1
|
Hao X, Gai W, Wang L, Zhao J, Sun D, Yang F, Jiang H, Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111553. [PMID: 33321617 DOI: 10.1016/j.msec.2020.111553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Strong specificity for cancer cells is still the main challenge to deliver drugs for the therapy of cancer. Herein, we developed a convenient strategy to prepare a series of 5-boronopicolinic acid (BA) modified tumor-targeting drug delivery systems (T-DDSs) with strong tumor targeting function. An anti-tumor drug of camptothecin (CPT) was encapsulated into poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) to form drug-loaded nanoparticles (NP/CPT). Then, the surface of NP/CPT was coated by BA with different polymer and BA molar ratios of 1:1, 1:5, 1:10 and 1:20 via electrostatic interaction to obtain T-DDSs with enhanced biocompatibility and specificity for tumor cells. The introduced BA can endow drug-loaded NPs with high targeting ability to tumor cells because of the overexpression of sialic acids (SA) in tumor cells, which possessed strong interaction with BA. Those T-DDSs exhibited good biocompatibility according to the results of MTT assay, hemolysis test and cellular uptake. Moreover, they were capable of decreasing the viability of breast cancer cell line 4T1 and MCF-7 cells with no obvious cytotoxicity for endothelial cells. Especially, T-DDS with 1:20 molar ratio displayed much higher cellular uptake than other groups, and also exhibited highly efficient in vivo anti-tumor effect. The significantly high targeting function and biocompatibility of T-DDSs improved their drug delivery efficiency and achieved good anti-tumor effect. The BA decorated T-DDSs provides a simple and robust strategy for the design and preparation of DDSs with good biocompatibility and strong tumor-specificity to promote drug delivery efficiency.
Collapse
Affiliation(s)
- Xuefang Hao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Weiwei Gai
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lina Wang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jiadi Zhao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fan Yang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Haixia Jiang
- Analysis and Testing Center of Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Santo D, Mendonça PV, Lima MS, Cordeiro RA, Cabanas L, Serra A, Coelho JFJ, Faneca H. Poly(ethylene glycol)- block-poly(2-aminoethyl methacrylate hydrochloride)-Based Polyplexes as Serum-Tolerant Nanosystems for Enhanced Gene Delivery. Mol Pharm 2019; 16:2129-2141. [PMID: 30986077 DOI: 10.1021/acs.molpharmaceut.9b00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Incorporation of poly(ethylene glycol) (PEG) into polyplexes has been used as a promising approach to enhance their stability and reduce unwanted interactions with biomolecules. However, this strategy generally has a negative influence on cellular uptake and, consequently, on transfection of target cells. In this work, we explore the effect of PEGylation on biological and physicochemical properties of poly(2-aminoethyl methacrylate) (PAMA)-based polyplexes. For this purpose, different tailor-made PEG- b-PAMA block copolymers, and the respective homopolymers, were synthesized using the controlled/"living" radical polymerization method based on activators regenerated by electron transfer atom transfer radical polymerization. The obtained data show that PEG- b-PAMA-based polyplexes exhibited a much better transfection activity/cytotoxicity relationship than the corresponding non-PEGylated nanocarriers. The best formulation, prepared with the largest block copolymer (PEG45- b-PAMA168) at a 25:1 N/P ratio, presented a 350-fold higher transfection activity in the presence of serum than that obtained with polyplexes generated with the gold standard bPEI. This higher transfection activity was associated to an improved capability to overcome the intracellular barriers, namely the release from the endolysosomal pathway and the vector unpacking and consequent DNA release from the nanosystem inside cells. Moreover, these nanocarriers exhibit suitable physicochemical properties for gene delivery, namely reduced sizes, high DNA protection, and colloidal stability. Overall, these findings demonstrate the high potential of the PEG45- b-PAMA168 block copolymer as a gene delivery system.
