1
|
Li J, Duan J, Hua C, Pan S, Li G, Feng Q, Liu D, Liu Z. Nanomedicine embraces the treatment and prevention of acute kidney injury to chronic kidney disease transition: evidence, challenges, and opportunities. BURNS & TRAUMA 2024; 12:tkae044. [PMID: 39678075 PMCID: PMC11645459 DOI: 10.1093/burnst/tkae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 12/17/2024]
Abstract
Acute kidney injury (AKI), a common kidney disease in which renal function decreases rapidly due to various etiologic factors, is an important risk factor for chronic kidney disease (CKD). The pathogenesis of AKI leading to CKD is complex, and effective treatments are still lacking, which seriously affects the prognosis and quality of life of patients with kidney disease. Nanomedicine, a discipline at the intersection of medicine and nanotechnology, has emerged as a promising avenue for treating kidney diseases ranging from AKI to CKD. Increasing evidence has validated the therapeutic potential of nanomedicine in AKI; however, little attention has been paid to its effect on AKI for patients with CKD. In this review, we systematically emphasize the major pathophysiology of the AKI-to-CKD transition and summarize the treatment effects of nanomedicine on this transition. Furthermore, we discuss the key role of nanomedicine in the regulation of targeted drug delivery, inflammation, oxidative stress, ferroptosis, and apoptosis during the transition from AKI to CKD. Additionally, this review demonstrates that the integration of nanomedicine into nephrology offers unprecedented precision and efficacy in the management of conditions ranging from AKI to CKD, including the design and preparation of multifunctional nanocarriers to overcome biological barriers and deliver therapeutics specifically to renal cells. In summary, nanomedicine holds significant potential for revolutionizing the management of AKI-to-CKD transition, thereby providing a promising opportunity for the future treatment of kidney diseases.
Collapse
Affiliation(s)
- Jia Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Chaoyang Hua
- Department of Urology, Henan Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, No. 33 Longhu outer Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Guangpu Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| |
Collapse
|
2
|
Elvitigala KCML, Mohan L, Mubarok W, Sakai S. Phototuning of Hyaluronic-Acid-Based Hydrogel Properties to Control Network Formation in Human Vascular Endothelial Cells. Adv Healthc Mater 2024; 13:e2303787. [PMID: 38684108 PMCID: PMC11468695 DOI: 10.1002/adhm.202303787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Indexed: 05/02/2024]
Abstract
In vitro network formation by endothelial cells serves as a fundamental model for studies aimed at understanding angiogenesis. The morphogenesis of these cells to form a network is intricately regulated by the mechanical and biochemical properties of the extracellular matrix. Here the effects of modulating these properties in hydrogels derived from phenolated hyaluronic acid (HA-Ph) and phenolated gelatin (Gelatin-Ph) are presented. Visible-light irradiation in the presence of tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate and sodium persulfate induces the crosslinking of these polymers, thereby forming a hydrogel and degrading HA-Ph. Human vascular endothelial cells form networks on the hydrogel prepared by visible-light irradiation for 45 min (42 W cm-2 at 450 nm) but not on the hydrogels prepared by irradiation for 15, 30, or 60 min. The irradiation time-dependent degradation of HA-Ph and the changes in the mechanical stiffness of the hydrogels, coupled with the expressions of RhoA and β-actin genes and CD44 receptors in the cells, reveal that the network formation is synergistically influenced by the hydrogel stiffness and HA-Ph degradation. These findings highlight the potential of tailoring HA-based hydrogel properties to modulate human vascular endothelial cell responses, which is critical for advancing their application in vascular tissue engineering.
Collapse
Affiliation(s)
| | - Lakshmi Mohan
- Department of BioengineeringHenry Samueli School of EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wildan Mubarok
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560‐8531Japan
| | - Shinji Sakai
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560‐8531Japan
| |
Collapse
|
3
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
4
|
Chen YH, Xiao T, Zheng XM, Xu Y, Zhuang KT, Wang WJ, Chen XM, Hong Q, Cai GY. Local Renal Treatments for Acute Kidney Injury: A Review of Current Progress and Future Translational Opportunities. J Endourol 2024; 38:466-479. [PMID: 38386504 DOI: 10.1089/end.2023.0705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a significant public health concern, with limited therapeutic options to mitigate injury or expedite recovery. A novel therapeutic approach, local renal treatment, encompassing pharmacotherapy and surgical interventions, has exhibited positive outcomes in AKI management. Peri-renal administration, employing various delivery routes, such as the renal artery, intrarenal, and subcapsular sites, has demonstrated superiority over peripheral intravenous infusion. This review evaluates different drug delivery methods, analyzing their benefits and limitations, and proposes potential improvements. Renal decapsulation, particularly with the availability of minimally invasive techniques, emerges as an effective procedure warranting renewed consideration for AKI treatment. The potential synergistic effects of combined drug delivery and renal decapsulation could further advance AKI therapies. Clinical studies have already begun to leverage the benefits of local renal treatments, and with ongoing technological advancements, these modalities are expected to increasingly outperform systemic intravenous therapy.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xu-Min Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Kai-Ting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Wen-Juan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guang-Yan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
5
|
Palumbo FS, Fiorica C, Carreca AP, Iannolo G, Pitarresi G, Amico G, Giammona G, Conaldi PG, Chinnici CM. Modulating the release of bioactive molecules of human mesenchymal stromal cell secretome: Heparinization of hyaluronic acid-based hydrogels. Int J Pharm 2024; 653:123904. [PMID: 38355074 DOI: 10.1016/j.ijpharm.2024.123904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin.
