1
|
Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New Opportunities and Old Challenges in the Clinical translation of Nanotheranostics. NATURE REVIEWS. MATERIALS 2023; 8:783-798. [PMID: 39022623 PMCID: PMC11251001 DOI: 10.1038/s41578-023-00581-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2024]
Abstract
Nanoparticle-based systems imbued with both diagnostic and therapeutic functions, known as nanotheranostics, have enabled remarkable progress in guiding focal therapy, inducing active responses to endogenous and exogenous biophysical stimuli, and stratifying patients for optimal treatment. However, although in recent years more nanotechnological platforms and techniques have been implemented in the clinic, several important challenges remain that are specific to nanotheranostics. In this Review, we first discuss some of the many ways of 'constructing' nanotheranostics, focusing on the different imaging modalities and therapeutic strategies. We then outline nanotheranostics that are currently used in humans at different stages of clinical development, identifying specific advantages and opportunities. Finally, we define critical steps along the winding road of preclinical and clinical development and suggest actions to overcome technical, manufacturing, regulatory and economical challenges for the safe and effective clinical translation of nanotheranostics.
Collapse
Affiliation(s)
- Peter J. Gawne
- UCL Cancer Institute, University College London, London, UK
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary, University of London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Miguel Ferreira
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Marisa Papaluca
- School of Public Health, Imperial College of London, South Kensington CampusLondon, UK
| | - Jan Grimm
- Molecular Pharmacology Program and Department of Radiology, Memorial Sloan-Kettering Cancer, Center, New York, NY, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via, Morego 30, 16163, Genoa, IT
| |
Collapse
|
2
|
Rai R, Alwani S, Khan B, Viswas Solomon R, Vuong S, Krol ES, Fonge H, Badea I. Biodistribution of nanodiamonds is determined by surface functionalization. DIAMOND AND RELATED MATERIALS 2023; 137:110071. [DOI: 10.1016/j.diamond.2023.110071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Ahmadi M, Emzhik M, Mosayebnia M. Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 2023; 13:1546-1583. [PMID: 36811810 DOI: 10.1007/s13346-023-01291-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
Providing accurate molecular imaging of the body and biological process is critical for diagnosing disease and personalizing treatment with the minimum side effects. Recently, diagnostic radiopharmaceuticals have gained more attention in precise molecular imaging due to their high sensitivity and appropriate tissue penetration depth. The fate of these radiopharmaceuticals throughout the body can be traced using nuclear imaging systems, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET) modalities. In this regard, nanoparticles are attractive platforms for delivering radionuclides into targets because they can directly interfere with the cell membranes and subcellular organelles. Moreover, applying radiolabeled nanomaterials can decrease their toxicity concerns because radiopharmaceuticals are usually administrated at low doses. Therefore, incorporating gamma-emitting radionuclides into nanomaterials can provide imaging probes with valuable additional properties compared to the other carriers. Herein, we aim to review (1) the gamma-emitting radionuclides used for labeling different nanomaterials, (2) the approaches and conditions adopted for their radiolabeling, and (3) their application. This study can help researchers to compare different radiolabeling methods in terms of stability and efficiency and choose the best way for each nanosystem.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Emzhik
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Junction, Vali-E-Asr Ave, Tehran, 14155-6153, Iran.
