1
|
Tian Z, Liang S, Zhou X, Luo H, Tian M, Zhang X, Guo C, Zhang J. Near-infrared-dye labeled tumor vascular-targeted dimer GEBP11 peptide for image-guided surgery in gastric cancer. Front Oncol 2022; 12:885036. [PMID: 36505820 PMCID: PMC9730820 DOI: 10.3389/fonc.2022.885036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Positive resection margins occur in about 2.8%-8.2% gastric cancer surgeries and is associated with poor prognosis. Intraoperative guidance using Nearinfrared (NIR) fluorescence imaging is a promising technique for tumor detection and margin assessment. The goal of this study was to develop a tumor-specific probe for real-time intraoperative NIR fluorescence imaging guidance. Methods The tumor vascular homing peptide specific for gastric cancer, GEBP11, was conjugated with a near-infrared fluorophore, Cy5.5. The binding specificity of the GEBP11 probes to tumor vascular endothelial cells were confirmed by immunofluorescent staining. The ability of the probe to detect tumor lesions was evaluated in two xenograft models. An orthotopic gastric cancer xenograft model was used to evaluate the efficacy of the GEBP11 NIR probes in real-time surgical guidance. Results In vitro assay suggested that both mono and dimeric GEBP11 NIR probes could bind specifically to tumor vascular epithelial cells, with dimeric peptides showed better affinity. In tumor xenograft mice, live imaging suggested that comparing with free Cy5.5 probe, significantly stronger NIR signals could be detected at the tumor site at 24-48h after injection of mono or dimeric GEBP11 probes. Dimeric GEBP11 probe showed prolonged and stronger NIR signals than mono GEBP11 probe. Biodistribution assay suggested that GEBP11 NIR probes were enriched in gastric cancer xenografts. Using dimeric GEBP11 NIR probes in real-time surgery, the tumor margins and peritoneal metastases could be clearly visualized. Histological examination confirmed the complete resection of the tumor. Conclusion (GEBP11)2-ACP-Cy5.5 could be a potential useful probe for intraoperative florescence guidance in gastric cancer surgery.
Collapse
Affiliation(s)
- Zuhong Tian
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | | | - Miaomiao Tian
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular-imaging and Neuroimaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China,*Correspondence: Changcun Guo, ; Jing Zhang,
| | - Jing Zhang
- State Key Laboratory of Cancer Biology & XiJing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China,*Correspondence: Changcun Guo, ; Jing Zhang,
| |
Collapse
|
2
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 791] [Impact Index Per Article: 263.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
3
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Wang Q, Lu C, Li K, Xia YM, qiu L, Lin J. Legumain-mediated self-assembly of 131I-labelled agent for targeted radiotherapy of tumor. J Mater Chem B 2022; 10:2251-2259. [DOI: 10.1039/d1tb02862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted radionuclide therapy (TRT) has been a promising strategy for cancer therapy, which can inhibit or kill cancer cells by selectively delivering radionuclide to target tissues. Herein, a legumain-targeted therapeutic...
Collapse
|
5
|
Luo Y, Yin J, Fang R, Liu J, Wang L, Zhang H, Zhang M, Lei Z, Liang S, Cui W, Zhang Z, Wu K, Hui X. The tumour neovasculature-homing dimeric peptide GX1 demonstrates antiangiogenic activity in the retinal neovasculature. Eur J Pharmacol 2021; 912:174574. [PMID: 34662566 DOI: 10.1016/j.ejphar.2021.174574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Identification of molecules specific to the retinal neovasculature will promote antiangiogenic therapy with enhanced targeting ability. The specificity of phage-displayed peptide GX1 (a cyclic 7-mer peptide motif CGNSNPKSC) to gastric cancer neovasculature has been extensively confirmed both in vitro and in vivo. To investigate the potential application of GX1 in antiangiogenic therapy targeting retinal angiogenesis-related diseases, we performed immunohistochemistry and immunofluorescence analyses. GX1 demonstrated positive staining in the retinal neovasculature in an oxygen-induced mouse model of retinopathy (OIR) as well as in rat retinal microvasculature endothelial cells (RMECs), confirming the major role of the GX1 receptor during retinal angiogenesis. Dimeric GX1 was synthesized to increase the binding affinity to the GX1 receptor, and the antiangiogenic effects were examined in RMECs in vitro and the retinal neovasculature in the OIR in vivo. Cell proliferation was evaluated using a Cell Counting Kit-8 (CCK-8) assay, revealing that compared with the GX1 monomer, dimeric GX1 significantly inhibited RMEC proliferation (P < 0.05). This finding may be attributed to the enhanced (P < 0.05) apoptosis induced by dimeric GX1 in RMECs based on results obtained from TUNEL, flow cytometric and cell cycle analyses. In RMECs, in vitro cell migration and tube formation were significantly inhibited following exposure to dimeric GX1. Intravitreal administration of dimeric GX1 resulted in a greater reduction in the retinal neovascularization in vivo than administration of the GX1 monomer (P < 0.05). In conclusion, dimeric GX1 showed greater inhibition of angiogenesis than monomeric GX1 and could be a promising agent for antiangiogenic therapy in retinal angiogenesis-related diseases.
