1
|
Shen J, Duan X, Xie T, Zhang X, Cai Y, Pan J, Zhang X, Sun X. Advances in locally administered nucleic acid therapeutics. Bioact Mater 2025; 49:218-254. [PMID: 40144794 PMCID: PMC11938090 DOI: 10.1016/j.bioactmat.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Nucleic acid drugs represent the latest generation of precision therapeutics, holding significant promise for the treatment of a wide range of intractable diseases. Delivery technology is crucial for the clinical application of nucleic acid drugs. However, extrahepatic delivery of nucleic acid drugs remains a significant challenge. Systemic administration often fails to achieve sufficient drug enrichment in target tissues. Localized administration has emerged as the predominant approach to facilitate extrahepatic delivery. While localized administration can significantly enhance drug accumulation at the injection sites, nucleic acid drugs still face biological barriers in reaching the target lesions. This review focuses on non-viral nucleic acid drug delivery techniques utilized in local administration for the treatment of extrahepatic diseases. First, the classification of nucleic acid drugs is described. Second, the current major non-viral delivery technologies for nucleic acid drugs are discussed. Third, the bio-barriers, administration approaches, and recent research advances in the local delivery of nucleic acid drugs for treating lung, brain, eye, skin, joint, and heart-related diseases are highlighted. Finally, the challenges associated with the localized therapeutic application of nucleic acid drugs are addressed.
Collapse
Affiliation(s)
- Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xusheng Duan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhao Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Chhibber T, Scherzer MT, Prokofyeva A, Becker C, Zitnay RG, Smith E, Khurana N, Skliar M, Deacon DC, VanBrocklin MW, Ghandehari H, Judson-Torres RL, Jafari P. Transdermal delivery of ultradeformable cationic liposomes complexed with miR211-5p (UCL-211) stabilizes BRAFV600E+ melanocytic nevi. J Control Release 2025; 381:113586. [PMID: 40032011 PMCID: PMC12016659 DOI: 10.1016/j.jconrel.2025.113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Small non-coding RNAs (e.g., siRNA, miRNA) are involved in a variety of melanocyte-associated skin conditions and act as drivers for alterations in gene expression within melanocytes. These molecular changes can potentially affect the cellular stability of melanocytes and promote their oncogenic transformation. Thus, small RNAs can be considered as therapeutic targets for these conditions, however, their transdermal delivery to the melanocytes through the epidermal barrier is challenging. We synthesized and extensively evaluated ultradeformable cationic liposome (UCLs) carriers complexed with synthetic microRNAs (miR211-5p; UCL-211) for transdermal delivery to melanocytes. UCL-211 complexes were characterized for their physicochemical properties, encapsulation efficiency, and deformability, which revealed a significant advantage over conventional liposomal carriers. Increased expression of miR211-5p stabilizes melanocytic nevi and keeps them in a growth-arrested state. We did a comprehensive assessment of cellular delivery, and biological activity of the miR211-5p carried by UCL-211 in vitro and their permeation through the epidermis of intact skin using ex vivo human skin tissue explants. We also demonstrated, in vivo, that transdermal delivery of miR211-5p by topical application of UCL-211 stabilized BRAFV600E+ nevi melanocytes in a benign nevi state.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Carly Becker
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | - Eric Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mikhail Skliar
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dekker C Deacon
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Dermatology, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Chae D, Oh SW, Choi YS, Kang DJ, Park CW, Lee J, Seo WS. First Report on Microbial-Derived Polydeoxyribonucleotide: A Sustainable and Enhanced Alternative to Salmon-Based Polydeoxyribonucleotide. Curr Issues Mol Biol 2025; 47:41. [PMID: 39852156 PMCID: PMC11763902 DOI: 10.3390/cimb47010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Polydeoxyribonucleotide (PDRN) has emerged as a potent bioactive compound with proven efficacy in wound healing, tissue regeneration, and anti-inflammatory applications and is predominantly derived from salmonid gonads. However, this study presents a groundbreaking advancement by successfully extracting and characterizing PDRN from microbial sources, specifically Lactobacillus rhamnosus, marking the first report to utilize microbial-, biome-, or Lactobacillus-derived PDRN (L-PDRN). The findings demonstrate the enhanced biological properties of L-PDRN over traditional salmon-derived PDRN across several assays. L-PDRN exhibited superior antioxidant activity, with significantly higher SOD-like and DPPH radical scavenging activities compared to PDRN, particularly at higher concentrations. In wound-healing assays, L-PDRN demonstrated superior efficacy in promoting cell migration and wound closure, even under inflammatory conditions induced by tumor necrosis factor (TNF-α). Additionally, L-PDRN demonstrated the potential for enhanced immunostimulatory effects under non-inflammatory conditions while maintaining anti-inflammatory properties under lipopolysaccharide (LPS) stimulation. Electrophoretic analysis revealed that L-PDRN consists of smaller DNA fragments (under 100 bp) compared to salmon-derived PDRN (200-800 bp), suggesting greater bioavailability and skin absorption. Mechanistic studies confirmed that L-PDRN activates the focal adhesion kinase (FAK) and protein kinase B (AKT) signaling pathway through the A2A receptor, similar to PDRN, while also engaging alternative pathways for p38 and ERK phosphorylation, highlighting its signaling versatility. This study underscores the potential of L-PDRN as a multifunctional and sustainable alternative to salmon-derived PDRN, offering enhanced bioactivity, scalability, and environmental benefits. The novel approach of utilizing microbial-derived PDRN opens new avenues for therapeutic applications in oxidative stress management, tissue regeneration, and immune modulation, paving the way for a paradigm shift in PDRN sourcing and functionality.