| |
Collapse
|
4
|
Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14050917. [PMID: 35631503 PMCID: PMC9144228 DOI: 10.3390/pharmaceutics14050917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
Collapse
|
5
|
Abstract
8-Hydroxyquinoline (8-HQ, oxine) is a small, monoprotic, bicyclic aromatic compound and its relative donor group orientation imparts impressive bidentate metal chelating abilities that have been exploited in a vast array of applications over decades. 8-HQ and its derivatives have been explored in medicinal applications including anti-neurodegeneration, anticancer properties, and antimicrobial activities. One long established use of 8-HQ in medicinal inorganic chemistry is the coordination of radioactive isotopes of metal ions in nuclear medicine. The metal-oxine complex with the single photon emission computed tomography (SPECT) imaging isotope [111In]In3+ was developed in the 1970s and 1980s to radiolabel leukocytes for inflammation and infection imaging. The [111In][In(oxine)3] complex functions as an ionophore: a moderately stable lipophilic complex to enter cells; however, inside the cell environment [111In]In3+ undergoes exchange and remains localized. As new developments have progressed towards radiopharmaceuticals capable of both imaging and therapy (theranostics), 8-HQ has been re-explored in recent years to investigate its potential to chelate larger radiometal ions with longer half-lives and different indications. Further, metal-oxine complexes have been used to study liposomes and other nanomaterials by tracking these nanomedicines in vivo. Expanding 8-HQ to multidentate ligands for highly thermodynamically stable and kinetically inert complexes has increased the possibilities of this small molecule in nuclear medicine. This article outlines the historic use of metal-oxine complexes in inorganic radiopharmaceutical chemistry, with a focus on recent advances highlighting the possibilities of developing higher denticity, targeted bifunctional chelators with 8-HQ.
Collapse
Affiliation(s)
- Lily Southcott
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
6
|
Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development. Pharmaceutics 2021; 13:pharmaceutics13111868. [PMID: 34834283 PMCID: PMC8621465 DOI: 10.3390/pharmaceutics13111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022] Open
Abstract
Macrophages play a crucial role in the initiation and progression of rheumatoid arthritis (RA). Liposomes can be used to deliver therapeutics to macrophages by exploiting their phagocytic ability. However, since macrophages serve as the immune system’s first responders, it is inadvisable to systemically deplete these cells. By loading the liposomes with the photosensitizer IRDye700DX, we have developed and tested a novel way to perform photodynamic therapy (PDT) on macrophages in inflamed joints. PEGylated liposomes were created using the film method and post-inserted with micelles containing IRDye700DX. For radiolabeling, a chelator was also incorporated. RAW 264.7 cells were incubated with liposomes with or without IRDye700DX and exposed to 689 nm light. Viability was determined using CellTiterGlo. Subsequently, biodistribution and PDT studies were performed on mice with collagen-induced arthritis (CIA). PDT using IRDye700DX-loaded liposomes efficiently induced cell death in vitro, whilst no cell death was observed using the control liposomes. Biodistribution of the two compounds in CIA mice was comparable with excellent correlation of the uptake with macroscopic and microscopic arthritis scores. Treatment with 700DX-loaded liposomes significantly delayed arthritis development. Here we have shown the proof-of-principle of performing PDT in arthritic joints using IRDye700DX-loaded liposomes, allowing locoregional treatment of arthritis.
Collapse
|
7
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
8
|
Gawne PJ, Clarke F, Turjeman K, Cope AP, Long NJ, Barenholz Y, Terry SYA, de Rosales RTM. PET Imaging of Liposomal Glucocorticoids using 89Zr-oxine: Theranostic Applications in Inflammatory Arthritis. Theranostics 2020; 10:3867-3879. [PMID: 32226525 PMCID: PMC7086351 DOI: 10.7150/thno.40403] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
The encapsulation of Glucocorticoids (GCs) into long-circulating liposomes (LCLs) is a proven strategy to reduce the side effects of glucocorticoids and improve the treatment of inflammatory diseases, such as rheumatoid arthritis (RA). With the aim of supporting the development of GC-loaded LCLs, and potentially predict patient response to therapy clinically, we evaluated a direct PET imaging radiolabelling approach for preformed GC-LCLs in an animal model of human inflammatory arthritis. Methods: A preformed PEGylated liposomal methylprednisolone hemisuccinate (NSSL-MPS) nanomedicine was radiolabelled using [89Zr]Zr(oxinate)4 (89Zr-oxine), characterised and tracked in vivo using PET imaging in a K/BxN serum-transfer arthritis (STA) mouse model of inflammatory arthritis and non-inflamed controls. Histology and joint size measurements were used to confirm inflammation. The biodistribution of 89Zr-NSSL-MPS was compared to that of free 89Zr in the same model. A therapeutic study using NSSL-MPS using the same time points as the PET/CT imaging was carried out. Results: The radiolabelling efficiency of NSSL-MPS with [89Zr]Zr(oxinate)4 was 69 ± 8 %. PET/CT imaging of 