Collapse
Affiliation(s)
- Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Paola Carreca
- Regenerative Medicine and Immunotherapy Unit, Fondazione Ri.MED c/o IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine and Immunotherapy Unit, Fondazione Ri.MED c/o IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Cinzia Maria Chinnici
- Cell Therapy Group, Fondazione R.MED c/o IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy.
| |
Collapse
|
6
|
Starr MC, Barreto E, Charlton J, Vega M, Brophy PD, Ray Bignall ON, Sutherland SM, Menon S, Devarajan P, Akcan Arikan A, Basu R, Goldstein S, Soranno DE. Advances in pediatric acute kidney injury pathobiology: a report from the 26th Acute Disease Quality Initiative (ADQI) conference. Pediatr Nephrol 2024; 39:941-953. [PMID: 37792076 PMCID: PMC10817846 DOI: 10.1007/s00467-023-06154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In the past decade, there have been substantial advances in our understanding of the pathobiology of pediatric acute kidney injury (AKI). In particular, animal models and studies focused on the relationship between kidney development, nephron number, and kidney health have identified a number of heterogeneous pathophysiologies underlying AKI. Despite this progress, gaps remain in our understanding of the pathobiology of pediatric AKI. METHODS During the 26th Acute Disease Quality Initiative (ADQI) Consensus conference, a multidisciplinary group of experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations for opportunities to advance translational research in pediatric AKI. The current state of research understanding as well as gaps and opportunities for advancement in research was discussed, and recommendations were summarized. RESULTS Consensus was reached that to improve translational pediatric AKI advancements, diverse teams spanning pre-clinical to epidemiological scientists must work in concert together and that results must be shared with the community we serve with patient involvement. Public and private research support and meaningful partnerships with adult research efforts are required. Particular focus is warranted to investigate the pediatric nuances of AKI, including the effect of development as a biological variable on AKI incidence, severity, and outcomes. CONCLUSIONS Although AKI is common and associated with significant morbidity, the biologic basis of the disease spectrum throughout varying nephron developmental stages remains poorly understood. An incomplete understanding of factors contributing to kidney health, the diverse pathobiologies underlying AKI in children, and the historically siloed approach to research limit advances in the field. The recommendations outlined herein identify gaps and outline a strategic approach to advance the field of pediatric AKI via multidisciplinary translational research.
Collapse
Affiliation(s)
- Michelle C Starr
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
- Pediatric and Adolescent Comparative Effectiveness Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erin Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Molly Vega
- Renal and Apheresis Services, Texas Children's Hospital, Houston, TX, USA
| | - Patrick D Brophy
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA
| | - O N Ray Bignall
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shina Menon
- Division of Pediatric Nephrology, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Prasad Devarajan
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Ayse Akcan Arikan
- Department of Pediatrics, Divisions of Critical Care and Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rajit Basu
- Department of Pediatrics, Division of Critical Care, Northwestern University, Chicago, IL, USA
| | - Stuart Goldstein
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Danielle E Soranno
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Bioengineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Sahu A, Min K, Jeon SH, Kwon K, Tae G. Self-assembled hemin-conjugated heparin with dual-enzymatic cascade reaction activities for acute kidney injury. Carbohydr Polym 2023; 316:121088. [PMID: 37321716 DOI: 10.1016/j.carbpol.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Nanozymes have prominent catalytic activities with high stability as a substitute for unstable and expensive natural enzymes. However, most nanozymes are metal/inorganic nanomaterials, facing difficulty in clinical translation due to their unproven biosafety and limited biodegradability issues. Hemin, an organometallic porphyrin, was newly found to possess superoxide dismutase (SOD) mimetic activity along with previously known catalase (CAT) mimetic activity. However, hemin has poor bioavailability due to its low water solubility. Therefore, a highly biocompatible and biodegradable organic-based nanozyme system with SOD/CAT mimetic cascade reaction activity was developed by conjugating hemin to heparin (HepH) or chitosan (CS-H). Between them, Hep-H formed a smaller (<50 nm) and more stable self-assembled nanostructure and even possessed much higher and more stable SOD and CAT activities as well as the cascade reaction activity compared to CS-H and free hemin. Hep-H also showed a better cell protection effect against reactive oxygen species (ROS) compared to CS-H and hemin in vitro. Furthermore, Hep-H was selectively delivered to the injured kidney upon intravenous administration at the analysis time point (24 h) and exhibited excellent therapeutic effects on an acute kidney injury model by efficiently removing ROS, reducing inflammation, and minimizing structural and functional damage to the kidney.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Soranno DE, Rodell CB. Novel Therapeutics: Can Hydrogels Work to Treat Kidney Disease? Nephron Clin Pract 2023; 147:769-773. [PMID: 37490877 PMCID: PMC10808278 DOI: 10.1159/000531917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Hydrogels are water-swollen networks that can be made from a variety of natural and synthetic polymers. Numerous chemistries can be utilized to formulate hydrogels that are injectable, enabling facile in situ delivery of therapeutics such as cytokines or cells. SUMMARY Cells delivered via injectable hydrogels survive injection better than cells injected in saline or media suspension. Several materials have been used to investigate the use of injectable hydrogels to treat animal models of kidney disease. Species studied to date include mice and rats. This review summarizes the various materials, encapsulated therapeutic payloads, and preclinical models of kidney disease employed to investigate hydrogel injection. Transcutaneous measurements of glomerular filtration rate have demonstrated that delivery of hydrogels under the kidney capsule does not impair kidney function. KEY MESSAGES Studies to date have shown the safety and efficacy of hydrogel therapies to treat kidney disease, and numerous studies have demonstrated that hydrogel therapy alone reduces inflammation and fibrosis.