Collapse
Affiliation(s)
- Doobyeong Chae
- Department of Cosmetics Industry, Graduate School, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Sae-Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon-Seo Choi
- Graduate School-Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Jung Kang
- MNH Bio Co., Ltd., Hwaseong 18469, Republic of Korea
| | - Chun-Woong Park
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won-Sang Seo
- COSLINK, Songpa-gu, Seoul 05819, Republic of Korea
| |
Collapse
|
5
|
Mirhadi E, Kesharwani P, Jha SK, Karav S, Sahebkar A. Utilizing ionic liquids as eco-friendly and sustainable carriers for delivering nucleic acids: A review on the revolutionary advancement in nano delivery systems. Int J Biol Macromol 2024; 283:137582. [PMID: 39542300 DOI: 10.1016/j.ijbiomac.2024.137582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Ionic liquids (ILs) are an extremely versatile class of chemicals. It has been shown that they can effectively pass through many biological barriers in the human body to deliver medications. ILs are solvents noted for their ecological friendliness; they contain equal amounts of cations and anions and remain liquid at temperatures below 100 °C. Hence, these are ideal for biomedical applications owing to their advantageous properties such as biocompatibility, solubility, and adaptability. ILs are widely reported to improve the solubility and stability of nucleic acids (DNA and RNA) in aqueous conditions, allowing for more effective delivery. Certain ILs have shown the ability to enhance the absorption of nucleic acids into cells. In addition, ILs can also be used to create vectors for gene delivery, such as liposomes and nanoparticles, thereby improving the transfection efficiency of plasmid DNA and siRNA. Subsequently, the application of ILs for nucleic acid delivery has increased significantly in recent years. In this context, we believe that using ILs to enhance the transport of nucleic acids will have a considerable effect as a novel and crucial therapeutic method in the upcoming decades. The use of ILs as solvents to preserve the natural structure of DNA and RNA shows promise for a variety of biotechnological and medical applications. Notably, ILs may be utilized for a variety of functions, including extracting, concentrating, stabilizing, and spreading nucleic acids inside cells. Our review emphasizes the key findings of research works published in this domain, wherein outstanding effectiveness of delivering RNA to the desired areas was achieved, and was made possible through the utilization of ILs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zarrabian M, Sherif SM. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175311. [PMID: 39122031 DOI: 10.1016/j.scitotenv.2024.175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States
| | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States.
| |
Collapse
|
7
|
Fang Y, Cai J, Fei F, Zhong T, Ren M, Wang D, Li Y, Zhang K. Targeting the Skin: The Study of a Bottlebrush Polymer-Antisense Oligonucleotide Conjugate in a Psoriasis Mouse Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403949. [PMID: 39140277 PMCID: PMC11581913 DOI: 10.1002/smll.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Indexed: 08/15/2024]
Abstract
The investigation of gene regulation therapeutics for the treatment of skin-related diseases is rarely explored in part due to inefficient systemic delivery. In this study, a bottlebrush polymer-antisense oligonucleotide (ASO) conjugate, termed pacDNA, designed to target IL-17 receptor A (IL-17RA), which is involved in psoriasis pathogenesis is presented. Systemic administration of pacDNA led to its accumulation in epidermis, dermis, and hypodermis of mouse skin, reduced IL-17RA gene expression in skin, and significantly reversed the development of imiquimod (IMQ)-induced psoriasis in a mouse model. These findings highlight the potential of the pacDNA as a promising nanoconstruct for systemic oligonucleotide delivery to the skin and for treating psoriasis and other skin-related disorders through systemic administration.
Collapse
Affiliation(s)
- Yang Fang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jiansong Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Feng Fei
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Tongtong Zhong
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Mengqi Ren
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dali Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Yao Li
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Mahjoubin-Tehran M, Rezaei S, Karav S, Kesharwani P, Sahebkar A. Decoy oligodeoxynucleotides: A promising therapeutic strategy for inflammatory skin disorders. Hum Immunol 2024; 85:111161. [PMID: 39454315 DOI: 10.1016/j.humimm.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD) impose a significant burden on both the skin and the overall well-being of individuals, leading to a diminished quality of life. Despite the use of conventional treatments like topical steroids, there remains a need for more effective and safer therapeutic options to improve the lives of patients with severe skin conditions. Molecular therapy has emerged as a promising approach to address disorders such as atopic dermatitis, psoriasis, and contact hypersensitivity. One strategy to counteract the disease processes involves targeting the transcriptional process. A novel form of gene therapy utilizes double-stranded oligodeoxynucleotides (ODNs), also known as decoys, that contain cis-elements. By introducing these decoy ODNs through transfection, the cis-trans interactions are disrupted, leading to the inhibition of trans-factors from binding to the intrinsic cis-elements and thus regulating gene expression. In this review, we have summarized studies investigating the therapeutic effects of decoy ODNs on inflammatory skin diseases. Various transcription factors, including NF-kB, STAT6, HIF-1α/STAT5, STAT1, and Smad, have been targeted and inhibited using designed decoy ODNs for the treatment of atopic dermatitis, psoriasis, hypertrophic scarring, and contact hypersensitivity. The findings of these studies confirm the significant potential of the decoy approach in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
| | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Chhibber T, Scherzer MT, Prokofyeva A, Becker C, Zitnay RG, Smith E, Khurana N, Skliar M, Deacon DC, VanBrocklin MW, Ghandehari H, Judson-Torres RL, Jafari P. Transdermal Delivery of Ultradeformable Cationic Liposomes Complexed with miR211-5p (UCL-211) Stabilizes BRAFV600E+ Melanocytic Nevi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618694. [PMID: 39484595 PMCID: PMC11527197 DOI: 10.1101/2024.10.17.618694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Small non-coding RNAs (e.g. siRNA, miRNA) are involved in a variety of melanocyte-associated skin conditions and act as drivers for alterations in gene expression within melanocytes. These molecular changes can potentially affect the cellular stability of melanocytes and promote their oncogenic transformation. Thus, small RNAs can be considered as therapeutic targets for these conditions, however, their topical delivery to the melanocytes through the epidermal barrier is challenging. We synthesized and extensively evaluated ultradeformable cationic liposome (UCLs) carriers complexed with synthetic microRNAs (miR211-5p; UCL-211) for transdermal delivery to melanocytes. UCL-211 complexes were characterized for their physicochemical properties, encapsulation efficiency, and deformability, which revealed a significant advantage over conventional liposomal carriers. Increased expression of miR211-5p stabilizes melanocytic nevi and keeps them in growth-arrested state. We did a comprehensive assessment of cellular delivery, and biological activity of the miR211-5p carried by UCL-211 in vitro and their permeation through the epidermis of intact skin using ex vivo human skin tissue explants. We also demonstrated, in vivo, that topical delivery of miR211-5p by UCL-211 stabilized BRAFV600E+ nevi melanocytes in a benign nevi state.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Carly Becker
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | - Eric Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mikhail Skliar
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dekker C Deacon
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Jonczyk A, Gottschalk M, Mangan MS, Majlesain Y, Thiem MW, Burbaum LC, Weighardt H, Latz E, Mayer G, Förster I. Topical application of a CCL22-binding aptamer suppresses contact allergy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102254. [PMID: 39071952 PMCID: PMC11278340 DOI: 10.1016/j.omtn.2024.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested in vitro. The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS in vivo after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m ex vivo demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.
