1
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Genetic immunization against hepatitis B virus with calcium phosphate nanoparticles in vitro and in vivo. Acta Biomater 2020; 110:254-265. [PMID: 32344172 DOI: 10.1016/j.actbio.2020.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Calcium phosphate nanoparticles were loaded with plasmid DNA and toll-like receptor ligands (TLR), i.e. CpG or flagellin, to activate antigen-presenting cells (APCs) like dendritic cells (DCs). The functionalized nanoparticles were studied in vitro on HeLa, C2C12 and BHK-21 cell lines, focusing on the expression of two specific proteins. EGFP-DNA, encoding for enhanced green fluorescent protein (EGFP), was used as a model plasmid to optimize the transfection efficiency in vitro by fluorescence microscopy and flow cytometry. Calcium phosphate nanoparticles loaded with TLR ligands and plasmid DNA encoding for the hepatitis B virus surface antigen (pHBsAg) were evaluated by in vitro and in vivo immunization experiments to identify a possible candidate for a prophylactic hepatitis B virus (HBV) vaccine. The nanoparticles induced a strong expression of HBsAg in the three cell lines. In splenocytes, the expression of the co-stimulatory molecules CD80 and CD86 was enhanced. After intramuscular injection in mice, the nanoparticles induced the expression of HBsAg, the antigen-specific T cell response, and the antigen-specific antibody response (IgG1). STATEMENT OF SIGNIFICANCE: Hepatitis B is one of the most frequent viral infections worldwide. For preventive immunization, nanoparticles can be used which carry both an adjuvant (a stimulatory molecule) and DNA encoding for a viral antigen. After administration of such nanoparticles to cells, they are taken up by cells where the DNA is transcribed into the viral antigen (a protein). This viral antigen is inducing a virus-specific immune response. This was shown both by in vitro cell culture as well as by an extensive in vivo study in mice.
Collapse
|
3
|
Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T, Huang Y, Cheng J, Jiang C. Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy. NANO LETTERS 2018; 18:1908-1915. [PMID: 29473753 PMCID: PMC7470025 DOI: 10.1021/acs.nanolett.7b05263] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various delivery vectors have been integrated within biologically derived membrane systems to extend their residential time and reduce their reticuloendothelial system (RES) clearance during systemic circulation. However, rational design is still needed to further improve the in situ penetration efficiency of chemo-drug-loaded membrane delivery-system formulations and their release profiles at the tumor site. Here, a macrophage-membrane-coated nanoparticle is developed for tumor-targeted chemotherapy delivery with a controlled release profile in response to tumor microenvironment stimuli. Upon fulfilling its mission of tumor homing and RES evasion, the macrophage-membrane coating can be shed via morphological changes driven by extracellular microenvironment stimuli. The nanoparticles discharged from the outer membrane coating show penetration efficiency enhanced by their size advantage and surface modifications. After internalization by the tumor cells, the loaded drug is quickly released from the nanoparticles in response to the endosome pH. The designed macrophage-membrane-coated nanoparticle (cskc-PPiP/PTX@Ma) exhibits an enhanced therapeutic effect inherited from both membrane-derived tumor homing and step-by-step controlled drug release. Thus, the combination of a biomimetic cell membrane and a cascade-responsive polymeric nanoparticle embodies an effective drug delivery system tailored to the tumor microenvironment.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xi He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Corresponding Author: ,
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding Author: ,
| |
Collapse
|
4
|
Yang Z, Sun Y, Xian L, Xun Z, Yu J, Yang T, Zhao X, Cai C, Wang D, Ding P. Disulfide‐bond‐containing agamatine‐cystaminebisacrylamide polymer demonstrates better transfection efficiency and lower cytotoxicity than polyethylenimine in NIH/3T3 cells. J Cell Biochem 2017; 119:1767-1779. [DOI: 10.1002/jcb.26338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Zhen Yang
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| | - Yanping Sun
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| | - Lei Xian
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| | - Zhe Xun
- Institute of Metabolic Disease Research and Drug DevelopmentChina Medical UniversityShenyangChina
| | - Jiankun Yu
- Department of Ion Channel PharmacologySchool of PharmacyChina Medical UniversityShenyangChina
| | - Tianzhi Yang
- Department of Basic Pharmaceutical SciencesSchool of PharmacyHusson UniversityBangorMaine
| | - Xiaoyun Zhao
- Department of Microbiology and Cell BiologySchool of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyangChina
| | - Cuifang Cai
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| | - Dongkai Wang
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| | - Pingtian Ding
- School of PharmacyShenyang Pharmaceutical UniversityShenyangChina
| |
Collapse
|
5
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
6
|