Collapse
Affiliation(s)
- Danielle E. Soranno
- Indiana University School of Medicine, Department of Pediatrics, Pediatric Nephrology, Indianapolis, IN, USA
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN, USA
| | - Christopher B. Rodell
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| |
Collapse
|
10
|
Advanced Drug Delivery Systems for Renal Disorders. Gels 2023; 9:gels9020115. [PMID: 36826285 PMCID: PMC9956928 DOI: 10.3390/gels9020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Kidney disease management and treatment are currently causing a substantial global burden. The kidneys are the most important organs in the human urinary system, selectively filtering blood and metabolic waste into urine via the renal glomerulus. Based on charge and/or molecule size, the glomerular filtration apparatus acts as a barrier to therapeutic substances. Therefore, drug distribution to the kidneys is challenging, resulting in therapy failure in a variety of renal illnesses. Hence, different approaches to improve drug delivery across the glomerulus filtration barrier are being investigated. Nanotechnology in medicine has the potential to have a significant impact on human health, from illness prevention to diagnosis and treatment. Nanomaterials with various physicochemical properties, including size, charge, surface and shape, with unique biological attributes, such as low cytotoxicity, high cellular internalization and controllable biodistribution and pharmacokinetics, have demonstrated promising potential in renal therapy. Different types of nanosystems have been employed to deliver drugs to the kidneys. This review highlights the features of the nanomaterials, including the nanoparticles and corresponding hydrogels, in overcoming various barriers of drug delivery to the kidneys. The most common delivery sites and strategies of kidney-targeted drug delivery systems are also discussed.
Collapse
|
11
|
Elvitigala KCML, Mubarok W, Sakai S. Human Umbilical Vein Endothelial Cells Form a Network on a Hyaluronic Acid/Gelatin Composite Hydrogel Moderately Crosslinked and Degraded by Hydrogen Peroxide. Polymers (Basel) 2022; 14:polym14225034. [PMID: 36433161 PMCID: PMC9696239 DOI: 10.3390/polym14225034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The study of the capillary-like network formation of human umbilical vein endothelial cells (HUVECs) in vitro is important for understanding the factors that promote or inhibit angiogenesis. Here, we report the behavior of HUVECs on the composite hydrogels containing hyaluronic acid (HA) and gelatin with different degrees of degradation, inducing the different physicochemical properties of the hydrogels. The hydrogels were obtained through horseradish peroxidase (HRP)-catalyzed hydrogelation consuming hydrogen peroxide (H2O2, 16 ppm) supplied from the air, and the degradation degree was tuned by altering the exposure time to the air. The HUVECs on the composite hydrogel with intermediate stiffness (1.2 kPa) obtained through 120 min of the exposure were more elongated than those on the soft (0.4 kPa) and the stiff (2.4 kPa) composite hydrogels obtained through 15 min and 60 min of the exposure, respectively. In addition, HUVECs formed a capillary-like network only on the stiff composite hydrogel although those on the hydrogels with comparable stiffness but containing gelatin alone or alginate instead of HA did not form the network. These results show that the HA/gelatin composite hydrogels obtained through the H2O2-mediated crosslinking and degradation could be a tool for studies using HUVECs to understand the promotion and inhibition of angiogenesis.