Collapse
Affiliation(s)
- Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | | | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Manja W. Thiem
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lea-Corinna Burbaum
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Centre of Aptamer Research and Development, University of Bonn, 53121 Bonn, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
11
|
Balakrishnan P, Gopi S. Revolutionizing transdermal drug delivery: unveiling the potential of cubosomes and ethosomes. J Mater Chem B 2024; 12:4335-4360. [PMID: 38619889 DOI: 10.1039/d3tb02927a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The area of drug delivery systems has witnessed significant advancements in recent years, with a particular focus on improving efficacy, stability, and patient compliance. Transdermal drug delivery offers numerous benefits compared to conventional methods of drug administration through the skin. It helps in avoiding gastric irritation, hepatic first-pass metabolism, and gastric degradation of the drug. It bypasses the gastrointestinal tract, eliminating the risk of first-pass metabolism and allowing drugs to be administered without being affected by pH, enzymes, or intestinal bacteria. Additionally, it allows for sustained release of the drug, is noninvasive, and enhances patient adherence to the treatment regimen. The transdermal drug delivery system (TDDS) can serve as an alternative route for drug administration in individuals who cannot tolerate oral medications, experience nausea, or are unconscious. When compared to intravenous, hypodermic, and other parenteral routes, TDDS stands out due to its ability to eliminate pain, reduce the risk of infection, and prevent disease transmission associated with needle reuse. Consequently, the overall patient compliance is significantly improved with the utilization of TDDS. Among the noteworthy developments are cubosomes and ethosomes, two distinct yet promising carriers that have garnered attention for their unique properties. In conclusion, this review synthesizes the current knowledge on cubosomes and ethosomes, shedding light on their individual strengths and potential synergies. The exploration of their application in various therapeutic areas underscores their versatility and establishes them as key players in the evolving landscape of drug delivery systems.
Collapse
Affiliation(s)
- Preetha Balakrishnan
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| | - Sreerag Gopi
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| |
Collapse
|
12
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
13
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
15
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
16
|
Čutović N, Marković T, Carević T, Stojković D, Bugarski B, Jovanović AA. Liposomal and Liposomes-Film Systems as Carriers for Bioactives from Paeonia tenuifolia L. Petals: Physicochemical Characterization and Biological Potential. Pharmaceutics 2023; 15:2742. [PMID: 38140083 PMCID: PMC10747293 DOI: 10.3390/pharmaceutics15122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Paeonia tenuifolia L. (steppe peony) petal extract was proficiently encapsulated into liposomes and biopolymer films in the current work, both times utilizing a single-step procedure. The encapsulation efficiency, size of the particles, and index of polydispersity (PDI), as well as the ζ potential of the obtained liposomes were determined, whereas in the case of films, the test included moisture content and mechanical property assessment. Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the chemical composition and existence of numerous interactions in the systems. All the obtained encapsulates were subjected to antibacterial, antifungal and antibiofilm activity testing of the pathogens associated with human skin. The results indicated that the liposomes prepared using Phospholipon had the highest encapsulation efficiency (72.04%), making them the most favorable ones in the release study as well. The biological assays also revealed that Phospholipon was the most beneficial phospholipid mixture for the preparation of liposomes, whereas the film containing these liposomes did not have the ability to inhibit pathogen growth, making the double encapsulation of P. tenuifolia L. petal extract needless. These findings may be a first step toward the potential use of steppe peony extract-loaded films and liposomes in pharmaceutical and cosmetical industries.
Collapse
Affiliation(s)
- Natalija Čutović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tatjana Marković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| |
Collapse
|
17
|
Liu T, Xia Q, Lv Y, Wang Z, Zhu S, Qin W, Yang Y, Liu T, Wang X, Zhao Z, Ma H, Jia L, Zhang H, Xu Z, Li N. ErZhiFormula prevents UV-induced skin photoaging by Nrf2/HO-1/NQO1 signaling: An in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:115935. [PMID: 36414213 DOI: 10.1016/j.jep.2022.115935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ErZhiFormula (EZF) is a classical traditional Chinese medicinal formulation. It can be used to treat liver and kidney yin deficiency, dizziness, lumbar debility, insomnia, nocturnal emission, lower extremity weakness, and other aging-related diseases. However, the protective effect of EZF in skin photoaging and its potential mechanism has not been clarified. AIM OF THE STUDY This study aims to explore the role of EZF in the skin photoaging mechanism induced by UV radiation. MATERIALS AND METHODS Ultra Performance Liquid Chromatography (UPLC) was used to identify the fingerprint of EZF. The mice were irradiated with UVA and UVB to establish the photoaging model in vivo. Human immortalized keratinocytes (HaCaT) were irradiated with UVB to establish the photoaging model in vitro. The activity of cells was detected by CCK-8 and LDH kits, the level of reactive oxygen species was detected by DCF fluorescent probe, and the apoptosis was detected by PE annexin V and 7-Amino-Actinomycin (7-AAD) staining. Comet assay was used to detect cell DNA damage. The antioxidant enzyme levels in cell and mouse serum were detected by antioxidant kit, and Western blot was used to detect protein expression. RESULTS We found that EZF contain many active ingredients, including salidroside, specnuezhenide, isoquercitrin, etc. EZF can improve the photoaging of HaCaT cells and mouse skin caused by UV radiation. The results of animal experiments are consistent with those of cell experiments. Combined with Western blot analysis, we found that EZF finally played an anti-skin photoaging role by regulating the Nrf2/HO-1/NQO1 pathway. CONCLUSIONS EZF can protect skin from UV-induced photoaging by regulating the Nrf2/HO-1/NQO1 signal pathway. EZF may become a traditional Chinese medicine with the potential to prevent skin photoaging.