Xu Y, Liang W, Qiu Y, Cespi M, Palmieri GF, Mason AJ, Lam JKW. Incorporation of a Nuclear Localization Signal in pH Responsive LAH4-L1 Peptide Enhances Transfection and Nuclear Uptake of Plasmid DNA. Mol Pharm 2016; 13:3141-52. [PMID: 27458925 DOI: 10.1021/acs.molpharmaceut.6b00338] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major intracellular barriers associated with DNA delivery using nonviral vectors are inefficient endosomal/lysosomal escape and poor nuclear uptake. LAH4-L1, a pH responsive cationic amphipathic peptide, is an efficient DNA delivery vector that promotes the release of nucleic acid into cytoplasm through endosomal escape. Here we further enhance the DNA transfection efficiency of LAH4-L1 by incorporating nuclear localizing signal (NLS) to promote nuclear importation. Four NLSs were investigated: Simian virus 40 (SV40) large T-antigen derived NLS, nucleoplasmin targeting signal, M9 sequence, and the reverse SV40 derived NLS. All peptides tested were able to form positively charged nanosized complexes with DNA. Significant improvement in DNA transfection was observed in slow-dividing epithelial cancer cells (Calu-3), macrophages (RAW264.7), dendritic cells (JAWSII), and thymidine-induced growth-arrested cells, but not in rapidly dividing cells (A549). Among the four NLS-modified peptides, PK1 (modified with SV40 derived NLS) and PK2 (modified with reverse SV40 derived NLS) were the most consistent in improving DNA transfection; up to a 10-fold increase in gene expression was observed for PK1 and PK2 over the unmodified LAH4-L1. Additionally PK1 and PK2 were shown to enhance cellular uptake as well as nuclear entry of DNA. Overall, we show that the incorporation of SV40 derived NLS, in particular, to LAH4-L1 is a promising strategy to improve DNA delivery efficiency in slow-dividing cells and dendritic cells, with development potential for in vivo applications and as a DNA vaccine carrier.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Wanling Liang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Yingshan Qiu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Marco Cespi
- School of Pharmacy, University of Camerino , Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Giovanni F Palmieri
- School of Pharmacy, University of Camerino , Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - A James Mason
- Institute of Pharmaceutical Science, King's College London , 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
7
|
Neuhaus B, Tosun B, Rotan O, Frede A, Westendorf AM, Epple M. Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv 2016. [DOI: 10.1039/c5ra25333k] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The performance of transfection agents to deliver nucleic acids into cells strongly depends on the cell type.
Collapse
Affiliation(s)
- Bernhard Neuhaus
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Benjamin Tosun
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Annika Frede
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
8
|
Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration. Biotechnol J 2015; 10:1370-89. [DOI: 10.1002/biot.201400841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
9
|
Martin TM, Wysocki BJ, Beyersdorf JP, Wysocki TA, Pannier AK. Integrating mitosis, toxicity, and transgene expression in a telecommunications packet-switched network model of lipoplex-mediated gene delivery. Biotechnol Bioeng 2015; 111:1659-71. [PMID: 25097912 DOI: 10.1002/bit.25207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene delivery systems transport exogenous genetic information to cells or biological systems with the potential to directly alter endogenous gene expression and behavior with applications in functional genomics, tissue engineering, medical devices, and gene therapy. Nonviral systems offer advantages over viral systems because of their low immunogenicity, inexpensive synthesis, and easy modification but suffer from lower transfection levels. The representation of gene transfer using models offers perspective and interpretation of complex cellular mechanisms,including nonviral gene delivery where exact mechanisms are unknown. Here, we introduce a novel telecommunications model of the nonviral gene delivery process in which the delivery of the gene to a cell is synonymous with delivery of a packet of information to a destination computer within a packet-switched computer network. Such a model uses nodes and layers to simplify the complexity of modeling the transfection process and to overcome several challenges of existing models. These challenges include a limited scope and limited time frame, which often does not incorporate biological effects known to affect transfection. The telecommunication model was constructed in MATLAB to model lipoplex delivery of the gene encoding the green fluorescent protein to HeLa cells. Mitosis and toxicity events were included in the model resulting in simulation outputs of nuclear internalization and transfection efficiency that correlated with experimental data. A priori predictions based on model sensitivity analysis suggest that increasing endosomal escape and decreasing lysosomal degradation, protein degradation, and GFP-induced toxicity can improve transfection efficiency by three-fold. Application of the telecommunications model to nonviral gene delivery offers insight into the development of new gene delivery systems with therapeutically relevant transfection levels.