Collapse
Affiliation(s)
- Yingying Luo
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Rutang Fang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China; Department of Gastroenterology, Affiliated No. 986 Hospital of Xijing Hospital, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Jingtao Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China; Department of Nuclear Medicine, Affiliated No. 986 Hospital of Xijing Hospital, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Lu Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Haiping Zhang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Ming Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Zhijie Lei
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Wei Cui
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Zhiyong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China.
| | - Xiaoli Hui
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China.
| |
Collapse
|
6
|
Wang L, Zhang D, Li J, Li F, Wei R, Jiang G, Xu H, Wang X, Zhou Y, Xi L. A novel ICG-labeled cyclic TMTP1 peptide dimer for sensitive tumor imaging and enhanced photothermal therapy in vivo. Eur J Med Chem 2021; 227:113935. [PMID: 34731764 DOI: 10.1016/j.ejmech.2021.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
TMTP1 is a polypeptide independently screened in our laboratory, which can target tumors in situ and metastases. In previous work, we have successfully developed a near-infrared (NIR) probe TMTP1-PEG4-ICG for tumor imaging. However, the limited ability to target tumor micrometastases hinders its further clinical application. Multimerization of peptides has been extensively demonstrated as an effective strategy to increase receptor binding affinity due to "multivalent effect" or "apparent cooperative affinity". In this study, a novel TMTP1 homodimer-directed NIR probe (TMTP1-PEG4)2-ICG was successfully constructed and synthesized. The cyclic TMTP1 peptides were bridged by two PEG4 linkers and then labeled with ICG-NHS for tumor imaging and photothermal therapy. In vivo biodistribution were assessed in normal BALB/c mice, and tumor targeting abilities of (TMTP1-PEG4)2-ICG and its monomer were evaluated and compared in 4T1-bearing subcutaneous tumor and lymph node metastasis model mice. Biodistribution analysis in vivo revealed that (TMTP1-PEG4)2-ICG was cleared mainly in both liver and kidney dependent way. Comparing with free ICG dye or TMTP1-PEG4-ICG probe, this improved (TMTP1-PEG4)2-ICG dimer showed more sensitive tumor imaging and could clearly identify tumors at a minimum volume of 10 mm3. Additionally, when compared to its monomer, lymph node (LN) metastases could also be apparently visualized and easily distinguished from normal LN by the novel dimer at 24 h post-injection. The blocking study revealed that the tumor accumulation of this probe was specifically medicated by receptor-ligand interaction. Furthermore, with the increase in stability and tumor targeting ability of ICG in vivo, the probe could also be an attractive photothermal agent to significantly inhibit tumor growth under 808 nm NIR laser irradiation. In conclusion, our work revealed that the novel (TMTP1-PEG4)2-ICG dimer could be a promising theranostic agent for sensitive tumor imaging and imaging-guided photothermal therapy, indicating its broad prospects for further clinical transformation.
Collapse
Affiliation(s)
- Ling Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Danya Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rui Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guiying Jiang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hanjie Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueqian Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ying Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol 2021; 147:973-986. [PMID: 33550445 DOI: 10.1007/s00432-021-03520-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer is still a major cancer worldwide. The early diagnosis rate of gastric cancer in most high incidence countries is low. At present, the overall treatment effect of gastric cancer is poor, and the median overall survival remains low. Most of the patients with gastric cancer are in an advanced stage when diagnosed, and drug treatment has become the main means. Thus, new targeted drugs and therapeutic strategies are the hope of improving the therapeutic effect of gastric cancer. In this review, we summarize the new methods and advances of targeted therapy for gastric cancer, including novel molecular targeted therapeutic agents and drug delivery systems, with a major focus on the development of drug delivery systems (drug carriers and targeting peptides). Elaborating these new methods and advances will contribute to the management of gastric cancer.