Collapse
|
12
|
Abstract
The burden of acute and chronic kidney diseases to the health care system is exacerbated by the high mortality that this disease carries paired with the still limited availability of comprehensive therapies. A reason partially resides in the complexity of the kidney, with multiple potential target cell types and a complex structural environment that complicate strategies to protect and recover renal function after injury. Management of both acute and chronic renal disease, irrespective of the cause, are mainly focused on supportive treatments and renal replacement strategies when needed. Emerging preclinical evidence supports the feasibility of drug delivery technology for the kidney, and recent studies have contributed to building a robust catalog of peptides, proteins, nanoparticles, liposomes, extracellular vesicles, and other carriers that may be fused to therapeutic peptides, proteins, nucleic acids, or small molecule drugs. These fusions can display a precise renal uptake, an enhanced circulating time, and a directed intraorgan biodistribution while protecting their cargo to improve therapeutic efficacy. However, several hurdles that slow the transition towards clinical applications are still in the way, such as solubility, toxicity, and sub-optimal renal targeting. This review will discuss the feasibility and current limitations of drug delivery technologies for the treatment of renal disease, offering an update on their potential and the future directions of these promising strategies.
Collapse
Affiliation(s)
- Alejandro R. Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
13
|
Gu X, Liu Z, Tai Y, Zhou LY, Liu K, Kong D, Midgley AC, Zuo XC. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. PROGRESS IN BIOMEDICAL ENGINEERING 2022; 4:022006. [DOI: 10.1088/2516-1091/ac6e18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Abstract
Achieving local therapeutic agent concentration in the kidneys through traditional systemic administration routes have associated concerns with off-target drug effects and toxicity. Additionally, kidney diseases are often accompanied by co-morbidities in other major organs, which negatively impacts drug metabolism and clearance. To circumvent these issues, kidney-specific targeting of therapeutics aims to achieve the delivery of controlled doses of therapeutic agents, such as drugs, nucleic acids, peptides, or proteins, to kidney tissues in a safe and efficient manner. Current carrier material approaches implement macromolecular and polyplex hydrogel constructs, prodrug strategies, and nanoparticle (NP)-based delivery technologies. In the context of multidisciplinary and cross-discipline innovations, the medical and bioengineering research fields have facilitated the rapid development of kidney-targeted therapies and carrier materials. In this review, we summarize the current trends and recent advancements made in the development of carrier materials for kidney disease targeted therapies, specifically hydrogel and NP-based strategies for acute kidney disease, chronic kidney disease, and renal cell carcinoma. Additionally, we discuss the current limitations in carrier materials and their delivery mechanisms.
Collapse
|
14
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Biodegradable Foaming Material of Poly(butylene adipate-co-terephthalate) (PBAT)/Poly(propylene carbonate) (PPC). CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2644-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Soranno DE, Kirkbride-Romeo L, Han D, Altmann C, Rodell CB. Measurement of glomerular filtration rate reveals that subcapsular injection of shear-thinning hyaluronic acid hydrogels does not impair kidney function in mice. J Biomed Mater Res A 2021; 110:652-658. [PMID: 34590787 PMCID: PMC9292789 DOI: 10.1002/jbm.a.37317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
The continued development of minimally invasive therapeutic implants, such as injectable hydrogels, necessitates the concurrent advancement of methods to best assess their biocompatibility via functional outcomes in vivo. Biomaterial implants have been studied to treat kidney disease; however, assessment of biocompatibility has been limited to biomarker and histological assessments. Techniques now exist to measure kidney function serially in vivo in murine studies via transcutaneous measurements of glomerular filtration rate (tGFR). In this study, adult male and female wild-type BalbC mice underwent right unilateral nephrectomy. The remaining solitary left kidney was allowed 4 weeks to recover via compensatory hypertrophy, after which subcapsular injection of either saline or shear-thinning hyaluronic acid hydrogel was performed. Serial tGFR measurements before and after treatment were used to assess the effect of hydrogel injection on kidney filtration. Urine and serum biomarkers of kidney function, and kidney histology were also quantified. Hydrogel injection did not affect kidney function, as assessed by tGFR. Results were in agreement with standard metrics of serum and urine biomarkers of injury as well as histological assessment of inflammation. The model developed provides a direct functional assessment of implant compatibility for the treatment of kidney disease and impact on kidney function.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA.,Department of Bioengineering, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | | | - Daniel Han
- Department of Urology, Stanford University, CA, USA
| | | | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health SystemsScience and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Zhao Y, Pu M, Wang Y, Yu L, Song X, He Z. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications. J Control Release 2021; 336:233-251. [PMID: 34171444 DOI: 10.1016/j.jconrel.2021.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI), a major health issue concerning ~50% of patients treated in intensive care units, generally leads to severe renal damage associated with high mortality rate. The application of nanotechnology for the management of AKI has profound potential of further development, providing innovative strategies for predicting the early onset and progression of renal disease and improving the treatment efficacy of the life-threating AKI. This review has comprehensively summarized the nanomedicines in the application of AKI diagnosis and emphatically discussed the unique potential of various nanotechnology-based drug delivery systems (e.g., polymeric nanoparticles, organic nanoparticles, inorganic nanoparticles, lipid-based nanoparticles, hydrogels etc.) in the treatment of AKI, allowing for improved therapeutic index by enhancing both efficacy and safety concurrently. These approaches may mechanically mitigate oxidative stress, inflammation, and mitochondrial and other organellar damage, etc. In addition, the combination of nanotechnology with stem cells-based therapy or gene therapy has been explored for reducing renal tissues damage and promoting kidney repair or recovery from AKI. The review provides insights into the synthesis, advantages, and limitations of innovative nanomedicine application in the early detection and effective treatment of AKI.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mingju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
|
20
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Hwang J, Sullivan MO, Kiick KL. Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Front Bioeng Biotechnol 2020; 8:69. [PMID: 32133350 PMCID: PMC7040483 DOI: 10.3389/fbioe.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of drug delivery vehicles to improve the efficacy of drugs and to target their action at effective concentrations over desired periods of time has been an active topic of research and clinical investigation for decades. Both synthetic and natural drug delivery materials have facilitated locally controlled as well as targeted drug delivery. Extracellular matrix (ECM) molecules have generated widespread interest as drug delivery materials owing to the various biological functions of ECM. Hydrogels created using ECM molecules can provide not only biochemical and structural support to cells, but also spatial and temporal control over the release of therapeutic agents, including small molecules, biomacromolecules, and cells. In addition, the modification of drug delivery carriers with ECM fragments used as cell-binding ligands has facilitated cell-targeted delivery and improved the therapeutic efficiency of drugs through interaction with highly expressed cellular receptors for ECM. The combination of ECM-derived hydrogels and ECM-derived ligand approaches shows synergistic effects, leading to a great promise for the delivery of intracellular drugs, which require specific endocytic pathways for maximal effectiveness. In this review, we provide an overview of cellular receptors that interact with ECM molecules and discuss examples of selected ECM components that have been applied for drug delivery in both local and systemic platforms. Finally, we highlight the potential impacts of utilizing the interaction between ECM components and cellular receptors for intracellular delivery, particularly in tissue regeneration applications.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
22
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
23
|
Liu S, Zhao M, Zhou Y, Li L, Wang C, Yuan Y, Li L, Liao G, Bresette W, Chen Y, Cheng J, Lu Y, Liu J. A self-assembling peptide hydrogel-based drug co-delivery platform to improve tissue repair after ischemia-reperfusion injury. Acta Biomater 2020; 103:102-114. [PMID: 31843715 DOI: 10.1016/j.actbio.2019.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 01/14/2023]
Abstract
Ischemia-reperfusion (I/R)-induced organ injury is a serious health problem worldwide, and poor recovery of acute phase injury leads to chronic fibrosis and further organ dysfunction. Thus, a more precise approach to enhance tissue repair is needed. By using a renal I/R model, we aimed to evaluate the role of a hydrogel-based dual-drug delivery platform on promoting tissue repair. An injectable, self-assembling peptide/heparin (SAP/Hep) hydrogel was used to co-deliver TNF-α neutralizing antibody (anti-TNF-α) and hepatocyte growth factor (HGF). The microstructure and controlled release properties of KLD2R/Hep hydrogel were analyzed. The effects of the drug-loaded hydrogel (SAP-drug) on renal injury were evaluated in mice with I/R injury. In vitro, the SAP/Hep hydrogel allowed for a faster release of anti-TNF-α with a sustained release of HGF, and both drugs maintained their bioactivities after release. In vivo, combined anti-TNF-α/HGF showed better renal protective potential than anti-TNF-α or HGF alone. SAP-drug (anti-TNF-α/HGF in SAP hydrogel) treatment reduced the level of serum creatinine (Scr), blood urea nitrogen (BUN), tubular apoptosis, renal inflammatory factors, and macrophage infiltration compared to Free-drug (anti-TNF-α/HGF in solution) or SAP alone. Moreover, the SAP-drug group had better efficacy on promoting tubular cell proliferation and dedifferentiation than SAP or Free-drug alone, and thus reduced chronic renal fibrosis in I/R mice. This study highlighted that SAP could sequentially deliver the two drugs to achieve anti-inflammatory and pro-proliferative effects with one injection and thus is a promising delivery platform for tissue repair. STATEMENT OF SIGNIFICANCE: Ischemia-reperfusion (I/R)-induced organ injury is a serious health issue, and delayed tissue repair leads to chronic fibrosis and organ failure. Systemic administration of anti-inflammatory agents or growth factors have shown some benefits on I/R injury, but their therapeutic efficacy was limited by side effects, poor bioavailability, and absent key signals of tissue repair. To address these issues, a hydrogel-based drug co-delivery platform was used to treat I/R injury. This platform could achieve sequential release kinetics with faster rate of anti-TNF-ɑ and slower rate of HGF, and effectively promoted tissue repair by targeting inflammation and proliferation in mice with renal I/R. This nanoscale delivery platform represents a promising strategy for solid organs (heart, liver and kidney) regeneration after I/R.