89Zr-NSSL-MPS showed high uptake (3.6 ± 1.5 % ID; 17.4 ± 9.3 % ID/mL) at inflamed joints, with low activity present in non-inflamed joints (0.5 ± 0.1 % ID; 2.7 ± 1.1 % ID/mL). Importantly, a clear correlation between joint swelling and high 89Zr-NSSL-MPS uptake was observed, which was not observed with free 89Zr. STA mice receiving a therapeutic dose of NSSL-MPS showed a reduction in inflammation at the time points used for the PET/CT imaging compared with the control group. Conclusions: PET imaging was used for the first time to track a liposomal glucocorticoid, showing high uptake at visible and occult inflamed sites and a good correlation with the degree of inflammation. A subsequent therapeutic response matching imaging time points in the same model demonstrated the potential of this radiolabeling method as a theranostic tool for the prediction of therapeutic response - with NSSL-MPS and similar nanomedicines - in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Peter J Gawne
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Fiona Clarke
- Centre for Inflammation Biology and Cancer Immunology, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, Department of Biochemistry,Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Nicholas J Long
- Department of Chemistry, MSRH, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry,Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samantha Y A Terry
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Rafael T M de Rosales
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
- London Centre for Nanotechnology, King's College London, Strand Campus, London, WC2R 2LS, United Kingdom, UK
| |
Collapse
|
9
|
Gabizon AA, de Rosales RT, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020; 158:140-157. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.
Collapse
|
10
|
Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Acc Chem Res 2019; 52:2435-2444. [PMID: 31397996 DOI: 10.1021/acs.accounts.9b00368] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Delivering nucleic acid-based therapeutics to cells is an attractive approach to target the genetic cause of various diseases. In contrast to conventional small molecule drugs that target gene products (i.e., proteins), genetic drugs induce therapeutic effects by modulating gene expression. Gene silencing, the process whereby protein production is prevented by neutralizing its mRNA template, is a potent strategy to induce therapeutic effects in a highly precise manner. Importantly, gene silencing has broad potential as theoretically any disease-causing gene can be targeted. It was demonstrated two decades ago that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm results in specific degradation of complementary mRNA via a process called RNA interference (RNAi). Since then, significant efforts and investments have been made to exploit RNAi therapeutically and advance siRNA drugs to the clinic. Utilizing (unmodified) siRNA as a therapeutic, however, is challenging due to its limited bioavailability following systemic administration. Nuclease activity and renal filtration result in siRNA's rapid clearance from the circulation and its administration induces (innate) immune responses. Furthermore, siRNA's unfavorable physicochemical characteristics largely prevent its diffusion across cellular membranes, impeding its ability to reach the cytoplasm where it can engage the RNAi machinery. The clinical translation of siRNA therapeutics has therefore been dependent on chemical modifications and developing sophisticated delivery platforms to improve their stability, limit immune activation, facilitate internalization, and increase target affinity. These developments have resulted in last year's approval of the first siRNA therapeutic, called Onpattro (patisiran), for treatment of hereditary amyloidogenic transthyretin (TTR) amyloidosis. This disease is characterized by a mutation in the gene encoding TTR, a serum protein that transports retinol in circulation following secretion by the liver. The mutation leads to production of misfolded proteins that deposit as amyloid fibrils in multiple organs, resulting in progressive neurodegeneration. Patisiran's therapeutic effect relies on siRNA-mediated TTR gene silencing, preventing mutant protein production and halting or even reversing disease progression. For efficient therapeutic siRNA delivery to hepatocytes, patisiran is critically dependent on lipid nanoparticle (LNP) technology. In this Account, we provide an overview of key advances that have been crucial for developing LNP delivery technology, and we explain how these developments have contributed to the clinical translation of siRNA therapeutics for parenteral administration. We discuss optimization of the LNP formulation, particularly focusing on the rational design of ionizable cationic lipids and poly(ethylene glycol) lipids. These components have proven to be instrumental for highly efficient siRNA encapsulation, favorable LNP pharmacokinetic parameters, and hepatocyte internalization. Additionally, we pay attention to the development of rapid mixing-based methods that provide robust and scalable LNP production procedures. Finally, we highlight patisiran's clinical translation and LNP delivery technology's potential to enable the development of genetic drugs beyond the current state-of-the-art, such as mRNA and gene editing therapeutics.
