1
|
Park JH, Shin MJ, Youn GS, Yeo HJ, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Cho YJ, Lee SH, Jung HY, Kim DW, Eum WS, Choi SY. PEP-1-PIN1 Promotes Hippocampal Neuronal Cell Survival by Inhibiting Cellular ROS and MAPK Phosphorylation. Biomedicines 2024; 12:2352. [PMID: 39457664 PMCID: PMC11504513 DOI: 10.3390/biomedicines12102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The peptidyl-prolyl isomerase (PIN1) plays a vital role in cellular processes, including intracellular signaling and apoptosis. While oxidative stress is considered one of the primary mechanisms of pathogenesis in brain ischemic injury, the precise function of PIN1 in this disease remains to be elucidated. Objective: We constructed a cell-permeable PEP-1-PIN1 fusion protein and investigated PIN1's function in HT-22 hippocampal cells as well as in a brain ischemic injury gerbil model. Methods: Transduction of PEP-1-PIN1 into HT-22 cells and signaling pathways were determined by Western blot analysis. Intracellular reactive oxygen species (ROS) production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. Protective effects of PEP-1-PIN1 against ischemic injury were examined using immunohistochemistry. Results: PEP-1-PIN1, when transduced into HT-22 hippocampal cells, inhibited cell death in H2O2-treated cells and markedly reduced DNA fragmentation and ROS production. This fusion protein also reduced phosphorylation of mitogen-activated protein kinase (MAPK) and modulated expression levels of apoptosis-signaling proteins in HT-22 cells. Furthermore, PEP-1-PIN1 was distributed in gerbil hippocampus neuronal cells after passing through the blood-brain barrier (BBB) and significantly protected against neuronal cell death and also decreased activation of microglia and astrocytes in an ischemic injury gerbil model. Conclusions: These results indicate that PEP-1-PIN1 can inhibit ischemic brain injury by reducing cellular ROS levels and regulating MAPK and apoptosis-signaling pathways, suggesting that PIN1 plays a protective role in H2O2-treated HT-22 cells and ischemic injury gerbil model.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea;
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
- Genesen Inc., Teheran-ro, Gangnam-gu, Seoul 06181, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| |
Collapse
|
2
|
Choi YJ, Shin MJ, Youn GS, Park JH, Yeo HJ, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Jung HY, Cho YJ, Kim DW, Park J, Han KH, Lee KW, Park JK, Lee CH, Eum WS, Choi SY. Protective Effects of PEP-1-GSTA2 Protein in Hippocampal Neuronal Cell Damage Induced by Oxidative Stress. Int J Mol Sci 2023; 24:ijms24032767. [PMID: 36769090 PMCID: PMC9917430 DOI: 10.3390/ijms24032767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Glutathione S-transferase alpha 2 (GSTA2), a member of the glutathione S-transferase family, plays the role of cellular detoxification against oxidative stress. Although oxidative stress is related to ischemic injury, the role of GSTA2 against ischemia has not been elucidated. Thus, we studied whether GSTA2 prevents ischemic injury by using the PEP-1-GSTA2 protein which has a cell-permeable protein transduction domain. We revealed that cell-permeable PEP-1-GSTA2 transduced into HT-22 cells and markedly protected cell death via the inhibition of reactive oxygen species (ROS) production and DNA damage induced by oxidative stress. Additionally, transduced PEP-1-GSTA2 promoted mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-κB) activation. Furthermore, PEP-1-GSTA2 regulated Bcl-2, Bax, cleaved Caspase-3 and -9 expression protein levels. An in vivo ischemic animal model, PEP-1-GSTA2, markedly prevented the loss of hippocampal neurons and reduced the activation of microglia and astrocytes. These findings indicate that PEP-1-GSTA2 suppresses hippocampal cell death by regulating the MAPK and apoptotic signaling pathways. Therefore, we suggest that PEP-1-GSTA2 will help to develop the therapies for oxidative-stress-induced ischemic injury.