Collapse
|
24
|
Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials 2020; 228:119557. [DOI: 10.1016/j.biomaterials.2019.119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
25
|
Atallah P, Schirmer L, Tsurkan M, Putra Limasale YD, Zimmermann R, Werner C, Freudenberg U. In situ-forming, cell-instructive hydrogels based on glycosaminoglycans with varied sulfation patterns. Biomaterials 2018; 181:227-239. [DOI: 10.1016/j.biomaterials.2018.07.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 01/11/2023]
|
26
|
Janse van Rensburg A, Davies NH, Oosthuysen A, Chokoza C, Zilla P, Bezuidenhout D. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomater 2017; 49:89-100. [PMID: 27865963 DOI: 10.1016/j.actbio.2016.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/11/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Surface modification with heparin has previously been shown to increase vascularization of porous scaffolds. In order to determine its efficacy with sustained release, heparin (Hep) was covalently incorporated into degradable (Type D) and non-degradable (Type N) polyethylene glycol (PEG) hydrogels. After in vitro characterization of their physicochemical properties, growth factor (GF) loaded, heparinised Type D gels were formed within the pores of porous polyurethane disks, which were then implanted and evaluated in a subcutaneous model. Type N gels formed faster (3.1±0.1 vs. 7.2±0.2min), were stiffer (10.0±0.5kPa vs. 7.1±1.2kPa) and more stable than degradable gels (>6month stability vs. disintegration ⩽22d in vitro; all p<0.001). Sustained release of covalently incorporated (CI) heparin from Type N (56days; first order kinetics) and Type D (21days; zero order kinetics) was achieved, as opposed to non-covalently incorporated (NI) heparin that eluted in a burst release within the first 2days. While Type D gels initially impeded tissue ingrowth into the porous scaffolds, they were completely degraded and replaced by ingrown tissue after 28days in vivo. At the latter timepoint disks containing gels without Hep or with non-covalently incorporated Hep were less vascularized than empty (no gel) controls. In contrast, the incorporation of covalently heparinized (no GF) and GF containing gels (no Hep) resulted in a 50% and 42% (p<0.05) improvement in vascularization, while an increase of 119% (p<0.001) was achieved with a combination of covalently attached Hep and GF. These gels thus provide a sustained release system for heparin and GF that extends the duration of their action to local tissue ingrowth. STATEMENT OF SIGNIFICANCE The paper describes the modification and covalent incorporation of heparin into degradable and non-degradable polyethylene glycol hydrogels in a way that provides for the hydrolytic cleavage of the linker for the release of the heparin in original and active form, and in an extended (21-56d) controlled (zero and first order respectively) manner. The successful use of these gels as growth-factor containing and releasing matrices for the improvement of in vivo vascularization holds promise for many potential uses in tissue engineering and regenerative medicine applications, such as vascular grafts and myocardial infarction therapy, where the antithrombotic and/or growth factor binding/potentiating properties are required.
Collapse
|
27
|
Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Curr Pharm Des 2017; 23:3845-3857. [PMID: 28699526 PMCID: PMC6302346 DOI: 10.2174/1381612823666170710155726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
Collapse
Affiliation(s)
- Katja Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Carl C L Schuurmans
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Jitske Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Rosalinde Masereeuw
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Tina Vermonden
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| |
Collapse
|
28
|
Sánchez-Romero N, Schophuizen CM, Giménez I, Masereeuw R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 2016; 790:36-45. [DOI: 10.1016/j.ejphar.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
|
29
|
Seib FP, Tsurkan M, Freudenberg U, Kaplan DL, Werner C. Heparin-Modified Polyethylene Glycol Microparticle Aggregates for Focal Cancer Chemotherapy. ACS Biomater Sci Eng 2016; 2:2287-2293. [DOI: 10.1021/acsbiomaterials.6b00495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Mikhail Tsurkan
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
| | - Uwe Freudenberg
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Carsten Werner
- Max
Bergmann Centre for Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden 01069, Germany
| |
Collapse
|
30
|
Mécanismes et prise en charge de la tubulopathie liée à la rhabdomyolyse. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-016-1229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
32
|
Effectiveness of non-biodegradable poly(2-hydroxyethyl methacrylate)-based hydrogel particles as a fibroblast growth factor-2 releasing carrier. Dent Mater 2015; 31:1406-14. [DOI: 10.1016/j.dental.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/08/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
33
|
Oral Presentations. Regen Med 2015. [DOI: 10.2217/rme.15.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Watarai A, Schirmer L, Thönes S, Freudenberg U, Werner C, Simon JC, Anderegg U. TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation. Acta Biomater 2015. [PMID: 26219861 DOI: 10.1016/j.actbio.2015.07.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrogels are promising biomaterials that can adapt easily to complex tissue entities. Furthermore, chemical modifications enable these hydrogels to become an instructive biomaterial to a variety of cell types. Human dermal fibroblasts play a pivotal role during wound healing, especially for the synthesis of novel dermal tissue replacing the primary fibrin clot. Thus, the control of growth and differentiation of dermal fibroblasts is important to modulate wound healing. In here, we utilized a versatile starPEG-heparin hydrogel platform that can be independently adjusted with respect to mechanical and biochemical properties for cultivating human dermal fibroblasts. Cell-based remodeling of the artificial matrix was ensured by using matrix metalloprotease (MMP) cleavable crosslinker peptides. Attachment and proliferation of fibroblasts on starPEG-heparin hydrogels of differing stiffness, density of pro-adhesive RGD peptides and MMP cleavable peptide linkers were tested. Binding and release of human TGFβ1 as well as biological effect of the pre-adsorbed growth factor on fibroblast gene expression and myofibroblast differentiation were investigated. Hydrogels containing RGD peptides supported fibroblast attachment, spreading, proliferation matrix deposition and remodeling compared to hydrogels without any modifications. Reversibly conjugated TGFβ1 was demonstrated to be constantly released from starPEG-heparin hydrogels for several days and capable of inducing myofibroblast differentiation of fibroblasts as determined by induction of collagen type I, ED-A-Fibronectin expression and incorporation of alpha smooth muscle actin and palladin into F-actin stress fibers. Taken together, customized starPEG-heparin hydrogels could be of value to promote dermal wound healing by stimulating growth and differentiation of human dermal fibroblasts. STATEMENT OF SIGNIFICANCE The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.