Collapse
Affiliation(s)
- Tao Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - QingMei Xia
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingshuang Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijing Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shan Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenxiao Qin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhiyue Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongfei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Linlin Jia
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zongpei Xu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Nan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
18
|
Mosley RJ, Rucci B, Byrne ME. Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. J Mater Chem B 2023; 11:2078-2094. [PMID: 36806872 DOI: 10.1039/d2tb02325c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Research of nanoscale nucleic acid carriers has garnered attention in recent years due to their distinctive and controllable properties. However, current knowledge is limited in how we can efficiently utilize these systems for clinical applications. Several researchers have pioneered new and innovative nanocarrier drug delivery systems, but understanding physiochemical properties and behavior in vivo is vital to implementing them as clinical drug delivery platforms. In this review, we outline the most significant innovations in the synthesis, physical properties, and utilization of nucleic acid nanocarriers in the past 5 years, addressing the crucial properties which improve nanocarrier characteristics, delivery, and drug release. The challenges of controlling the transport of nucleic acid nanocarriers and therapeutic release for biological applications are outlined. Barriers which inhibit effective transport into tissue are discussed with emphasis on the modifications needed to overcome such obstacles. The novel strategies discussed in this work summarize the pivotal features of modern nucleic nanocarriers and postulate where future developments could revolutionize the translation of these tools into a clinical setting.
Collapse
Affiliation(s)
- Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Brendan Rucci
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA. .,Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
19
|
Jogdeo CM, Panja S, Kanvinde S, Kapoor E, Siddhanta K, Oupický D. Advances in Lipid-Based Codelivery Systems for Cancer and Inflammatory Diseases. Adv Healthc Mater 2023; 12:e2202400. [PMID: 36453542 PMCID: PMC10023350 DOI: 10.1002/adhm.202202400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Combination therapy targeting multiple therapeutic targets is a favorable strategy to achieve better therapeutic outcomes in cancer and inflammatory diseases. Codelivery is a subfield of drug delivery that aims to achieve combined delivery of diverse therapeutic cargoes within the same delivery system, thereby ensuring delivery to the same site and providing an opportunity to tailor the release kinetics as desired. Among the wide range of materials being investigated in the design of codelivery systems, lipids have stood out on account of their low toxicity, biocompatibility, and ease of formulation scale-up. This review highlights the advances of the last decade in lipid-based codelivery systems focusing on the codelivery of drug-drug, drug-nucleic acid, nucleic acid-nucleic acid, and protein therapeutic-based combinations for targeted therapy in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chinmay M. Jogdeo
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sudipta Panja
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shrey Kanvinde
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ekta Kapoor
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
20
|
Tayah DY, Eid AM. Development of Miconazole Nitrate Nanoparticles Loaded in Nanoemulgel to Improve its Antifungal Activity. Saudi Pharm J 2023; 31:526-534. [PMID: 37063448 PMCID: PMC10102553 DOI: 10.1016/j.jsps.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Miconazole is a synthetic derivative of imidazole, a medication with a broad-spectrum antifungal agent that is used to treat localized vaginal, skin, and nail infections. The aim of the study was to develop an innovative technique to improve the permeability and efficacy of topical miconazole nitrate. A nanoemulgel of miconazole nitrate was formulated by the incorporation of a nanoemulsion and a hydrogel. The nanoemulsion was first optimized using a self-emulsifying technique, and the drug was then loaded into the optimum formulation and evaluated prior to mixing with the hydrogel. Miconazole nitrate nanoemulgel formulations were evaluated for their physical characteristics and antifungal activity. Based on the results, the formulation with 0.4 % Carbopol showed the highest release profile (41.8 mg/ml after 2 h); thus, it was chosen as the optimum formulation. A cell diffusion test was performed to examine the ability of the Miconazole nitrate nanoemulgel to penetrate the skin and reach the bloodstream. Percentage cumulative drug releases of 29.67 % and 23.79 % after 6 h were achieved for the MNZ nanoemulgel and the commercial cream, Daktazol, respectively. The antifungal activity of the novel MNZ nanoemulgel formulation was tested against Candida albicans and compared to Daktazol cream and almond oil; the results were: 40.9 ± 2.3 mm, 25.4 ± 2.7 mm and 18 ± 1.9 mm, respectively. In conclusion, a novel MNZ nanoemulgel showing superior antifungal activity compared to that of the commercial product has been developed. This nanotechnology technique is a step toward making pharmaceutical dosage forms that has a lot of promise.
