1
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Low-intensity focused ultrasound-assisted dox-piperine amplified therapy on anaplastic thyroid carcinoma by hybird tumor-targeting nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Li Y, Du M, Fang J, Zhou J, Chen Z. UTMD promoted local delivery of miR-34a-mimic for ovarian cancer therapy. Drug Deliv 2021; 28:1616-1625. [PMID: 34319204 PMCID: PMC8330777 DOI: 10.1080/10717544.2021.1955041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-mediated gene therapy is emerging as a promising method for the treatment of ovarian cancer, but the development of miRNA mimic delivery vectors is still in its infancy, where the safety and efficacy of miR-34a-mimic remain unknown. Ultrasound-targeted microbubble destruction (UTMD) can be an effective and minimally invasive tool for the delivery of miR-34a-mimic in vitro and in vivo. Here, we describe a high-efficiency gene delivery strategy by using miR-34a-mimic loaded folate modified microbubbles (miR-34a-FM) with a portable ultrasonic irradiation system. Ultrasonic parameters, including acoustic intensity (AI), exposure time (ET) and duty cycle (DC), were optimized and the optimal acoustic condition (1.0 W/cm2, 20 s, and 15% DC) was used to deliver miRNA-34a into cells in vitro. MiR-34a mimic was successfully introduced into the cytoplasm and was found to inhibit proliferation and induce apoptosis of SK-OV-3 cells. Next, miR-34a-mimic was delivered to tumor tissue via UTMD, inhibiting tumor growth and prolonging the survival time of mice. In summary, UTMD-mediated miR-34a-mimic delivery has potential application in the clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, University of South China, Hengyang, China.,Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, University of South China, Hengyang, China
| | - Jinghui Fang
- Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jia Zhou
- The First Affiliated Hospital, Department of Ultrasound Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, University of South China, Hengyang, China
| |
Collapse
|
4
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
5
|
Navarro-Becerra JA, Franco-Urquijo CA, Ríos A, Escalante B. Localized Delivery of Caveolin-1 Peptide Assisted by Ultrasound-Mediated Microbubble Destruction Potentiates the Inhibition of Nitric Oxide-Dependent Vasodilation Response. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1559-1572. [PMID: 33736878 DOI: 10.1016/j.ultrasmedbio.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In the endothelium, nitric oxide synthase (eNOS) is the enzyme that generates nitric oxide, a key molecule involved in a variety of biological functions and cancer-related events. Therefore, selective inhibition of eNOS represents an attractive therapeutic approach for NO-related diseases and anticancer therapy. Ultrasound-mediated microbubble destruction (UMMD) conjugated with cell-permeable peptides has been investigated as a drug delivery system for effective delivery of anticancer molecules. We investigated the feasibility of loading antennapedia-caveolin-1 peptide (AP-Cav), a specific eNOS inhibitor, onto microbubbles to be delivered by UMMD in rat aortic endothelium. AP-Cav-loaded microbubbles (AP-Cav-MBs) and US parameters were characterized. Aortas were treated with UMMD for 30 s with 1.3 × 108 MBs/mL AP-Cav (8 μM)-MBs at 100-Hz pulse repetition frequency, 0.5-MPa acoustic pressure, 0.5 mechanical index and 10% duty cycle. NO-dependent vascular responses were assessed using an isolated organ system, 21 h post-treatment. Maximal relaxation response was inhibited 61.8% ± 1.6% in aortas treated with UMMD-AP-Cav-MBs, while in aortas treated with previously disrupted AP-Cav-MBs and then US, the inhibition was 31.6% ± 1.6%. The vascular contractile response was not affected. The impact of UMMD was evaluated in aortas treated with free AP-Cav; 30 μM of free AP-Cav was necessary to reach an inhibition response similar to that obtained with UMMD-AP-Cav-MBs. In conclusion, UMMD enhances the delivery and potentiates the effect of AP-Cav in the endothelial layer of rat aorta segments.