Collapse
|
35
|
|
36
|
Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J Control Release 2015; 209:308-16. [PMID: 25931306 DOI: 10.1016/j.jconrel.2015.04.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 12/22/2022]
Abstract
Growth factors are critical for regulating and inducing various stem cell functions. To study the effects of growth factor delivery kinetics and presentation on stem cell fate, we developed a series of heparin-containing hyaluronic acid (HyA)-based hydrogels with various degrees of growth factor affinity and retention. To characterize this system, we investigated the effect of heparin molecular weight, fractionation, and relative concentration on the loading efficiency and retention kinetics of TGFβ1 as a model growth factor. At equal concentrations, high MW heparin both loaded and retained the greatest amount of TGFβ1, and had the slowest release kinetics, primarily due to the higher affinity with TGFβ1 compared to low MW or unfractionated heparin. Subsequently, we tested the effect of TGFβ1, presented from various heparin-containing matrices, to differentiate a versatile population of Sca-1(+)/CD45(-) cardiac progenitor cells (CPCs) into endothelial cells and form vascular-like networks in vitro. High MW heparin HyA hydrogels stimulated more robust differentiation of CPCs into endothelial cells, which formed vascular-like networks within the hydrogel. This observation was attributed to the ability of high MW heparin HyA hydrogels to sequester endogenously synthesized angiogenic factors within the matrix. These results demonstrate the importance of molecular weight, fractionation, and concentration of heparin on presentation of heparin-binding growth factors and their effect on stem cell differentiation and lineage specification.
Collapse
|
37
|
Leong NL, Arshi A, Kabir N, Nazemi A, Petrigliano FA, Wu BM, McAllister DR. In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. J Orthop Res 2015; 33:229-36. [PMID: 25363620 DOI: 10.1002/jor.22757] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) rupture is a common injury often necessitating surgical treatment with graft reconstruction. Due to limitations associated with current graft options, there is interest in a tissue-engineered substitute for use in ACL regeneration. While they represent an important step in translation to clinical practice, relatively few in vivo studies have been performed to evaluate tissue-engineered ACL grafts. In the present study, we immobilized heparin onto electrospun polycaprolactone scaffolds as a means of incorporating basic fibroblast growth factor (bFGF) onto the scaffold. In vitro, we demonstrated that human foreskin fibroblasts (HFFs) cultured on bFGF-coated scaffolds had significantly greater cell proliferation. In vivo, we implanted electrospun polycaprolactone grafts with and without bFGF into athymic rat knees. We analyzed the regenerated ACL using histological methods up to 16 weeks post-implantation. Hematoxylin and eosin staining demonstrated infiltration of the grafts with cells, and picrosirius red staining demonstrated aligned collagen fibers. At 16 weeks postop, mechanical testing of the grafts demonstrated that the grafts had approximately 30% the maximum load to failure of the native ACL. However, there were no significant differences observed between the graft groups with or without heparin-immobilized bFGF. While this study demonstrates the potential of a regenerative medicine approach to treatment of ACL rupture, it also demonstrates that in vitro results do not always predict what will occur in vivo.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of California, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
38
|
He C, Cheng C, Ji HF, Shi ZQ, Ma L, Zhou M, Zhao CS. Robust, highly elastic and bioactive heparin-mimetic hydrogels. Polym Chem 2015. [DOI: 10.1039/c5py01377a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We construct robust, highly elastic, and bioactive graphene oxide doped heparin-mimetic hydrogels for use in drug delivery and other potential biomedical applications.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hai-Feng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
39
|
Mathaes R, Winter G, Besheer A, Engert J. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 2014; 12:481-92. [PMID: 25327886 DOI: 10.1517/17425247.2015.963055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Micro- and nanoparticles in drug and vaccine delivery have opened up new possibilities in pharmaceutics. In the past, researchers focused mainly on particle size, surface chemistry and the use of various materials to control particle characteristics and functions. Lately, shape has been acknowledged as an important design parameter having an impact on the interaction with biological systems. AREAS COVERED In this review, we report on the latest developments in fabrication methods to tailor particle geometry, summarize analytical techniques for non-spherical particles and highlight the most important findings regarding their interaction with biological systems and their potential applications in drug delivery. EXPERT OPINION The impact of shape on particle internalization into different cell types and particle biodistribution has been extensively studied in the past. Current research focuses on shape-dependent uptake mechanisms and applications for tumour therapy and vaccination. Different fabrication methods can be used to produce a variety of different particle types and shapes. Key challenges will be the transfer of new non-spherical particle fabrication methods from lab-scale to industrial large-scale production. Not all techniques may be scalable for the production of high quantities of particles. It will also be challenging to transfer the promising in vitro findings to suitable in vivo models.