Collapse
|
10
|
Remaut K, Oorschot V, Braeckmans K, Klumperman J, De Smedt SC. Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: an additional barrier to non viral gene delivery. J Control Release 2014; 195:29-36. [PMID: 25125327 DOI: 10.1016/j.jconrel.2014.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 11/18/2022]
Abstract
Autophagy or 'self-eating' is a process by which defective organelles and foreign material can be cleared from the cell's cytoplasm and delivered to the lysosomes in which degradation occurs. It remains an open question, however, whether nanoparticles that did not enter the cell through endocytosis can also be captured from the cytoplasm by autophagy. We demonstrate that nanoparticles that are introduced directly in the cytoplasm of the cells by microinjection, can trigger an autophagy response. Moreover, both polystyrene beads and plasmid DNA containing poly-ethylene-imine complexes colocalize with autophagosomes and lysosomes, as was confirmed by electron microscopy. This indicates that cytoplasmic capturing of nanoparticles can occur by an autophagy response. The capturing of nanoparticles from the cytoplasm most likely limits the time frame in which efficient nucleic acid delivery can be obtained. Hence, autophagy forms an additional barrier to non-viral gene delivery, a notion that was not often taken into account before. Furthermore, these findings urge us to reconsider the idea that a single endosomal escape event is sufficient to have the long-lasting presence of nanoparticles in the cytoplasm of the cells.
Collapse
Affiliation(s)
- Katrien Remaut
- Lab General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Viola Oorschot
- Dept. of Cell Biology, Center for Molecular Medicine, Universital Medical Center Utrecht, The Netherlands
| | - Kevin Braeckmans
- Lab General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Judith Klumperman
- Dept. of Cell Biology, Center for Molecular Medicine, Universital Medical Center Utrecht, The Netherlands
| | - Stefaan C De Smedt
- Lab General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Intracellular gene delivery is dependent on the type of non-viral carrier and defined by the cell surface glycosaminoglycans. J Control Release 2014; 187:59-65. [PMID: 24838099 DOI: 10.1016/j.jconrel.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/28/2014] [Accepted: 05/03/2014] [Indexed: 11/23/2022]
Abstract
Intracellular limiting steps and molecules involved in internalization and intracellular routing of non-viral gene delivery systems are still poorly understood. In this study, the intracellular kinetics of three different gene delivery systems calcium phosphate precipitates (CaP), polyethyleneimine (PEI) and N-[1-(2,3-dioleyl)propyl]-N,N,N-trimethylammonium chloride (DOTAP)) were quantified at cellular, nuclear, transcriptional and translational levels by using qRT-PCR. Additionally, a role of cell surface glycosaminoglycans (GAGs) was evaluated by performing the aforementioned studies in cells devoid of GAGs (pgsB-618) and cells lacking heparan sulphate (HS). The obtained data showed that the intracellular kinetics was dependent on the type of gene carrier and the weakest intracellular step varied between the carriers; rapid elimination of cell-associated pDNA in CaP, nuclear uptake in DOTAP and transcriptional and translational events in PEI mediated transfections. Overall, neither the amount of cell- nor nuclear associated pDNA correlated with transgene expression but the mRNA expression of the transgene correlated well with the expression at protein level. The nuclear uptake of pDNA in all cases was rapid and efficient thus indicating that the post-nuclear processes including transcription and translation steps have a critical role in defining the efficiency of non-viral gene delivery systems. Our study demonstrated that cell-surface GAGs are not essential for cell surface binding and internalization of gene delivery complexes, but they are able to define the intracellular routing of the complexes by leading them to pathways with high pDNA elimination.