Collapse
Affiliation(s)
- Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Yeon Kwon
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keun Wook Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-33-248-2112 (W.S.E. & S.Y.C.); Fax: +82-33-248-3202 (W.S.E. & S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-33-248-2112 (W.S.E. & S.Y.C.); Fax: +82-33-248-3202 (W.S.E. & S.Y.C.)
| |
Collapse
|
3
|
Kim H, Han S, Choi K, Lee J, Lee SH, Won YW, Lim KS. Self-assembled Nanocomplex Using Cellulose Nanocrystal Based on Zinc/DNA Nanocluster for Gene Delivery. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Wang K, Dai X, He J, Yan X, Yang C, Fan X, Sun S, Chen J, Xu J, Deng Z, Fan J, Yuan X, Liu H, Carlson EC, Shen F, Wintergerst KA, Conklin DJ, Epstein PN, Lu C, Tan Y. Endothelial Overexpression of Metallothionein Prevents Diabetes-Induced Impairment in Ischemia Angiogenesis Through Preservation of HIF-1α/SDF-1/VEGF Signaling in Endothelial Progenitor Cells. Diabetes 2020; 69:1779-1792. [PMID: 32404351 PMCID: PMC7519474 DOI: 10.2337/db19-0829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/09/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-induced oxidative stress is one of the major contributors to dysfunction of endothelial progenitor cells (EPCs) and impaired endothelial regeneration. Thus, we tested whether increasing antioxidant protein metallothionein (MT) in EPCs promotes angiogenesis in a hind limb ischemia (HLI) model in endothelial MT transgenic (JTMT) mice with high-fat diet- and streptozocin-induced diabetes. Compared with littermate wild-type (WT) diabetic mice, JTMT diabetic mice had improved blood flow recovery and angiogenesis after HLI. Similarly, transplantation of JTMT bone marrow-derived mononuclear cells (BM-MNCs) stimulated greater blood flow recovery in db/db mice with HLI than did WT BM-MNCs. The improved recovery was associated with augmented EPC mobilization and angiogenic function. Further, cultured EPCs from patients with diabetes exhibited decreased MT expression, increased cell apoptosis, and impaired tube formation, while cultured JTMT EPCs had enhanced cell survival, migration, and tube formation in hypoxic/hyperglycemic conditions compared with WT EPCs. Mechanistically, MT overexpression enhanced hypoxia-inducible factor 1α (HIF-1α), stromal cell-derived factor (SDF-1), and vascular endothelial growth factor (VEGF) expression and reduced oxidative stress in ischemic tissues. MT's pro-EPC effects were abrogated by siRNA knockdown of HIF-1α without affecting its antioxidant action. These results indicate that endothelial MT overexpression is sufficient to protect against diabetes-induced impairment of angiogenesis by promoting EPC function, most likely through upregulation of HIF-1α/SDF-1/VEGF signaling and reducing oxidative stress.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Survival/genetics
- Cell Survival/physiology
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Endothelial Progenitor Cells/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Hindlimb/pathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ischemia/genetics
- Ischemia/metabolism
- Leukocytes, Mononuclear/metabolism
- Male
- Metallothionein/genetics
- Metallothionein/metabolism
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Oxidative Stress/genetics
- Oxidative Stress/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kai Wang
- Department of Pediatrics, Endocrinology and Metabolism, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xiaozhen Dai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Junhong He
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengkui Yang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xia Fan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Chen
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Zhongbin Deng
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY
| | - Jiawei Fan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaohuan Yuan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Heilongjiang, China
| | - Hairong Liu
- Experimental Research Center, the First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Edward C Carlson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND
| | - Feixia Shen
- Department of Pediatrics, Endocrinology and Metabolism, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children's Medical Group, Louisville, KY
- Wendy Novak Diabetes Center, Louisville, KY
| | - Daniel J Conklin
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Paul N Epstein
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Wendy Novak Diabetes Center, Louisville, KY
| | - Chaosheng Lu
- Department of Pediatrics, Endocrinology and Metabolism, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Wendy Novak Diabetes Center, Louisville, KY
| |
Collapse
|
5
|