Collapse
Affiliation(s)
- Jayesh A. Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Integrated Nanotherapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Roy van der Meel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
| |
Collapse
|
11
|
Witzigmann D, Uhl P, Sieber S, Kaufman C, Einfalt T, Schöneweis K, Grossen P, Buck J, Ni Y, Schenk SH, Hussner J, Meyer Zu Schwabedissen HE, Québatte G, Mier W, Urban S, Huwyler J. Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. eLife 2019; 8:42276. [PMID: 31333191 PMCID: PMC6682401 DOI: 10.7554/elife.42276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; SLC10A1) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro. The pharmacokinetics and targeting capacity of selected lead formulations was investigated in vivo using the emerging zebrafish screening model. Liposomal nanoparticles modified with 0.25 mol% of a short myristoylated HBV derived peptide, that is Myr-HBVpreS2-31, showed an optimal balance between systemic circulation, avoidance of blood clearance, and targeting capacity. Pronounced liver enrichment, active NTCP-mediated targeting of hepatocytes and efficient cellular internalization were confirmed in mice by 111In gamma scintigraphy and fluorescence microscopy demonstrating the potential use of our hepatotropic, ligand-modified nanoparticles.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Philipp Uhl
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Christina Kaufman
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Tomaz Einfalt
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Division of Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Gabriela Québatte
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Sieber S, Grossen P, Uhl P, Detampel P, Mier W, Witzigmann D, Huwyler J. Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:82-93. [DOI: 10.1016/j.nano.2018.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
|
13
|
Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019; 143:134-160. [PMID: 31170428 PMCID: PMC6866902 DOI: 10.1016/j.addr.2019.05.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The integration of nuclear imaging with nanomedicine is a powerful tool for efficient development and clinical translation of liposomal drug delivery systems. Furthermore, it may allow highly efficient imaging-guided personalised treatments. In this article, we critically review methods available for radiolabelling liposomes. We discuss the influence that the radiolabelling methods can have on their biodistribution and highlight the often-overlooked possibility of misinterpretation of results due to decomposition in vivo. We stress the need for knowing the biodistribution/pharmacokinetics of both the radiolabelled liposomal components and free radionuclides in order to confidently evaluate the images, as they often share excretion pathways with intact liposomes (e.g. phospholipids, metallic radionuclides) and even show significant tumour uptake by themselves (e.g. some radionuclides). Finally, we describe preclinical and clinical studies using radiolabelled liposomes and discuss their impact in supporting liposomal drug development and clinical translation in several diseases, including personalised nanomedicine approaches.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Peter J Gawne
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand Campus, London WC2R 2LS, United Kingdom.
| |
Collapse
|
14
|
Hajdu I, Makhlouf A, Solomon VR, Michel D, Al-Dulaymi M, Wasan KM, Fonge H, Badea I. A 89Zr-labeled lipoplex nanosystem for image-guided gene delivery: design, evaluation of stability and in vivo behavior. Int J Nanomedicine 2018; 13:7801-7818. [PMID: 30538460 PMCID: PMC6257135 DOI: 10.2147/ijn.s179806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background With the advances in radiopharmaceutical research, the development of image-guided therapy has become a major interest. While the development of theranostic nanotherapeutics is frequently associated with cancer chemotherapy, phototherapy and radiotherapy, there is little information available on the in vivo monitoring of gene delivery systems and the application of image-guided approach in gene therapy. The goal of this work was to determine the in vivo behavior of DNA delivery nanosystems - based on cationic gemini surfactants – designed for image-guided gene therapy. We tested the feasibility of monitoring tumor accumulation of gene delivery nanoparticles by positron emission tomography. Methods To be able to conjugate radiotracers to the nanoparticles, a deferoxamine-modified gemini surfactant was synthesized, DNA-containing lipoplex nanoparticles were formulated, and radiolabeled with Zirconium-89 (89Zr). The pharmacokinetics and biodistribution of 89Zr labeled surfactant and 89Zr labeled nanoparticles were monitored in mice by microPET/CT imaging and ex vivo gamma counting. Results Modification of the nanoparticles with deferoxamine did not alter their physicochemical properties. The radiolabeled nanoparticles (labeling efficiency of 95±3%) were stable in PBS and serum. The biological half-life of the 89Zr labeled nanoparticles was significantly higher compared to 89Zr labeled surfactant. As expected, the nanoparticles had significantly higher liver accumulation than the radiolabeled surfactant alone and lower kidney accumulation. Tumor uptake was detected at 2 hours post injection and decreased throughout the 3-day monitoring. Conclusion We propose that radiolabeling DNA delivery lipoplex nanosystems is a promising approach for the design and optimization of image-guided nanomedicines, especially in the context of cancer gene therapy.