Collapse
Affiliation(s)
| | - Ahmad M. Eid
- Corresponding author at: Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
21
|
Jin N, Chen R, Li Y, Zhang Z, Zhang B, Chen J. Transcutaneous amorphous preparation co-delivering curcumin and modified aptamer as a synergistic approach for the amelioration of psoriasis-like skin inflammation. Eur J Pharm Sci 2023; 180:106314. [PMID: 36326540 DOI: 10.1016/j.ejps.2022.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The aim is to achieve the targeting function of Aptamer 21-2 (Apt) by modifying glycyrrhizic acid (GA) to obtain Apt-GA and by delivering it through mesoporous silica in μm-size (μmS). Moreover, it is planned to induce synergistic effects of the novel amorphous preparation of Apt-GA with curcumin (Cur) in the treatment of psoriasis. UV/vis spectrophotometric analysis and Fourier transform infrared spectroscopy were performed to demonstrate the linkage of Apt and GA. The replacement of GA with Apt-GA in GA-Cur-μmS did not make a difference in the amorphous state, but showed superior fluorescence of Cur in the inflamed dermis similar to psoriatic induced by imiquimod. Consequently, compared to GA-Cur-μmS and Apt, Apt-GA-Cur-μmS exhibited less pronounced psoriatic characteristics in vivo, including Psoriasis Area and Severity Index, histological image, immunohistochemistry and immuno-fluorescence labeling neutrophils. The enzyme-linked immunosorbent assay showed a similar phenomenon that less IL-17A was observed after treatment with Apt-GA-Cur-μmS than with GA-Cur-μmS or Apt. Our finding suggests that this novel Apt delivery system achieved the Apt targeting function in the dermis by taking advantage of GA and μmS, and exhibited synergistic anti-psoriatic effect by co-delivering curcumin.
Collapse
Affiliation(s)
- Nan Jin
- College of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian, China; Key Laboratory of Medical Microecology (Putian University), Fujian, China.
| | - Ruotong Chen
- College of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Yuling Li
- College of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Ziyi Zhang
- College of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Baomei Zhang
- College of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Jianmin Chen
- College of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian, China; Key Laboratory of Medical Microecology (Putian University), Fujian, China
| |
Collapse
|
22
|
Yang Y, Qu L, Mijakovic I, Wei Y. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact 2022; 21:176. [PMID: 36038876 PMCID: PMC9422115 DOI: 10.1186/s12934-022-01901-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Skin is the largest organ in the human body, and the interplay between the environment factors and human skin leads to some skin diseases, such as acne, psoriasis, and atopic dermatitis. As the first line of human immune defense, skin plays significant roles in human health via preventing the invasion of pathogens that is heavily influenced by the skin microbiota. Despite being a challenging niche for microbes, human skin is colonized by diverse commensal microorganisms that shape the skin environment. The skin microbiota can affect human health, and its imbalance and dysbiosis contribute to the skin diseases. This review focuses on the advances in our understanding of skin microbiota and its interaction with human skin. Moreover, the potential roles of microbiota in skin health and diseases are described, and some key species are highlighted. The prevention, diagnosis and treatment strategies for microbe-related skin diseases, such as healthy diets, lifestyles, probiotics and prebiotics, are discussed. Strategies for modulation of skin microbiota using synthetic biology are discussed as an interesting venue for optimization of the skin-microbiota interactions. In summary, this review provides insights into human skin microbiota recovery, the interactions between human skin microbiota and diseases, and the strategies for engineering/rebuilding human skin microbiota.
Collapse
Affiliation(s)
- Yudie Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450051, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450051, China.
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China.
| |
Collapse
|
23
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
24
|
Yadav K, Singh D, Singh MR, Minz S, Sahu KK, Kaurav M, Pradhan M. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
26
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
27
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
28
|
Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J Pharm Sci 2022; 17:70-86. [PMID: 35261645 PMCID: PMC8888142 DOI: 10.1016/j.ajps.2021.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Parenteral sustained release drug formulations, acting as preferable platforms for long-term exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.
Collapse
Affiliation(s)
- Li Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
29
|
Tortajada L, Felip C, Vicent MJ. Polymer-based Non-viral Vectors for Gene Therapy in the Skin. Polym Chem 2022. [DOI: 10.1039/d1py01485d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy has emerged as a versatile technique with the potential to treat a range of human diseases; however, examples of the topical application of gene therapy as a treatment...
Collapse
|
30
|
Kriplani P, Guarve K. Transdermal Drug delivery: A step towards treatment of cancer. Recent Pat Anticancer Drug Discov 2021; 17:253-267. [PMID: 34856914 DOI: 10.2174/1574892816666211202154000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. OBJECTIVE In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. METHOD In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. RESULTS Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. CONCLUSION The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.
Collapse
Affiliation(s)
- Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana. India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana. India
| |
Collapse
|
31
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
32
|
Xuan Y, Ghatak S, Clark A, Li Z, Khanna S, Pak D, Agarwal M, Roy S, Duda P, Sen CK. Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse tissue in vivo. Nat Protoc 2021; 16:5707-5738. [PMID: 34837085 PMCID: PMC9104164 DOI: 10.1038/s41596-021-00631-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/10/2021] [Indexed: 11/09/2022]
Abstract
Tissue nanotransfection (TNT) is an electromotive gene transfer technology that was developed to achieve tissue reprogramming in vivo. This protocol describes how to fabricate the required hardware, commonly referred to as a TNT chip, and use it for in vivo TNT. Silicon hollow-needle arrays for TNT applications are fabricated in a standardized and reproducible way. In <1 s, these silicon hollow-needle arrays can be used to deliver plasmids to a predetermined specific depth in murine skin in response to pulsed nanoporation. Tissue nanotransfection eliminates the need to use viral vectors, minimizing the risk of genomic integration or cell transformation. The TNT chip fabrication process typically takes 5-6 d, and in vivo TNT takes 30 min. This protocol does not require specific expertise beyond a clean room equipped for basic nanofabrication processes.