Collapse
Affiliation(s)
- J Angel Navarro-Becerra
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Apodaca NL, México
| | - Carlos A Franco-Urquijo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Apodaca NL, México
| | - Amelia Ríos
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Apodaca NL, México.
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Apodaca NL, México; Universidad de Monterrey, San Pedro Garza García, NL, México
| |
Collapse
|
6
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
7
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Wang W, Jing T, Xia X, Tang L, Huang Z, Liu F, Wang Z, Ran H, Li M, Xia J. Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomater Sci 2019; 7:4060-4074. [PMID: 31475710 DOI: 10.1039/c9bm01052a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combined photothermal-chemotherapy guided by multimodal imaging is a promising strategy for cancer diagnosis and treatment. Multifunctional nanoparticles, such as those comprising organic and inorganic compounds, have been extensively investigated for combined photothermal-chemotherapy; however, their application is still limited by their potential long-term toxicity and lack of contrast properties. To solve these problems, in this study, a new type of multifunctional nanoparticle for combined photothermal-chemotherapy guided by dual-modality imaging was prepared with endogenous melanin by multistep emulsification to enhance tumor ablation. The nanoparticles were coated with poly(lactide-co-glycolic acid) (PLGA) and loaded with paclitaxel (PTX), encapsulated melanin and perfluoropentane (PFP). The materials in the nanoparticles were endogenous, ensuring high stability, biocompatibility, and biosafety. Nanoparticles irradiated with a laser, which induced their phase transformation into microbubbles, exhibited high photothermal conversion efficiency, thereby achieving photoacoustic (PA)/ultrasound (US) dual-modality imaging to determine tumor location, boundary, and size and to monitor drug distribution. Furthermore, optical droplet vaporization (ODV) of the nanoparticles could trigger the release of PTX; thus, these nanoparticles are a useful drug carrier. In vivo and in vitro experiments revealed that a strong synergistic antitumor effect was achieved by combining the photothermal properties of the nanoparticles with a chemotherapy drug. Importantly, the cavitation, thermoelastic expansion, and sonoporation caused by the phase transformation of the nanoparticles could directly damage the tumors. These processes also promoted the release, penetration and absorption of the drug, further enhancing the effect of combined photothermal-chemotherapy on tumor suppression. Therefore, the multifunctional nanoparticles prepared in this study provide a new strategy of using endogenous materials for controlled near-infrared (NIR)-responsive drug release and combined photothermal-chemotherapy guided by multimodal imaging.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Ting Jing
- Department of Radiology, Hospital (t.c.m) Affiliated to Southwest Medical University, Luzhou 646000, PR China
| | - Xiaorong Xia
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Linmei Tang
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Zhiqiang Huang
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Fengqiu Liu
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Zhigang Wang
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Haitao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Mingxing Li
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Jizhu Xia
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
10
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhu L, Zhao H, Zhou Z, Xia Y, Wang Z, Ran H, Li P, Ren J. Peptide-Functionalized Phase-Transformation Nanoparticles for Low Intensity Focused Ultrasound-Assisted Tumor Imaging and Therapy. NANO LETTERS 2018; 18:1831-1841. [PMID: 29419305 DOI: 10.1021/acs.nanolett.7b05087] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, we successfully developed novel tumor homing-penetrating peptide-functionalized drug-loaded phase-transformation nanoparticles (tLyP-1-10-HCPT-PFP NPs) for low intensity focused ultrasound (LIFU)-assisted tumor ultrasound molecular imaging and precise therapy. With the nanoscale particle size, tLyP-1-10-HCPT-PFP NPs could pass through the tumor vascular endothelial cell gap. Induced by tLyP-1 peptide with targeting and penetrating efficiency, tLyP-1-10-HCPT-PFP NPs could increase tumor accumulation and penetrate deeply into the extravascular tumor tissue, penetrating through extracellular matrix and the cellular membrane to the cytoplasm. With LIFU assistance, tLyP-1-10-HCPT-PFP NPs could phase-transform into microbubbles and enhance tumor ultrasound molecular imaging for tumor diagnosis. Furthermore, after further irradiation by LIFU, an intracellular "explosion effect" caused by acoustic droplet vaporization, ultrasound targeted microbubble destruction, and release of 10-HCPT could realize physicochemical synergistic antitumor therapy.