Ain QU, Woo YS, Chung JY, Kim YH. Regeneration of Anti-Hypoxic Myocardial Cells by Transduction of Mesenchymal Stem Cell-Derived Exosomes Containing Tat-Metallothionein Fusion Proteins. Macromol Res 2018. [DOI: 10.1007/s13233-018-6101-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Liu X, Wang J, Wang H, Zhou C, Yu Q, Yin L, Wu W, Xia S, Shao Q. Cell penetrable-mouse forkhead box P3 suppresses type 1 T helper cell-mediated immunity in a murine model of delayed-type hypersensitivity. Exp Ther Med 2017; 13:421-428. [PMID: 28352310 PMCID: PMC5348706 DOI: 10.3892/etm.2017.4020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/06/2016] [Indexed: 11/08/2022] Open
Abstract
Forkhead box P3 (FOXP3), which is a transcription factor, has a primary role in the development and function of regulatory T cells, and thus contributes to homeostasis of the immune system. A previous study generated a cell-permeable fusion protein of mouse FOXP3 conjugated to a protein transduction domain (PTD-mFOXP3) that successfully blocked differentiation of type 17 T helper cells in vitro and alleviated experimental arthritis in mice. In the present study, the role of PTD-mFOXP3 in type 1 T helper (Th1) cell-mediated immunity was investigated and the possible mechanisms for its effects were explored. Under Th1 polarization conditions, cluster of differentiation 4+ T cells were treated with PTD-mFOXP3 and analyzed by flow cytometry in vitro, which revealed that PTD-mFOXP3 blocked Th1 differentiation in vitro. Mice models of delayed type hypersensitivity (DTH) reactions were generated by subcutaneous sensitization and challenge with ovalbumin (OVA) to the ears of mice. PTD-mFOXP3, which was administered via local subcutaneous injection, significantly reduced DTH-induced inflammation, including ear swelling (ear swelling, P<0.001; pinnae weight, P<0.05 or P<0.01 with 0.25 and 1.25 mg/kg PTD-mFOXP3, respectively), infiltration of T cells, and expression of interferon-γ at local inflammatory sites (mRNA level P<0.05) compared with the DTH group. The results of the present study demonstrated that PTD-mFOXP3 may attenuate DTH reactions by suppressing the infiltration and activity of Th1 cells.
Collapse
Affiliation(s)
- Xia Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children Hospital, Wuhan, Hubei 430016, P.R. China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chen Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qihong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Lei Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Clinical Laboratory, Central Hospital of Handan, Handan, Hebei 056000, P.R. China
| | - Weijiang Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
7
|
Hwang YH, Kim MJ, Lee YK, Lee M, Lee DY. HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment. J Control Release 2017; 246:155-163. [DOI: 10.1016/j.jconrel.2016.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/19/2016] [Accepted: 12/25/2016] [Indexed: 12/11/2022]
|
8
|
Chen RC, Sun GB, Wang J, Zhang HJ, Sun XB. Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway. Food Funct 2016; 6:1331-44. [PMID: 25773745 DOI: 10.1039/c4fo01164c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Naringin (Nar) is a major and active flavanone glycoside derivative of several citrus species. The antioxidant properties of Nar have an important function in its cardioprotective effects in various models. However, the effects of Nar on Nrf2 activation and the expression of its downstream genes in myocardial cells are yet to be elucidated. This study was designed to investigate the protective effects of Nar against anoxia/reoxygenation (A/R)-induced injury in H9c2 cells and determine its effects on the activity of Nrf2 and the expression of phase II antioxidant enzymes. H9c2 cells were pretreated with Nar for 6 h before exposure to A/R. A/R treatment severely injured the H9c2 cells, which was accompanied by apoptosis. Nar also suppressed the A/R-induced mitochondrial membrane depolarization and caspase-3 activation. Nar pretreatment significantly reduced the apoptotic rate by enhancing the endogenous anti-oxidative activity of superoxide dismutase, glutathione peroxidase, and catalase, thereby inhibiting intracellular reactive oxygen species generation. Moreover, the presence of Nar alone in H9c2 cells increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, as well as consistently increased the protein levels of heme oxygenase (HO-1) and glutamate cysteine ligase (GCLC). Nar increased the phosphorylation of ERK1/2, PKCδ, and AKT. However, the Nar-mediated Nrf2 activation and cardioprotection were abolished through the genetic silencing of Nrf2 by siRNA and partially inhibited by specific inhibitors of ERK1/2, PKCδ, and AKT. Therefore, Nar provided cardioprotection by inducing the phosphorylation of ERK1/2, PKCδ, and AKT, which subsequently activated Nrf2 and its downstream genes.