Collapse
Affiliation(s)
- Yi Xuan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew Clark
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhigang Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dongmin Pak
- Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, IUPUI, Indianapolis, IN, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Peter Duda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
33
|
Søgaard PP, Lind M, Christiansen CR, Petersson K, Clauss A, Caffarel-Salvador E. Future Perspectives of Oral Delivery of Next Generation Therapies for Treatment of Skin Diseases. Pharmaceutics 2021; 13:1722. [PMID: 34684016 PMCID: PMC8537019 DOI: 10.3390/pharmaceutics13101722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapies have conspicuously bloomed in recent years as evidenced by the increasing number of cell-, gene-, and oligo-based approved therapies. These therapies hold great promise for dermatological disorders with high unmet need, for example, epidermolysis bullosa or pachyonychia congenita. Furthermore, the recent clinical success of clustered regularly interspaced short palindromic repeats (CRISPR) for genome editing in humans will undoubtedly contribute to defining a new wave of therapies. Like biologics, naked nucleic acids are denatured inside the gastrointestinal tract and need to be administered via injections. For a treatment to be effective, a sufficient amount of a given regimen needs to reach systemic circulation. Multiple companies are racing to develop novel oral drug delivery approaches to circumvent the proteolytic and acidic milieu of the gastrointestinal tract. In this review, we provide an overview of the evolution of the gene therapy landscape, with a deep focus on gene and oligonucleotide therapies in clinical trials aimed at treating skin diseases. We then examine the progress made in drug delivery, with particular attention on the peptide field and drug-device combinations that deliver macromolecules into the gastrointestinal tract. Such novel devices could potentially be applied to administer other therapeutics including genes and CRISPR-based systems.
Collapse
Affiliation(s)
- Pia Pernille Søgaard
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Marianne Lind
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | | | - Karsten Petersson
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | - Adam Clauss
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Ester Caffarel-Salvador
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
- LEO Science & Tech Hub, One Broadway, Cambridge, MA 02142, USA
| |
Collapse
|
34
|
Sallam MA, Prakash S, Kumbhojkar N, Shields CW, Mitragotri S. Formulation-based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives. Bioeng Transl Med 2021; 6:e10215. [PMID: 34589595 PMCID: PMC8459604 DOI: 10.1002/btm2.10215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
A growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin. Recently, a large body of research has been directed toward improving the delivery of macromolecules to the skin, ranging from nucleic acids (NAs) to antigens, using noninvasive means. In this review, we discuss the latest formulation-based efforts to deliver antigens and NAs for vaccination and treatment of skin diseases. We provide a perspective of their advantages, limitations, and potential for clinical translation. The delivery platforms discussed in this review may provide formulation scientists and clinicians with a better vision of the alternatives for dermal delivery of biomacromolecules, which may facilitate the development of new patient-friendly prophylactic and therapeutic medicines.
Collapse
Affiliation(s)
- Marwa A. Sallam
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
- Present address:
Department of Industrial PharmacyFaculty of Pharmacy, Alexandria UniversityEgypt
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Charles Wyatt Shields
- Department of Chemical & Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
35
|
Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci 2021; 284:119877. [PMID: 34384832 DOI: 10.1016/j.lfs.2021.119877] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022]
Abstract
Recently, microfabrication technology has been developed to increase the permeability of drugs for transdermal delivery. Microneedles are ultra-small needles usually in the micron size range (different dimensions in micron), generate pores, and allow for delivery of local medication in the systemic circulation via skin. The microneedles have been available in dissolving, solid, coated, hollow, and hydrogel-based microneedles. Dissolving microneedles have been fabricated using micro-molding, photo-polymerization, drawing lithography and droplet blowing techniques. Dissolving microneedles could be a valuable option for the delivery of low molecular weight drugs, peptides, enzymes, vaccines and bio-therapeutics. It consists of water-soluble materials including maltose, polyvinyl pyrrolidone, chondroitin sulfate, dextran, hyaluronic acid, and albumin. The microneedles have almost dissolved after patch removal, leaving only blunt stubs behind, which are easily removable. In this review, we summarize the major building blocks, classification, fabrication techniques, characterization, diffusion models and application of microneedles in diverse area. We also reviewed the regulatory aspects, computational studies, patents, clinical data, and market trends of microneedles.
Collapse
Affiliation(s)
- Mayuri Dalvi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pratik Kharat
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
36
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Chen Y, Chen N, Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int J Pharm 2021; 592:120081. [PMID: 33189810 DOI: 10.1016/j.ijpharm.2020.120081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The concept of skin-specific drug delivery with a spatio-temporal control has just recently received concerns in dermatology. Inspired by the progress in smart materials and their perspective application in medicine science, development of stimuli responsive drug delivery systems with skin-specificity has become possible, which has led to a new era in the localized treatment of skin diseases. This review highlights both the internal and external stimuli that have been employed in this field, with a focus on their implication on the rational design of pharmaceutical formulations, especially those nanoscale drug carriers that are able to provide release of payloads with a precise spatio-temporal control in response to specific stimuli. Also, the strategy of dual stimuli responsive drug delivery systems will be discussed for further improvement of the efficacy of skin drug delivery. The prominent examples of the established approaches are described as comprehensive and current as possible. The review is expected to provide some inspiration for utilizing different stimuli for realizing the site-specific and on-demand drug delivery to the skin.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China
| |
Collapse
|
38
|
Kawai M, Ibaraki H, Takashima Y, Kanazawa T, Okada H. Development of a Liquid Crystal Formulation that Can Penetrate the Stratum Corneum for Intradermal Delivery of Small Interfering RNA. Mol Pharm 2021; 18:1038-1047. [PMID: 33395310 DOI: 10.1021/acs.molpharmaceut.0c00997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Topical delivery of small interfering RNA (siRNA) can be an attractive method for the treatment of skin diseases and improving the quality of life of patients. However, it is difficult for siRNA to pass through the two major barriers of the skin: the stratum corneum (SC) and tight junctions. We have previously reported that atopic dermatitis of skin without the SC can be efficiently treated by the intradermal administration of trans-activator of transcription (Tat) peptide and AT1002 (tight junction opening peptide). However, novel drug delivery systems are needed for effective SC penetration. Therefore, in the present study, we aimed to develop a lyotropic liquid crystalline (LC) system containing Tat and AT1002 for effective siRNA penetration through the SC. An LC formulation was prepared using selachyl alcohol and purified water, and its skin penetration ability was evaluated. No fluorescence was observed in mouse skin treated with a siRNA solution, as there was no intradermal localization of siRNA from naked siRNA. However, intradermal delivery of siRNA was remarkable and extensive with the LC formulation containing both Tat and AT1002. Semiquantitative analysis by brightness measurement revealed that the LC formulation containing both Tat and AT1002 had significantly enhanced intact skin permeability than other formulations. These results show that the functional peptides in the LC formulation increased SC penetration and intradermal delivery in the healthy skin. Therefore, this novel LC system may be useful in the treatment of various skin diseases.