Collapse
Affiliation(s)
- LeiLei Zhu
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - HongYun Zhao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - ZhiYi Zhou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - YongHong Xia
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - ZhiGang Wang
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - HaiTao Ran
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - Pan Li
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - JianLi Ren
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| |
Collapse
|
12
|
Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, Deng L, Jiang W, Shen W, Wang Z, Mei Z, Li P, Ran H, Zhou Z, Ren J. Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma. Theranostics 2018; 8:1892-1910. [PMID: 29556363 PMCID: PMC5858507 DOI: 10.7150/thno.22386] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
Objective: Prepare a multifunctional ultrasound molecular probe, hyaluronic acid-mediated cell-penetrating peptide-modified 10-hydroxycamptothecin-loaded phase-transformation lipid nanoparticles (HA/CPPs-10-HCPT-NPs), and to combine HA/CPPs-10-HCPT-NPs with low-intensity focused ultrasound (LIFU) for precision theranostics against hepatocellular carcinoma (HCC). Methods: HA/CPPs-10-HCPT-NPs were prepared using thin-film dispersion, ultrasound emulsification, and electrostatic effects. HA/CPPs-10-HCPT-NPs were characterized for particle size, zeta potential, encapsulation efficiency and drug-loading efficiency. In vitro, HA/CPPs-10-HCPT-NPs were tested for acoustic droplet vaporization (ADV) at different time points/acoustic intensities; the ability of HA/CPPs-10-HCPT-NPs to target SMMC-7721 cells was detected by confocal laser scanning microscopy (CLSM); the penetrating ability of CG-TAT-GC-modified NPs was verified by CLSM in a 3D multicellular tumor spheroid (MCTS) model; the effect of HA/CPPs-10-HCPT-NPs combined with LIFU on killing SMMC-7721 cells was measured by CCK-8 and flow cytometry. In vivo, the tumor-target efficiency of HA/CPPs-10-HCPT-NPs was evaluated by a small-animal fluorescence imaging system and CLSM; the enhanced ultrasound imaging efficiency of HA/CPPs-10-HCPT-NPs combined with LIFU was measured by an ultrasound imaging analyzer; the therapeutic effect of HA/CPPs-10-HCPT-NPs combined with LIFU was evaluated by tumor volume, tumor inhibition rate, and staining (hematoxylin and eosin (H & E), proliferating cell nuclear antigen (PCNA) and TUNEL). Results: Mean particle size and mean zeta potential of HA/CPPs-10-HCPT-NPs were 284.2±13.3 nm and - 16.55±1.50 mV, respectively. HA/CPPs-10-HCPT-NPs could bind to SMMC-7721 cells more readily than CPPs-10-HCPT-NPs. Penetration depth into 3D MCTS of HA/CPPs-10-HCPT-NPs was 2.76-fold larger than that of NPs without CG-TAT-GC. HA/CPPs-10-HCPT-NPs could enhance ultrasound imaging by undergoing ADV triggered by LIFU. HA/CPPs-10-HCPT-NPs+LIFU group demonstrated significantly higher efficiency of anti-proliferation and apoptosis percentage than all other groups. In mouse liver tumor xenografts, HA/CPPs-10-HCPT-NPs could target tumor sites and enhance ultrasound imaging under LIFU. HA/CPPs-10-HCPT-NPs+LIFU group had a significantly smaller tumor volume, lower proliferative index (PI), and higher tumor inhibition and apoptotic index (AI) than all other groups. Conclusions: Combined application of HA/CPPs-10-HCPT-NPs and LIFU should be a valuable and promising strategy for precise HCC theranostics.