Collapse
|
8
|
|
9
|
Su T, Wang YB, Han D, Wang J, Qi S, Gao L, Shao YH, Qiao HY, Chen JW, Liang SH, Nie YZ, Li JY, Cao F. Multimodality Imaging of Angiogenesis in a Rabbit Atherosclerotic Model by GEBP11 Peptide Targeted Nanoparticles. Am J Cancer Res 2017; 7:4791-4804. [PMID: 29187904 PMCID: PMC5706100 DOI: 10.7150/thno.20767] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Angiogenesis is an important pathological process during progression of plaque formation, which can result in plaque hemorrhage and vulnerability. This study aims to explore non-invasive imaging of angiogenesis in atherosclerotic plaque through magnetic resonance imaging (MRI) and positron emission tomography (PET) by using GEBP11 peptide targeted magnetic iron oxide nanoparticles in a rabbit model of atherosclerosis. Methods: The dual-modality imaging probe was constructed by coupling 2, 3-dimercaptosuccinnic acid-coated paramagnetic nanoparticles (DMSA-MNPs) and the PET 68Ga chelator 1,4,7-triazacyclononane-N, N', N''-triacetic acid (NOTA) to GEBP11 peptide. The atherosclerosis model was induced in New Zealand white rabbits by abdominal aorta balloon de-endothelialization and atherogenic diet for 12 weeks. The plaque areas in abdominal artery were detected by ultrasound imaging and Oil Red O staining. Immunofluorescence staining and Prussian blue staining were applied respectively to investigate the affinity of GEBP11 peptide. MTT and flow cytometric analysis were performed to detect the effects of NGD-MNPs on cell proliferation, cell cycle and apoptosis in Human umbilical vein endothelial cells (HUVECs). In vivo MRI and PET imaging of atherosclerotic plaque were carried out at different time points after intravenous injection of nanoparticles. Results: The NGD-MNPs with hydrodynamic diameter of 130.8 nm ± 7.1 nm exhibited good imaging properties, high stability, low immunogenicity and little cytotoxicity. In vivo PET/MR imaging revealed that 68Ga-NGD-MNPs were successfully applied to visualize atherosclerotic plaque angiogenesis in the rabbit abdominal aorta. Prussian blue and CD31 immunohistochemical staining confirmed that NGD-MNPs were well co-localized within the blood vessels' plaques. Conclusion:68Ga-NGD-MNPs might be a promising MR and PET dual imaging probe for visualizing the vulnerable plaques.
Collapse
|
10
|
Zhang X, Wang B, Zhao N, Tian Z, Dai Y, Nie Y, Tian J, Wang Z, Chen X. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry. Am J Cancer Res 2017; 7:3794-3802. [PMID: 29109777 PMCID: PMC5667349 DOI: 10.7150/thno.20912] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/15/2017] [Indexed: 01/27/2023] Open
Abstract
The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro. Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo, due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of specific targeting domains. The copper-free, “click-chemistry”-assisted assembly of small molecules in living systems may enhance tumor accumulation of fluorescence probes by improving the binding affinities of the targeting factors. Here, we employed a vascular homing peptide, GEBP11, as a targeting factor for gastric tumors, and we demonstrate its effectiveness for in vivo imaging via click-chemistry-mediated conjugation with fluorescence molecules in tumor xenograft mouse models. This strategy showed higher binding affinities than those of the traditional conjugation method, and our results showed that the tumor accumulation of click-chemistry-mediated probes are 11-fold higher than that of directly labeled probes. The tracking life was prolonged by 12-fold, and uptake of the probes into the kidney was reduced by 6.5-fold. For lesion tumors of different sizes, click-chemistry-mediated probes can achieve sufficient signal-to-background ratios (3.5-5) for in vivo detection, and with diagnostic sensitivity approximately 3.5 times that of traditional labeling probes. The click-chemistry-assisted detection strategy utilizes the advantages of “small molecule” probes while not perturbing their physiological functions; this enables tumor detection with high sensitivity and specific selectivity.
Collapse
|
11
|
Nie Y, Wu K, Yu J, Liang Q, Cai X, Shang Y, Zhou J, Pan K, Sun L, Fang J, Yuan Y, You W, Fan D. A global burden of gastric cancer: the major impact of China. Expert Rev Gastroenterol Hepatol 2017; 11:651-661. [PMID: 28351219 DOI: 10.1080/17474124.2017.1312342] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is a highly aggressive cancer and a major cause of cancer-related deaths worldwide. Approximately half of the world's GC cases and deaths occur in china. GC presents challenges in early diagnosis and effective therapy due to a lack of understanding of the underlying molecular biology. The primary goals of this review are to outline current GC research in china and describe future trends in this field. Areas covered: This review mainly focuses on a series of GC-related advances China has achieved. Considerable progress has been made in understanding the role of H. pylori in GC by a series of population-based studies in well-established high-risk areas; A few germline and somatic alterations have been identified by 'omics' studies; Studies on the mechanisms of malignant phenotypes have helped us to form an in-depth understanding of GC and advance drug discovery. Moreover, identification of potential biomarkers and targeted therapies have facilitated the diagnosis and treatment of GC. However, many challenges remain. Expert commentary: To combat GC, sufficient funding is important. More attention should be paid on early diagnosis and the discovery of novel efficient biomarkers and the development of biomarker-based or targeted therapeutics in GC.