Collapse
Affiliation(s)
- Daniela Santo
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Patrícia V Mendonça
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Mafalda S Lima
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Rosemeyre A Cordeiro
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Luis Cabanas
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Arménio Serra
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Henrique Faneca
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| |
Collapse
|
3
|
Malfanti A, Mastrotto F, Han Y, Král P, Balasso A, Scomparin A, Pozzi S, Satchi-Fainaro R, Salmaso S, Caliceti P. Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Mol Pharm 2019; 16:1678-1693. [PMID: 30860853 DOI: 10.1021/acs.molpharmaceut.9b00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel unconventional supramolecular oligo-cationic structure (Agm6-M-PEG-OCH3) has been synthesized to yield high efficiency therapeutic oligonucleotide (ON) delivery. Agm6-M-PEG-OCH3 was obtained by a multistep protocol that included the conjugation of agmatine (Agm) moieties to maltotriose (M), which was further derivatized with one poly(ethylene glycol) (PEG) chain. Gel electrophoresis analysis showed that the 19 base pairs dsDNA model ON completely associates with Agm6-M-PEG-OCH3 at 3 N/P molar ratio, which is in agreement with the in silico molecular predictions. Isothermal titration calorimetry (ITC) analyses showed that the Agm6-M-PEG-OCH3/ON association occurs through a combination of mechanisms depending on the N/P ratios resulting in different nanostructures. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the Agm6-M-PEG-OCH3/ON polyplexes have rod-shape structure with a mean diameter of 50-75 nm and aspect ratio depending on the N/P ratio. The polyplexes were stable over time in buffer, while a slight size increase was observed in the presence of serum proteins. Cell culture studies showed that neither Agm6-M-PEG-OCH3 nor polyplexes displayed cytotoxic effects. Cellular uptake depended on the cell line and polyplex composition: cellular internalization was higher in the case of MCF-7 and KB cells compared to MC3T3-E1 cells and polyplexes with smaller aspect ratio were taken-up by cells more efficiently than polyplexes with higher aspect ratio. Finally, preliminary studies showed that our novel carrier efficiently delivered ONs into cells providing gene silencing.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Yanxiao Han
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Petr Král
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.,Department of Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel.,Department of Drug Science and Technology , University of Turin , Via P. Giuria 9 , 10125 Turin , Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| |
Collapse
|
4
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|
5
|
Swain SK, Prusty K. Biomedical applications of acrylic-based nanohydrogels. JOURNAL OF MATERIALS SCIENCE 2018; 53:2303-2325. [DOI: 10.1007/s10853-017-1726-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918. [DOI: 10.1039/c8tb00967h] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endo-lysosomal escape strategies of cationic polymer-mediated gene delivery at a glance.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
7
|
Diamantopoulou Z, Gilles ME, Sader M, Cossutta M, Vallée B, Houppe C, Habert D, Brissault B, Leroy E, Maione F, Giraudo E, Destouches D, Penelle J, Courty J, Cascone I. Multivalent cationic pseudopeptide polyplexes as a tool for cancer therapy. Oncotarget 2017; 8:90108-90122. [PMID: 29163814 PMCID: PMC5685735 DOI: 10.18632/oncotarget.21441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, a novel anticancer reagent based on polyplexes nanoparticles was developed. These nanoparticles are obtained by mixing negatively charged polyelectrolytes with the antitumour cationically-charged pseudopeptide N6L. Using two in vivo experimental tumor pancreatic models based upon PANC-1 and mPDAC cells, we found that the antitumour activity of N6L is significantly raised via its incorporation in polyplexed nanoparticles. Study of the mechanism of action using affinity isolation and si-RNA experiments indicated that N6L-polyplexes are internalized through their interaction with nucleolin. In addition, using a very aggressive model of pancreatic cancer in which gemcitabine, a standard of care for this type of cancer, has a weak effect on tumour growth, we observed that N6L-polyplexes administration has a stronger efficacy than gemcitabine. Biodistribution studies carried out in tumour-bearing mice indicated that N6L-polyplexes localises in tumour tissue, in agreement with its antitumour effect. These results support the idea that N6L nanoparticles could develop into a promising strategy for the treatment of cancer, especially hard-to-treat pancreatic cancers.