Collapse
|
13
|
Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, Yao J, Xu D. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 2018; 10:1099-1111. [PMID: 29607187 DOI: 10.21037/jtd.2018.01.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple limitations for cardiac pharmacologic therapies like intolerance, individual variation in effectiveness, side effects, and high cost still remain, despite the recent progress in diagnosis and health support. Gene therapy is poised to be an attractive alternative in various ways for the future, refractory cardiac diseases being one aspect of it. As a novel therapy to deliver the objective gene to organs of living animals, ultrasound targeted microbubble destruction (UTMD) has therapeutic potential in cardiovascular disorders. UTMD, which binds microbubbles with DNA or RNA carriers into the shell and destroys the located microbubbles with low frequency and high mechanical index ultrasound can release target agents to specific organs. UTMD has the ability to transfect markedly through sonoporation, cavitation and other effects by way of intravenous injection that is minimally invasive and highly specific for gene deliverance. Here, we have summarized the present role of UTMD in pre-clinical studies of cardiac gene therapy which covers myocardial infarction, regeneration, ischaemia/reperfusion injury, hypertension, diabetic cardiomyopathy, adriamycin cardiomyopathy and some discussion for further studies.
Collapse
Affiliation(s)
- Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Barsha Thapa
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanmei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Menglin Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
14
|
Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis. Acta Pharm Sin B 2017; 7:447-452. [PMID: 28752029 PMCID: PMC5518641 DOI: 10.1016/j.apsb.2017.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.
Collapse
|
15
|
Comparison of Intracoronary and Intravenous Ultrasound-targeted Microbubble Destruction–mediated Ang1 Gene Transfection on Left Ventricular Remodeling in Canines With Acute Myocardial Infarction. J Cardiovasc Pharmacol 2017; 70:25-33. [DOI: 10.1097/fjc.0000000000000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J, Misiuga M, Nowak M, Bielecki T, Kasperczyk A. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix' scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater 2017; 106:909-923. [DOI: 10.1002/jbm.b.33865] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Marek Kawecki
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
- University of Technology and Humanities in Bielsko-Biała; Department of Health Science in Bielsko-Biała; Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | | | - Diana Kitala
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Malgorzata Kraut
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Justyna Glik
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
- The Medical University of Silesia in Katowice; Unit for Chronic Wound Treatment Organization, Nursery Division; School of Healthcare in Zabrze Poland
| | - Marcelina Misiuga
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Mariusz Nowak
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Tomasz Bielecki
- Saint Barbara's Clinical Hospital number 5 in Sosnowiec; Clinical Department of Orthopaedics, Trauma; Oncologic and Reconstructive Surgery Poland
| | - Aleksandra Kasperczyk
- Medical University of Silesia in Katowice; Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze
| |
Collapse
|
17
|
Xie X, Lin W, Li M, Yang Y, Deng J, Liu H, Chen Y, Fu X, Liu H, Yang Y. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1362-1374. [PMID: 27012462 DOI: 10.1016/j.ultrasmedbio.2016.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas <1.5% (30 min) was released in the absence of ultrasound. Cell experiments indicated higher cellular CPP-siRNA uptake of (CPP-siRNA)-NBs with ultrasound among the various formulations in human breast adenocarcinoma cells (HT-1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA.