Collapse
Affiliation(s)
- R C Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | | | | | | | | |
Collapse
|
9
|
Zheng L, Hui Q, Tang L, Zheng L, Jin Z, Yu B, Wang Z, Lin P, Yu W, Li H, Li X, Wang X. TAT-Mediated Acidic Fibroblast Growth Factor Delivery to the Dermis Improves Wound Healing of Deep Skin Tissue in Rat. PLoS One 2015; 10:e0135291. [PMID: 26271041 PMCID: PMC4536212 DOI: 10.1371/journal.pone.0135291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The definition of deep tissue injury was derived from multiple clinical cases as "A purple or maroon localized area of discolored intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and/or shear". Acidic fibroblast growth factor (aFGF) significantly improves wound healing under diabetic conditions. However, to date, the therapeutic application of aFGF has been limited, due to its low delivery efficiency and short half-life. METHODOLOGY/PRINCIPAL FINDINGS Using an animal model of magnet-induced pressure ulcers, transactivator of transcription protein (TAT)-aFGF was evaluated for transdermal delivery and wound healing. Immunohistochemistry and Western blotting were also performed to determine the expression of transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), CD68, proliferating cell nuclear antigen (PCNA) and TGF-β-receptor II (TGF- βRII) in cultured human dermal fibroblasts. We found that that mice treated with TAT-aFGF had higher accumulation of aFGF in both dermis and subcutaneous tissues compared with mice treated with aFGF alone. In the remodeling phase, TAT-aFGF treatment decreased the expression of α-SMA to normal levels, thereby facilitating normal wound healing processes and abrogating hypertrophic scarring. In human dermal fibroblasts, TAT-aFGF reversed the suppressive effect of TNF-α on α-SMA expression and restored TGF-βRII and TGF-β1 expression. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that TAT-aFGF has a favorable therapeutic effect on the healing of subcutaneous deep tissue injury.
Collapse
Affiliation(s)
- Long Zheng
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Lu Tang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Lulu Zheng
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Zi Jin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Bingjie Yu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Zhitao Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Peng Lin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Weidan Yu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Haiyan Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| |
Collapse
|
10
|
Accornero F, Kanisicak O, Tjondrokoesoemo A, Attia AC, McNally EM, Molkentin JD. Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice. Hum Mol Genet 2014; 23:6903-15. [PMID: 25106553 DOI: 10.1093/hmg/ddu413] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Muscular dystrophy (MD) is a disease characterized by skeletal muscle necrosis and the progressive accumulation of fibrotic tissue. While transforming growth factor (TGF)-β has emerged as central effector of MD and fibrotic disease, the cell types in diseased muscle that underlie TGFβ-dependent pathology have not been segregated. Here, we generated transgenic mice with myofiber-specific inhibition of TGFβ signaling owing to expression of a TGFβ type II receptor dominant-negative (dnTGFβRII) truncation mutant. Expression of dnTGFβRII in myofibers mitigated the dystrophic phenotype observed in δ-sarcoglycan-null (Sgcd(-/-)) mice through a mechanism involving reduced myofiber membrane fragility. The dnTGFβRII transgene also reduced muscle injury and improved muscle regeneration after cardiotoxin injury, as well as increased satellite cell numbers and activity. An unbiased global expression analysis revealed a number of potential mechanisms for dnTGFβRII-mediated protection, one of which was induction of the antioxidant protein metallothionein (Mt). Indeed, TGFβ directly inhibited Mt gene expression in vitro, the dnTGFβRII transgene conferred protection against reactive oxygen species accumulation in dystrophic muscle and treatment with Mt mimetics protected skeletal muscle upon injury in vivo and improved the membrane stability of dystrophic myofibers. Hence, our results show that the myofibers are central mediators of the deleterious effects associated with TGFβ signaling in MD.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Andoria Tjondrokoesoemo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Aria C Attia
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Elizabeth M McNally
- Department of Medicine, Section of Cardiology, 5841 S, Maryland, MC 6088, Chicago, IL 60637, USA and
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Hypoxic resistance of hypodermically transplanted pancreatic islets by using cell-absorbable antioxidant Tat-metallothionein. J Control Release 2013; 172:1092-101. [DOI: 10.1016/j.jconrel.2013.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 11/22/2022]
|
12
|
The polymorphism in the promoter region of metallothionein 1 is associated with heat tolerance of scallop Argopecten irradians. Gene 2013; 526:429-36. [DOI: 10.1016/j.gene.2013.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/01/2013] [Accepted: 05/08/2013] [Indexed: 12/17/2022]
|