Collapse
Affiliation(s)
- Roman Mathaes
- Pharmacist, PhD Student,Ludwig-Maximillians-University Munich, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Butenandtstr. 5, D-81377 Munich , Germany
| | | | | | | |
Collapse
|
40
|
Wieduwild R, Lin W, Boden A, Kretschmer K, Zhang Y. A repertoire of peptide tags for controlled drug release from injectable noncovalent hydrogel. Biomacromolecules 2014; 15:2058-66. [PMID: 24825401 DOI: 10.1021/bm500186a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A repertoire of conjugable tags for controlling the release of drugs from biomaterials is highly interesting for the development of combinatorial drug administration techniques. This paper describes such a system of 11 peptide tags derived from our previous work on a physical hydrogel system cross-linked through peptide-heparin interactions. The release kinetics of the tags correlate well with their affinity to heparin and obey Fick's second law of diffusion, with the exception of the ATIII peptide, which displays a stable release profile close to a zero-order reaction. A system for release experiments over seven months was built, using the hydrogel matrix as a barrier between the reservoirs of tagged compounds and supernatant. The gel matrix can be injected without affecting the releasing properties. A tagged cyclosporin A derivative was also tested, and its release was monitored by measuring its biological activity. This work represents a design of biomaterials with an integral system of drug delivery, where both the assembly process of the matrix and affinity capture/release of tagged compounds are based on the noncovalent interaction of heparin with one class of peptides.
Collapse
Affiliation(s)
- Robert Wieduwild
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstraße 18, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
41
|
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2014; 2:147-166. [DOI: 10.1039/c3tb21016b] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Platt L, Kelly L, Rimmer S. Controlled delivery of cytokine growth factors mediated by core–shell particles with poly(acrylamidomethylpropane sulphonate) shells. J Mater Chem B 2014; 2:494-501. [DOI: 10.1039/c3tb21208d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero MA, Miura T. Dynamics of VEGF matrix-retention in vascular network patterning. Phys Biol 2013; 10:066007. [DOI: 10.1088/1478-3975/10/6/066007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Zhang C, Zhao Q, Wan L, Wang T, Sun J, Gao Y, Jiang T, Wang S. Poly dimethyl diallyl ammonium coated CMK-5 for sustained oral drug release. Int J Pharm 2013; 461:171-80. [PMID: 24300214 DOI: 10.1016/j.ijpharm.2013.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 11/24/2022]
Abstract
A new oral sustained drug delivery system (DDS) involving a combination of inorganic mesoporous material (CMK-5) and organic polymer poly dimethyl diallyl ammonium (PDDA) was established to determine its general suitability for use with poorly water soluble drugs. Nimodipine, carvedilol and fenofibrate, three different drugs with acidic or alkaline properties, were selected as model drugs and loaded into carriers. The physicochemical properties of the drug carriers were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption. The structural body changes of the composites in release medium, with or without additional salts, were also studied using particle sizing systems, nitrogen adsorption and zeta potential measurement in order to investigate the sustained release mechanism of the drugs. The results obtained showed that sustained release of drug from the designed DDS was mainly due to the blockage effect arising from the strong swelling of the coated polymers when in contact with release medium. Additional salts, when they reached a certain level, allowed a dramatic burst release. We believe that our designed sustained DDS provide a new option for water insoluble drugs and can be considered as fundamental for those more sophisticated DDS increasingly required in modern medical treatments.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Long Wan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Tianyi Wang
- Department of Life Science and Health, Northeastern University, Wenhuadong Road 89, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Yikun Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Tongying Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| |
Collapse
|
45
|
Hydrogel particle aggregates for growth factor delivery. J Control Release 2013; 167:333. [PMID: 23590863 DOI: 10.1016/j.jconrel.2013.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 11/21/2022]
|