Collapse
Affiliation(s)
- Xiangyang Xie
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Wen Lin
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi, China
| | - Mingyuan Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Jianping Deng
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi, China
| | - Hui Liu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Ying Chen
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Xudong Fu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Hong Liu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
19
|
Su Q, Li L, Liu Y, Zhou Y, Wang J, Wen W. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction. Gene Ther 2015; 22:1000-1006. [PMID: 26079407 DOI: 10.1038/gt.2015.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Abstract
The programmed cell death 4/nuclear factor-κB/tumor necrosis factor α (PDCD4/NF-κB/TNF-α) signaling pathway has an important role in coronary microembolization (CME)-induced inflammation. microRNA-21 protects myocardium mainly via regulation of its target gene PDCD4. Therefore, in this study we investigated the effect of ultrasound-guided microbubble-mediated microRNA-21 transfection on cardiac function in CME pig model and determined the potential mechanisms involved. The pig CME model was established by microcatheter-mediated injection of microembolization beads into the left anterior descending artery. The CME with microRNA transfection group was injected with plasmid-microbubble mixture through the marginal ear vein 4 days before CME treatment, along with ultrasound to the myocardium. Cardiac function indices were examined by cardiac ultrasound; infarct area was measured by hematoxylin-eosin and hematoxylin-basic Fuchsin-picric acid staining of tissue pathological sections; green fluorescent protein-labeled gene expression levels were evaluated by fluorescent microscopy in frozen sections; myocardial PDCD4 and TNF-α mRNA levels were measured by fluorescent quantitative PCR and protein levels were measured by western blotting; and NF-κB activity was tested by electrophoretic mobility shift assay. Compared with the CME group, the CME with ultrasound-mediated microRNA transfection group demonstrated improved CME-induced cardiac dysfunction (P<0.05). Compared with the CME group, the CME with ultrasound-mediated microRNA transfection group showed significantly lower PDCD4 expression and NF-κB activity (P<0.05). Ultrasound microbubble-mediated microRNA-21 transfection effectively improved CME-induced cardiac dysfunction via inhibition of PDCD4/NF-κB/TNF-α signal transduction pathway.
Collapse
Affiliation(s)
- Q Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - L Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Y Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Y Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - J Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - W Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Xie X, Yang Y, Lin W, Liu H, Liu H, Yang Y, Chen Y, Fu X, Deng J. Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids Surf B Biointerfaces 2015; 136:641-50. [PMID: 26492155 DOI: 10.1016/j.colsurfb.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Due to the absence of effective in vivo delivery systems, the employment of small interference RNA (siRNA) in the clinic has been hindered. In this paper, a new siRNA targeting system for EphA2-positive tumors was developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, a CPP-siRNA conjugate (CPP-siRNA) was entrapped in an ephrin mimetic peptide (YSA peptide)-modified NB (CPP-siRNA/YSA-NB) and the penetration of the CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research demonstrated that the CPP-siRNA/YSA-NBs had particle sizes of approximately 200 nm and a siRNA entrapment efficiency of more than 85%. The in vitro release results showed that over 90% of the encapsulated CPP-siRNA released from the NBs in the presence of ultrasound, while less than 1.5% of that (30 min) released without ultrasound. Cell experiments showed a the higher CPP-siRNA cellular uptake of CPP-siRNA/YSA-NB among the various formulations in human breast adenocarcinoma cells (MCF-7, EphA2 positive cells). Additionally, after systemic administration in mice, CPP-siRNA/YSA-NB accumulated in the tumor, augmented c-Myc silencing and delayed tumor progression. In conclusion, the application of CPP-siRNA/YSA-NB with ultrasound may provide a strategy for the selective and efficient delivery of siRNA.
Collapse
Affiliation(s)
- Xiangyang Xie
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, PR China
| | - Yanfang Yang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wen Lin
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi 435000, PR China
| | - Hui Liu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, PR China
| | - Hong Liu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, PR China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, No. 27 Taiping Road, Beijing 100850, PR China.
| | - Ying Chen
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, PR China
| | - Xudong Fu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, PR China
| | - Jianping Deng
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi 435000, PR China.