Collapse
Affiliation(s)
- Yongzhan Nie
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Kaichun Wu
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jun Yu
- b Department of Medicine and Therapeutics and Institute of Digestive Disease , Chinese University of Hong Kong , Hong Kong , China
| | - Qiaoyi Liang
- b Department of Medicine and Therapeutics and Institute of Digestive Disease , Chinese University of Hong Kong , Hong Kong , China
| | - Xiqiang Cai
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Yulong Shang
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jinfeng Zhou
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Kaifeng Pan
- c Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - Liping Sun
- d Tumor Etiology and Screening, Department of Cancer Institute and General Surgery , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Jingyuan Fang
- e Renji Hospital , Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yuan Yuan
- d Tumor Etiology and Screening, Department of Cancer Institute and General Surgery , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Weicheng You
- c Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
12
|
Ciarrocchi E, Belcari N. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys 2017; 4:14. [PMID: 28283990 PMCID: PMC5346099 DOI: 10.1186/s40658-017-0181-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022] Open
Abstract
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
Collapse
Affiliation(s)
- Esther Ciarrocchi
- Department of Physics "E. Fermi", University of Pisa, Pisa, Italy. .,INFN, section of Pisa, Pisa, Italy.
| | - Nicola Belcari
- Department of Physics "E. Fermi", University of Pisa, Pisa, Italy.,INFN, section of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Abstract
Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial structures. Imaging can basically be done using a sensitive camera optimized for low-light conditions, and it has a better resolution than any other nuclear imaging modality. CLI has been shown to effectively diagnose disease with regularly used PET isotope ((18)F-FDG) in clinical setting. Cerenkov luminescence tomography, Cerenkov luminescence endoscopy, and intraoperative Cerenkov imaging have also been explored with positive conclusions expanding the current range of applications. Cerenkov has also been used to improve PET imaging resolution since the source of both is the radioisotope being used. Smart imaging agents have been designed based on modulation of the Cerenkov signal using small molecules and nanoparticles giving better insight of the tumor biology.
Collapse
Affiliation(s)
- Sudeep Das
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniel L J Thorek
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jan Grimm
- Molecular Pharmacology and Chemistry Program and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Liu L, Yin J, Liu C, Guan G, Shi D, Wang X, Xu B, Tian Z, Zhao J, Nie Y, Wang B, Liang S, Wu K, Ding J. In vivo molecular imaging of gastric cancer in human-murine xenograft models with confocal laser endomicroscopy using a tumor vascular homing peptide. Cancer Lett 2014; 356:891-8. [PMID: 25449775 DOI: 10.1016/j.canlet.2014.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023]
Abstract
The early detection of premalignant lesions and cancers are very important for improving the survival of patients with gastric malignancies. Confocal laser endomicroscopy (CLE) is a novel imaging tool for achieving real-time microscopy during the ongoing endoscopy at subcellular resolution. In the present study, to evaluate the feasibility of real-time molecular imaging of GEBP11 by CLE in gastric cancer, CLE was performed on two types of tumor-bearing mice models, as well as surgical specimens of patients with gastric cancer, after the application of GEBP11. A whole-body fluorescent imaging device was first used to screen for the strongest specific fluorescent signal in xenograft models. Next, the tumor sites, as well as human tissues, were scanned with CLE. After this, targeted specimens were obtained for fluorescence microscopy and histology. We confirmed that GEBP11 could specifically bind to co-HUVECs by means of CLE in cell experiments. Thereafter, a specific signal was observed in both subcutaneous and orthotopic xenograft models in vivo after the injection of FITC-GEBP11 via tail vein, whereas the group injected with FITC-URP showed no fluorescent signals. In human tissues, a specific signal of GEBP11 was observed in 26/28 neoplastic specimens and in 8/28 samples of non-neoplastic specimens from the patients (p < 0.01). The findings from ex vivo immunofluorescence microscopy of cryostat sections correlated well with that obtained by CLE. These findings indicate that the peptide, GEBP11, might be a potential candidate for the molecular imaging of gastric cancer.
Collapse
Affiliation(s)
- Lijuan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changhao Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guofeng Guan
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Doufei Shi
- Department of Geriatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zuhong Tian
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Biaoluo Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jie Ding
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
|