(s)
- Raghavendra Kikkeri
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Mok H, Bae KH, Ahn CH, Park TG. PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1645-1650. [PMID: 19117377 DOI: 10.1021/la803542v] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polyethylene glycol (PEG)-immobilized quantum dot (QD) nanoparticles, which could be specifically dePEGylated in response to the presence of the matrix metalloprotease-2 (MMP-2) enzyme, were prepared. The degree of PEGylation (MW 3400) on the surface of 12 nm streptavidin-coated QDs was stoichiometrically controlled by varying the feed amount of a biotin-substrate-PEG conjugate, where the substrate contained an MMP-2 cleavable peptide sequence. A biotin-cell penetrating peptide (CPP) conjugate was also immobilized onto the surface of the PEGylated QD surface to enhance the cellular uptake after dePEGylation. It was found that more than nine PEG chains per single QD were required to effectively inhibit the cellular uptake of modified QD particles down to around 20%, as compared with that of QD without PEG chains. However, the treatment of MMP-2 enzyme in the medium resulted in a substantial enhancement in the extent of QD cellular uptake by dePEGylation with concomitant resurfacing of sterically hidden CPP moieties. This study analyzed the effects of surface PEGylation density and MMP-2 specific dePEGylation on the cellular uptake of CPP-QD nanoparticles in a quantitative manner.
Collapse
Affiliation(s)
- Hyejung Mok
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea 305-701
| | | | | | | |
Collapse
|
43
|
Azzazy HME, Mansour MMH. In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 2009; 403:1-8. [PMID: 19361470 DOI: 10.1016/j.cca.2009.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 12/31/2008] [Accepted: 01/09/2009] [Indexed: 12/26/2022]
Abstract
There is a constant need to improve the performance of current diagnostic assays as well as develop innovative testing strategies to meet new testing challenges. The use of nanoparticles promises to help promote in vitro diagnostics to the next level of performance. Quantum dots (QDs), gold nanoparticles (AuNPs), and superparamagnetic nanoparticles are the most promising nanostructures for in vitro diagnostic applications. These nanoparticles can be conjugated to recognition moieties such as antibodies or oligonucleotides for detection of target biomolecules. Nanoparticles have been utilized in immunoassays, immunohistochemistry, DNA diagnostics, bioseparation of specific cell populations, and cellular imaging. Nanoparticle-based diagnostics may open new frontiers for detection of tumours, infectious diseases, bio-terrorism agents, and neurological diseases, to name a few. More work is necessary to fully optimize use of nanoparticles for clinical diagnosis and to resolve some concerns regarding potential health and environmental risks related to their use. However, we envision further developments of nanoparticle-based diagnostics will yield unique assays with enhanced sensitivity and multiplexing capability for the modern clinical laboratory.
Collapse
Affiliation(s)
- Hassan M E Azzazy
- Department of Chemistry and Yousef Jameel Science and Technology Research Centre, The American University in Cairo, Cairo 11511, Egypt.
| | | |
Collapse
|
44
|
Yong KT, Roy I, Swihart MT, Prasad PN. Multifunctional Nanoparticles as Biocompatible Targeted Probes for Human Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2009; 19:4655-4672. [PMID: 20305738 DOI: 10.1039/b817667c] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of nanoparticles in biological application has been rapidly advancing toward practical applications in human cancer diagnosis and therapy. Upon linking the nanoparticles with biomolecules, they can be used to locate cancerous area as well as for traceable drug delivery with high affinity and specificity. In this review, we discuss the engineering of multifunctional nanoparticle probes and their use in bioimaging and nanomedicine.
Collapse
Affiliation(s)
- Ken-Tye Yong
- Institute for Lasers, Photonics and Biophotonics, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200
| | | | | | | |
Collapse
|