Collapse
Affiliation(s)
- Misako Kawai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hisako Ibaraki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuuki Takashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takanori Kanazawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.,School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroaki Okada
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
39
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
40
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
41
|
Li D, Hu D, Xu H, Patra HK, Liu X, Zhou Z, Tang J, Slater N, Shen Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials 2020; 264:120410. [PMID: 32979655 DOI: 10.1016/j.biomaterials.2020.120410] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Transdermal drug delivery exhibited encouraging prospects, especially through superficial drug administration routes. However, only a few limited lipophilic drug molecules could cross the skin barrier, those are with low molecular weight and rational Log P value. Microneedles (MNs) can overcome these limitations to deliver numerous drugs into the dermal layer by piercing the outermost skin layer of the body. In the case of superficial cancer treatments, topical drug administration faces severely low transfer efficiency, and systemic treatments are always associated with side effects and premature drug degradation. MN-based systems have achieved excellent technical capabilities and been tested for pre-clinical chemotherapy, photothermal therapy, photodynamic therapy, and immunotherapy. In this review, we will focus on the features, progress, and opportunities of MNs in the anticancer drug delivery system. Then, we will discuss the strategies and advantages in these works and summarize challenges, perspectives, and translational potential for future applications.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hirak K Patra
- Wolfson College, University of Cambridge, Cambridge, CB3 9BB, United Kingdom; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Nigel Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
42
|
Khan MA, Kiser MR, Moradipour M, Nadeau EA, Ghanim RW, Webb BA, Rankin SE, Knutson BL. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. J Phys Chem B 2020; 124:8549-8561. [PMID: 32881500 DOI: 10.1021/acs.jpcb.0c06536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amine-functionalized mesoporous silica nanoparticles (MSNPAs) are ideal carriers for oligonucleotides for gene delivery and RNA interference. This investigation examines the thermodynamic driving force of interactions of double-stranded (ds) RNA with MSNPAs as a function of RNA length (84 and 282 base pair) and particle pore diameter (nonporous, 2.7, 4.3, and 8.1 nm) using isothermal titration calorimetry, extending knowledge of solution-based nucleic acid-polycation interactions to RNA confined in nanopores. Adsorption of RNA follows a two-step process: endothermic interactions driven by entropic contribution from counterion (and water) release and an exothermic regime dominated by short-range interactions within the pores. Evidence of hindered pore loading of the longer RNA and pore size-dependent confinement of RNA in the MSPAs is provided from the relative contributions of the endothermic and exothermic regimes. Reduction of endothermic and exothermic enthalpies in both regimes in the presence of salt for both lengths of RNA indicates the significant contribution of short-range electrostatic interactions, whereas ΔH and ΔG values are consistent with conformation changes and desolvation of nucleic acids upon binding with polycations. Knowledge of the interactions between RNA and functionalized porous nanoparticles will aid in porous nanocarrier design suitable for functional RNA delivery.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maelyn R Kiser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily A Nadeau
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Ramy W Ghanim
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
43
|
Tan X, Jia F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release 2020; 323:240-252. [PMID: 32272123 PMCID: PMC8079167 DOI: 10.1016/j.jconrel.2020.03.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nucleic acids have not been widely considered as an optimal material for drug delivery. Indeed, unmodified nucleic acids are enzymatically unstable, too hydrophilic for cell uptake and payload encapsulation, and may cause unintended biological responses such as immune system activation and prolongation of the blood coagulation pathway. Recently, however, three major areas of development surrounding nucleic acids have made it worthwhile to reconsider their role for drug delivery. These areas include DNA/RNA nanotechnology, multivalent nucleic acid nanostructures, and nucleic acid aptamers, which, respectively, provide the ability to engineer nanostructures with unparalleled levels of structural control, completely reverse certain biological properties of linear/cyclic nucleic acids, and enable antibody-level targeting using an all-nucleic acid construct. These advances, together with nucleic acids' ability to respond to various stimuli (engineered or natural), have led to a rapidly increasing number of drug delivery systems with potential for spatiotemporally controlled drug release. In this review, we discuss recent progress in nucleic acid-based drug delivery strategies, their potential, unique use cases, and risks that must be overcome or avoided.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Abstract
Topical drug delivery has inherent advantages over other administration routes. However, the existence of stratum corneum limits the diffusion to small and lipophilic drugs. Fortunately, the advancement of nanotechnology brings along opportunities to address this challenge. Taking the unique features in size and surface chemistry, nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, and framework nucleic acids have been used to bring drugs across the skin barrier to epidermis and dermis layers. This article reviews the development of these formulations and focuses on their applications in the treatment of skin disorders such as acne, skin inflammation, skin infection, and wound healing. Existing hurdles and further developments are also discussed.