| |
Collapse
|
21
|
Xie X, Lin W, Liu H, Deng J, Chen Y, Liu H, Fu X, Yang Y. Ultrasound-responsive nanobubbles contained with peptide–camptothecin conjugates for targeted drug delivery. Drug Deliv 2015; 23:2756-2764. [PMID: 26289216 DOI: 10.3109/10717544.2015.1077289] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Xiangyang Xie
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan, PR China
| | - Wen Lin
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi, PR China, and
| | - Hui Liu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan, PR China
| | - Jianping Deng
- Department of Clinical Laboratory, Huangshi Love & Health Hospital of Hubei Province, Huangshi, PR China, and
| | - Ying Chen
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan, PR China
| | - Hong Liu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan, PR China
| | - Xudong Fu
- Department of Pharmacy, Wuhan General Hospital of Guangzhou Command, Wuhan, PR China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| |
Collapse
|
22
|
Lin W, Xie X, Deng J, Liu H, Chen Y, Fu X, Liu H, Yang Y. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery. J Drug Target 2015; 24:134-46. [PMID: 26176270 DOI: 10.3109/1061186x.2015.1058802] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new drug-targeting system for CD13(+) tumors has been developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, the CPP-doxorubicin conjugate (CPP-DOX) was entrapped in the asparagine-glycine-arginine (NGR) peptide modified NB (CPP-DOX/NGR-NB) and the penetration of CPP-DOX was temporally masked; local ultrasound stimulation could trigger the CPP-DOX release from NB and activate its penetration. The CPP-DOX/NGR-NBs had particle sizes of about 200 nm and drug entrapment efficiency larger than 90%. In vitro release results showed that over 85% of the encapsulated DOX or CPP-DOX would release from NBs in the presence of ultrasound, while less than 1.5% of that (30 min) without ultrasound. Cell experiments showed the higher cellular CPP-DOX uptake of CPP-DOX/NGR-NB among the various NB formulations in Human fibrosarcoma cells (HT-1080, CD13(+)). The CPP-DOX/NGR-NB with ultrasound treatment exhibited an increased cytotoxic activity than the one without ultrasound. In nude mice xenograft of HT-1080 cells, CPP-DOX/NGR-NB with ultrasound showed a higher tumor inhibition effect (3.1% of T/C%, day 24), longer median survival time (50 days) and excellent body safety compared with the normal DOX injection group. These results indicate that the constructed vesicle would be a promising drug delivery system for specific cancer treatment.
Collapse
Affiliation(s)
- Wen Lin
- a Department of Clinical Laboratory , Huangshi Love & Health Hospital of Hubei Province , Huangshi , People's Republic of China
| | - Xiangyang Xie
- b Department of Pharmacy , Wuhan General Hospital of Guangzhou Military Command , Wuhan , People's Republic of China , and
| | - Jianping Deng
- a Department of Clinical Laboratory , Huangshi Love & Health Hospital of Hubei Province , Huangshi , People's Republic of China
| | - Hui Liu
- b Department of Pharmacy , Wuhan General Hospital of Guangzhou Military Command , Wuhan , People's Republic of China , and
| | - Ying Chen
- b Department of Pharmacy , Wuhan General Hospital of Guangzhou Military Command , Wuhan , People's Republic of China , and
| | - Xudong Fu
- b Department of Pharmacy , Wuhan General Hospital of Guangzhou Military Command , Wuhan , People's Republic of China , and
| | - Hong Liu
- b Department of Pharmacy , Wuhan General Hospital of Guangzhou Military Command , Wuhan , People's Republic of China , and
| | - Yang Yang
- c Department of Pharmacy , Beijing Institute of Pharmacology and Toxicology , Beijing , People's Republic of China
| |
Collapse
|
23
|