Collapse
Affiliation(s)
- Zoi Diamantopoulou
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Maud-Emmanuelle Gilles
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Maha Sader
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Mélissande Cossutta
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Benoit Vallée
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Claire Houppe
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Damien Habert
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Blandine Brissault
- East Paris Institute of Chemistry and Materials Science, CNRS & University Paris-Est, 94320 Thiais, France
| | - Eric Leroy
- East Paris Institute of Chemistry and Materials Science, CNRS & University Paris-Est, 94320 Thiais, France
| | - Federica Maione
- Department of Oncological Sciences and Laboratory of Transgenic Mouse Models, Institute for Cancer Research and Treatment, University of Torino School of Medicine, I-10060 Candiolo, Torino, Italy
| | - Enrico Giraudo
- Department of Oncological Sciences and Laboratory of Transgenic Mouse Models, Institute for Cancer Research and Treatment, University of Torino School of Medicine, I-10060 Candiolo, Torino, Italy
| | - Damien Destouches
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Jacques Penelle
- East Paris Institute of Chemistry and Materials Science, CNRS & University Paris-Est, 94320 Thiais, France
| | - José Courty
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| | - Ilaria Cascone
- Laboratory of Growth, Reparation and Tissue Regeneration (CRRET), University of Paris Est, ERL-CNRS 9215, 94010 Créteil, France
| |
Collapse
|
8
|
|
9
|
Heller P, Hobernik D, Lächelt U, Schinnerer M, Weber B, Schmidt M, Wagner E, Bros M, Barz M. Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their application as pDNA vaccines. J Control Release 2017; 258:146-160. [DOI: 10.1016/j.jconrel.2017.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023]
|
10
|
Jekhmane S, de Haas R, Paulino da Silva Filho O, van Asbeck AH, Favretto ME, Hernandez Garcia A, Brock R, de Vries R. Virus-Like Particles of mRNA with Artificial Minimal Coat Proteins: Particle Formation, Stability, and Transfection Efficiency. Nucleic Acid Ther 2017; 27:159-167. [DOI: 10.1089/nat.2016.0660] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Shehrazade Jekhmane
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, the Netherlands
| | - Rob de Haas
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, the Netherlands
| | - Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Alexander H. van Asbeck
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marco Emanuele Favretto
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
11
|
TG/DSC/FTIR studies on the oxidative decomposition of polymer-silica composites loaded with sodium ibuprofen. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
One-step assembly of polymeric demethylcantharate prodrug/Akt1 shRNA complexes for enhanced cancer therapy. Int J Pharm 2016; 513:612-627. [PMID: 27682215 DOI: 10.1016/j.ijpharm.2016.09.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 02/06/2023]
Abstract
This report demonstrated a one-step assembly for co-delivering chemotherapeutics and therapeutic nucleic acids, constructed by integrating drug molecules into a nucleic acid condensing polymeric prodrug through degradable linkages. Demethylcantharate was selected as the model drug and pre-modified by esterifying its two carboxylic groups with 2-hydroxyethyl acrylate. The synthesized demethylcantharate diacrylate was then used to polymerize with linear polyethyleneimine (PEI 423) through a one-step Michael-addition reaction. The obtained cationic polymeric demethylcantharate prodrug was used to pack Akt1 shRNA into complexes through a one-step assembly. The formed complexes could release the parent drug demethylcantharate and Akt1 shRNA through the hydrolysis of ester bonds. Cellular assays involving cell uptake, cytotoxicity, and cell migration indicated that demethylcantharate and Akt1 shRNA co-delivered in the present form significantly and synergistically suppress the growth and metastasis of three human cancer cells. This work suggests that incorporating drug molecules into a nucleic acid-packing cationic polymer as a polymeric prodrug in a degradable form is a highly convenient and efficient way to co-deliver drugs and nucleic acids for cancer therapy.
Collapse
|
13
|
Liu H, Zeng F, Zhang M, Huang F, Wang J, Guo J, Liu C, Wang H. Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release 2016; 226:124-137. [PMID: 26849918 DOI: 10.1016/j.jconrel.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
The plasma membrane remains a major barrier for intracellular drug delivery, to overcome this issue, a variety of approaches have been developed and used to deliver therapeutic cargos. Among these approaches, cell penetrating peptide (CPP) is promising and affords widely used vector for efficient intracellular delivery of cargos. Moreover, the latter findings including iPS reprogramming and direct transdifferentiation as well as gene editing have gradually become hot research topic; because their application in tissue engineering and disease modeling have great potential to advance innovation in precision medicine. Since the beginning, research on these approaches is mainly based on virus transduction system, while, under the consideration for obviating the risk of mutagenic insertion and enables more accurate controlling, CPP-based efficient virus-free delivery strategy has been used recently. In this review, we summarize the existing CPP-based delivery system, emerging landscape of CPP application in stem cell manipulation and reprogramming, along with CPP contributions to gene editing techniques.
Collapse
Affiliation(s)
- Huiting Liu
- Medical School, China Three Gorges University, Yichang 443002, China; Department of Nuclear Medicine, Chongqing Three Gorges Central Hospital, Wanzhou 404000, China
| | - Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Ming Zhang
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi 445000, China
| | - Jiajun Wang
- Medical School, China Three Gorges University, Yichang 443002, China; School of Medical Science, Hubei University for Nationalities, Enshi 445000, China.