Collapse
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457.,National Dental Centre of Singapore, 5 Second Hospital Avenue, Singapore 168938.,Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
45
|
Ahmad A, Ahsan H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. BIOMEDICAL DERMATOLOGY 2020. [DOI: 10.1186/s41702-020-00062-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe fatty acids containing plant oils have been used as components of cosmetic formulations, and the best cosmetic function has been established for unsaturated fatty acids present in triglycerides. Many oils, fats, waxes, and phospholipids are employed as excipients in cosmetics and personal care products. Antioxidants such as carotenoids, retinoids, and tocopherols are used for their antioxidant properties because of their importance in therapeutic care. For skin care, the most important are oils with high contents of linoleic and α-linolenic acid which reduce the formation of eczemas or atopic dermatitis. These essential fatty acids incorporate into the cell membranes and regenerate the damaged lipid barrier of epidermis and restrict water loss. The unsaturated fatty acids show prominent healing effects on skin inflammation and are used in various cosmetic products. Mineral oils and waxes are also used in several products due to their property of skin tolerance, protection, cleansing, and viscosity. As cosmeceutical formulation, the nanoformulations are effective against irritated and inflamed skin and effective for therapy of atopic dermatitis and psoriasis. The lipid nanoparticles offer advantages of chemical stability and good skin compatibility that can be used for protection against radiation and aging.
Collapse
|
46
|
Ning X, Wiraja C, Lio DCS, Xu C. A Double-Layered Microneedle Platform Fabricated through Frozen Spray-Coating. Adv Healthc Mater 2020; 9:e2000147. [PMID: 32323491 DOI: 10.1002/adhm.202000147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Indexed: 11/07/2022]
Abstract
This work reports a frozen spray-coating method for the fabrication of double-layered microneedles (MNs). Taking swellable methacrylated hyaluronic acid (MeHA)-derived MNs as the model, both hydrophobic molecules (Nile red, Cy5) and hydrophilic ones (FITC, FITC-Dextran, Insulin) can be homogeneously coated without impacting the mechanical properties of the original MeHA MNs. The prepared double-layered MNs can execute multiple roles. It is demonstrated that insulin-coated MeHA double-layered MNs allow the effective delivery of the insulin into circulation of mice for controlling the blood glucose level while they also permit the extraction of skin interstitial fluid for the timely analysis of the biomarker (glucose).
Collapse
Affiliation(s)
- Xiaoyu Ning
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Daniel Chin Shiuan Lio
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- National Dental Centre of Singapore 5 Second Hospital Ave Singapore 168938 Singapore
- Department of Biomedical EngineeringCity University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| |
Collapse
|
47
|
Topical delivery of siRNA into skin using ionic liquids. J Control Release 2020; 323:475-482. [PMID: 32339547 DOI: 10.1016/j.jconrel.2020.04.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Skin diseases such as lupus, cancer, psoriasis, and hyperhidrosis can potentially be treated effectively by suppressing allele-specific genes using small interfering RNA (siRNA). Injections of siRNA into skin, though effective, are painful and cover small surface areas and thus are not suitable as a long-term treatment option. Topical delivery of siRNA is an attractive alternative option to mediate RNA interference (RNAi). However, the barrier function of the epidermis impedes effective permeation of siRNA into the skin. Herein, we describe topical delivery of siRNA using ionic liquids (ILs) capable of complexing with siRNA non-covalently and delivering it effectively. Using complementary and synergistic strategies of ionic liquids, we report delivery of effective doses of siRNA into skin. The first strategy involved the use of hydrophobic cations to robe the siRNA and the second strategy involved the use of choline-geranic acid ionic liquid (CAGE) to enhance its dermal penetration. In vitro studies in porcine skin confirmed the synergistic effect of these strategies in enhancing epidermal and dermal penetration. In vivo application of siRNA formulation to SKH-1E hairless mice significantly suppressed GAPDH expression with no clinical evidence of toxicity. This is a simple, personalized, and scalable platform for effective topical delivery of siRNA for treating genetic skin diseases.
Collapse
|
48
|
Rodrigues TB, Petrick JS. Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules. FRONTIERS IN PLANT SCIENCE 2020; 11:407. [PMID: 32391029 PMCID: PMC7191066 DOI: 10.3389/fpls.2020.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 05/13/2023]
Abstract
The potential of double-stranded RNAs (dsRNAs) for use as topical biopesticides in agriculture was recently discussed during an OECD (Organisation for Economic Co-operation and Development) Conference on RNA interference (RNAi)-based pesticides. Several topics were presented and these covered different aspects of RNAi technology, its application, and its potential effects on target and non-target organisms (including both mammals and non-mammals). This review presents information relating to RNAi mechanisms in vertebrates, the history of safe RNA consumption, the biological barriers that contribute to the safety of its consumption, and effects related to humans and other vertebrates as discussed during the conference. We also review literature related to vertebrates exposed to RNA molecules and further consider human health safety assessments of RNAi-based biopesticides. This includes possible routes of exposure other than the ingestion of potential residual material in food and water (such as dermal and inhalation exposures during application in the field), the implications of different types of formulations and RNA structures, and the possibility of non-specific effects such as the activation of the innate immune system or saturation of the RNAi machinery.
Collapse
|
49
|
Tanner EEL, Wiraja C, Curreri CA, Xu C, Mitragotri S. Stabilization and Topical Skin Delivery of Framework Nucleic Acids using Ionic Liquids. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Eden E. L. Tanner
- School of Engineering and Applied Sciences Harvard University Pierce 211 Cambridge MA 02138 USA
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Christina A. Curreri
- School of Engineering and Applied Sciences Harvard University Pierce 211 Cambridge MA 02138 USA
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 China
| | - Samir Mitragotri
- School of Engineering and Applied Sciences Harvard University Pierce 211 Cambridge MA 02138 USA
| |
Collapse
|
50
|
Current and Future Therapies for Psoriasis with a Focus on Serotonergic Drugs. Mol Neurobiol 2020; 57:2391-2419. [DOI: 10.1007/s12035-020-01889-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|