Ren J, Zhang P, Tian J, Zhou Z, Liu X, Wang D, Wang Z. A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: preparation and gene transfection in vitro. Colloids Surf B Biointerfaces 2014; 121:362-70. [PMID: 24985759 DOI: 10.1016/j.colsurfb.2014.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Targeted and high efficient gene delivery is a main issue in gene treatment. Taking advantage of ischemic memory target P-selectin and our previous study-synergistic effects of ultrasound-targeted microbubble destruction (UTMD) and TAT peptide on gene transfection, which were characterized by targeted aggregation and high efficient gene transfection, we set up a 'smart' gene delivery system-targeted ultrasound contrast agent (UCA) carrying gene and cell-permeable peptides (CPP). Such UCA had a strong binding force with DNA which was protected from being hydrolysed by nuclease. Moreover, synergistic effects of UTMD and TAT peptide increased gene transfection. Specifically, the UCA were reacted with an ischemic memory target P-selectin overexpressed by ischemic issues (including ischemic heart disease) and loaded with gene and CPP, which enabled targeted localization and gene delivery to ischemic cells overexpressing P-selectin. We demonstrated their targeting affinity for hypoxia human umbilical vein endothelial cell (HUVEC) and gene transfection in vitro. The results of confocal laser scanning microscopy (CLSM) showed that gene and CPP were distributed on the shell of UCA. Red fluorescence was observed on the surface of targeted UCA using immunofluorescent microscopy, which demonstrated that the antibody was successfully connected to the UCA. The targeted UCA was specifically and tightly binded to hypoxia HUVEC, while there were no or little non-targeted UCA binding around hypoxia HUVEC. 24h after transfection, gene transfection efficiency detected by FCM was higher in targeted group than non-targeted group. Overall, the targeted UCA carrying gene and CPP was prepared successfully. It had a strong target binding capacity to hypoxia HUVEC and high efficient gene transfection, which maybe provide a novel strategy for gene therapy.
Collapse
Affiliation(s)
- Jianli Ren
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Ping Zhang
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Ju Tian
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Zhiyi Zhou
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China.
| | - Xingzhao Liu
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Dong Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No. 76, LinJiang Road, YuZhong District, Chongqing City 400010, China
| |
Collapse
|
24
|
Effect of nonviral plasmid delivered basic fibroblast growth factor and low intensity pulsed ultrasound on mandibular condylar growth: a preliminary study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:426710. [PMID: 24967367 PMCID: PMC4055166 DOI: 10.1155/2014/426710] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/14/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Basic fibroblast growth factor (bFGF) is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS) stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA) on mandibular growth in rats. DESIGN Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant increase was observed in mandibular height and condylar length in LIPUS groups. MicroCT analysis showed significant increase in bone volume fraction in bFGF pDNA + LIPUS group. Histomorphometric analysis showed increased cell count and condylar proliferative and hypertrophic layers widths in bFGF pDNA group. RESULTS Current study showed increased mandibular condylar growth in either bFGF pDNA or LIPUS groups compared to the combined group that showed only increased bone volume fraction. CONCLUSION It appears that there is an additive effect of bFGF + LIPUS on the mandibular growth.
Collapse
|
25
|
New progress in angiogenesis therapy of cardiovascular disease by ultrasound targeted microbubble destruction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:872984. [PMID: 24900995 PMCID: PMC4037580 DOI: 10.1155/2014/872984] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/26/2014] [Indexed: 02/08/2023]
Abstract
Angiogenesis plays a vital part in the pathogenesis and treatment of cardiovascular disease and has become one of the hotspots that are being discussed in the past decades. At present, the promising angiogenesis therapies are gene therapy and stem cell therapy. Besides, a series of studies have shown that the ultrasound targeted microbubble destruction (UTMD) was a novel gene delivery system, due to its advantages of noninvasiveness, low immunogenicity and toxicity, repeatability and temporal and spatial target specificity; UTMD has also been used for angiogenesis therapy of cardiovascular disease. In this review, we mainly discuss the combination of UTMD and gene therapy or stem cell therapy which is applied in angiogenesis therapy in recent researches, and outline the future challenges and good prospects of these approaches.
Collapse
|