| | - Jingjing Guo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Changbai Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang 443002, China; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
14
|
Cationic β-Cyclodextrin–Chitosan Conjugates as Potential Carrier for pmCherry-C1 Gene Delivery. Mol Biotechnol 2016; 58:287-98. [DOI: 10.1007/s12033-016-9927-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Licciardi M, Paolino D, Mauro N, Cosco D, Giammona G, Fresta M, Cavallaro G, Celia C. Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy. ChemMedChem 2016; 11:1734-44. [PMID: 27273893 DOI: 10.1002/cmdc.201600070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The biopharmaceutical properties of supramolecular vesicular aggregates (SVAs) were characterized with regard to their physicochemical features and compared with cationic liposomes (CLs). Neutral and cationic SVAs were synthesized using two different copolymers of poly(aspartyl hydrazide) by thin-layer evaporation and extrusion techniques. Both copolymers were self-assembled in pre-formulated liposomes and formed neutral and cationic SVAs. Gemcitabine hydrochloride (GEM) was used as an anticancer drug and loaded by a pH gradient remote loading procedure, which significantly increased drug loading inside the SVAs. The resulting average size of the SVAs was 100 nm. The anticancer activity of GEM-loaded neutral and cationic SVAs was tested in human alveolar basal epithelial (A549) and colorectal cancer (CaCo-2) cells. GEM-loaded cationic SVAs increased the anticancer activity in A549 and CaCo-2 cells relative to free drug, neutral SVAs, and CLs. In vivo biodistribution in Wistar rats showed that cationic SVAs accumulate at higher concentrations in lung tissue than neutral SVAs and CLs. Cationic SVAs may therefore serve as an innovative future therapy for pulmonary carcinoma.
Collapse
Affiliation(s)
- Mariano Licciardi
- Laboratory of Biocompatible Polymers, Biological, Chemical and Pharmaceutical Sciences and Technologies Department (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, Building of BioSciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100, Germaneto, Italy.,Interregional Research Center for Food Safety & Health (IRCFSH), Building of BioSciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100, Germaneto, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Biological, Chemical and Pharmaceutical Sciences and Technologies Department (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Donato Cosco
- Interregional Research Center for Food Safety & Health (IRCFSH), Building of BioSciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100, Germaneto, Italy.,Department of Health Sciences, University of Catanzaro "Magna Graecia", Building of BioSciences, V.le Europa s.n.c., 88100, Germaneto, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Biological, Chemical and Pharmaceutical Sciences and Technologies Department (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.,Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed. 18, 90128, Palermo, Italy
| | - Massimo Fresta
- Interregional Research Center for Food Safety & Health (IRCFSH), Building of BioSciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100, Germaneto, Italy.,Department of Health Sciences, University of Catanzaro "Magna Graecia", Building of BioSciences, V.le Europa s.n.c., 88100, Germaneto, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Biological, Chemical and Pharmaceutical Sciences and Technologies Department (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy. .,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Blas-Garcia A, Baldoví HG, Polo M, Victor VM, Garcia H, Herance JR. Toxicological properties of two fluorescent carbon quantum dots with onion ring morphology and their usefulness as bioimaging agents. RSC Adv 2016. [DOI: 10.1039/c5ra27662d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two carbon quantum dots can be used as bioimaging agents. To check this usefulness, a complete in vitro toxicological study has been performed in human cells. Nanoparticles did not show toxicity at low concentration after a punctual or continuous exposition in these cells.
Collapse
Affiliation(s)
- Ana Blas-Garcia
- Departamento de Farmacología
- Facultad de Medicina
- Universitat de Valencia
- FISABIO-Hospital Universitario Dr Peset
- Valencia
| | - Herme G. Baldoví
- Instituto Universitario de Tecnología Química CSIC-UPV
- Univ. Politécnica de Valencia
- Valencia
- Spain
| | - Miriam Polo
- Departamento de Farmacología
- Facultad de Medicina
- Universitat de Valencia
- FISABIO-Hospital Universitario Dr Peset
- Valencia
| | - Victor M. Victor
- CIBERehd
- Department of Physiology-University of Valencia
- Valencia
- Spain
- Service of Endocrinology
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química CSIC-UPV
- Univ. Politécnica de Valencia
- Valencia
- Spain
| | - Jose Raul Herance
- Service of Endocrinology
- University Hospital Dr. Peset
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO)
- Spain
- Vall d'Hebron Institut de Recerca (VHIR)
| |
Collapse
|
17
|
Bishop CJ, Kozielski KL, Green JJ. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J Control Release 2015; 219:488-499. [PMID: 26433125 DOI: 10.1016/j.jconrel.2015.09.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/08/2022]
Abstract
Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.
Collapse
Affiliation(s)
- Corey J Bishop
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen L Kozielski
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|