Collapse
|
12
|
Oliveira ACN, Martens TF, Raemdonck K, Adati RD, Feitosa E, Botelho C, Gomes AC, Braeckmans K, Real Oliveira MECD. Dioctadecyldimethylammonium:monoolein nanocarriers for efficient in vitro gene silencing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6977-6989. [PMID: 24712543 DOI: 10.1021/am500793y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study describes a novel liposomal formulation for siRNA delivery, based on the mixture of the neutral lipid monoolein (MO) and cationic lipids of the dioctadecyldimethylammonium (DODA) family. The cationic lipids dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) were compared in order to identify which one will most efficiently induce gene silencing. MO has a fluidizing effect on DODAC and DODAB liposomes, although it was more homogeneously distributed in DODAC bilayers. All MO-based liposomal formulations were able to efficiently encapsulate siRNA. Stable lipoplexes of small size (100-160 nm) with a positive surface charge (>+45 mV) were formed. A more uniform MO incorporation in DODAC:MO may explain an increase of the fusogenic potential of these liposomes. The siRNA-lipoplexes were readily internalized by human nonsmall cell lung carcinoma (H1299) cells, in an energy dependent process. DODAB:MO nanocarriers showed a higher internalization efficiency in comparison to DODAC:MO lipoplexes, and were also more efficient in promoting gene silencing. MO had a similar gene silencing ability as the commonly used helper lipid 1,2-dioleyl-3-phosphatidylethanolamine (DOPE), but with much lower cytotoxicity. Taking in consideration all the results presented, DODAB:MO liposomes are the most promising tested formulation for systemic siRNA delivery.
Collapse
Affiliation(s)
- Ana Cristina Norberto Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology and ‡CFUM (Center of Physics), Department of Physics, University of Minho , Campus of Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pinel S, Aman E, Erblang F, Dietrich J, Frisch B, Sirman J, Kichler A, Sibler AP, Dontenwill M, Schaffner F, Zuber G. Quantitative measurement of delivery and gene silencing activities of siRNA polyplexes containing pyridylthiourea-grafted polyethylenimines. J Control Release 2014; 182:1-12. [DOI: 10.1016/j.jconrel.2014.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 01/11/2023]
|
14
|
Maury B, Gonçalves C, Tresset G, Zeghal M, Cheradame H, Guégan P, Pichon C, Midoux P. Influence of pDNA availability on transfection efficiency of polyplexes in non-proliferative cells. Biomaterials 2014; 35:5977-85. [PMID: 24768195 DOI: 10.1016/j.biomaterials.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/01/2014] [Indexed: 02/05/2023]
Abstract
We succeeded in visualizing plasmid DNA (pDNA) in the nucleus and cytosol of non-proliferative cells after transfection with linear polyethylenemine (lPEI) and histidinylated lPEI (His16-lPEI). This was possible with confocal microscope by using pDNA labelled with quantum dots. Indeed pDNA labelled with Cy3 leads to false positive nuclear localization because the saturation of the fluorescence signal overestimated the volume occupied by Cy3-pDNA. Moreover, Cy3 brightness was too weak to detect low amount of pDNA. About 20 to 40 pDNA copies were detected in the nucleus after the transfection of pDNA labelled with quantum dots. Transfection efficiency and cellular imaging data suggested that the cytosolic availability of pDNA, including endosome escape and/or polyplexes dissociation, is crucial for its nuclear delivery. In vitro transcription assay and transfection of cells allowing cytosolic gene expression concluded to better cytosolic availability of pDNA within His16-lPEI polyplexes. Cryo-TEM analyses revealed that His16-lPEI polyplexes exhibited a spherical shape and an amorphous internal structure which differed from the high degree of order of lPEI polyplexes. Altogether, this comparative study indicated that the high transfection efficiency of non-proliferative cells with His16-lPEI polyplexes was related to the amorphous structure and the facilitated dissociation of the assemblies.
Collapse
Affiliation(s)
- Benoit Maury
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France.
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, 91405 Orsay cedex, France
| | - Mehdi Zeghal
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, 91405 Orsay cedex, France
| | - Hervé Cheradame
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR8587 Université d'Evry Val d'Essonne, Evry, France
| | - Philippe Guégan
- Laboratoire de Chimie des Polymères, Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, Chimie des Polymères, F-75005 Paris, France; CNRS, UMR 8232, IPCM, Chimie des Polymères, F-75005 Paris, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|