Collapse
Affiliation(s)
- Istvan Hajdu
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada,
| | - Amal Makhlouf
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 12411 Cairo, Egypt
| | - Viswas Raja Solomon
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada,
| | - Deborah Michel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada,
| | - Mays Al-Dulaymi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada,
| | - Kishor M Wasan
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada,
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada, .,Department of Medical Imaging, Royal University Hospital Saskatoon, SK S7N 0W8, Canada,
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada,
| |
Collapse
|
15
|
Hood ED, Greineder CF, Shuvaeva T, Walsh L, Villa CH, Muzykantov VR. Vascular Targeting of Radiolabeled Liposomes with Bio-Orthogonally Conjugated Ligands: Single Chain Fragments Provide Higher Specificity than Antibodies. Bioconjug Chem 2018; 29:3626-3637. [PMID: 30240185 DOI: 10.1021/acs.bioconjchem.8b00564] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Liposomes are a proven, versatile, and clinically viable technology platform for vascular delivery of drugs and imaging probes. Although targeted liposomes have the potential to advance these applications, complex formulations and the need for optimal affinity ligands and conjugation strategies challenge their translation. Herein, we employed copper-free click chemistry functionalized liposomes to target platelet-endothelial cell adhesion molecule (PECAM-1) and intracellular adhesion molecule (ICAM-1) by conjugating clickable monoclonal antibodies (Ab) or their single chain variable fragments (scFv). For direct, quantitative tracing, liposomes were surface chelated with 111In to a >90% radiochemical yield and purity. Particle size and distribution, stability, ligand surface density, and specific binding to target cells were characterized in vitro. Biodistribution of liposomes after IV injection was characterized in mice using isotope detection in organs and by noninvasive imaging (single-photon emission computed tomography/computed tomography, SPECT/CT). As much as 20-25% of injected dose of liposomes carrying PECAM and ICAM ligands, but not control IgG accumulated in the pulmonary vasculature. The immunospecificity of pulmonary targeting of scFv/liposomes to PECAM-1 and ICAM-1, respectively, was 10-fold and 2.5-fold higher than of Ab/liposomes. Therefore, the combination of optimal ligands, benign conjugation, and labeling yields liposomal formulations that may be used for highly effective and specific vascular targeting.
Collapse
Affiliation(s)
- Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine , 3400 Civic Center Boulevard, Bldg 421 , Philadelphia , Pennsylvania 19104-5158 , United States
| | - Colin F Greineder
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine , 3400 Civic Center Boulevard, Bldg 421 , Philadelphia , Pennsylvania 19104-5158 , United States
| | - Tea Shuvaeva
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine , 3400 Civic Center Boulevard, Bldg 421 , Philadelphia , Pennsylvania 19104-5158 , United States
| | - Landis Walsh
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine , 3400 Civic Center Boulevard, Bldg 421 , Philadelphia , Pennsylvania 19104-5158 , United States
| | - Carlos H Villa
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine , 3400 Civic Center Boulevard, Bldg 421 , Philadelphia , Pennsylvania 19104-5158 , United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics , Perelman School of Medicine , 3400 Civic Center Boulevard, Bldg 421 , Philadelphia , Pennsylvania 19104-5158 , United States
| |
Collapse
|
16
|
Tornesello AL, Buonaguro L, Tornesello ML, Buonaguro FM. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:1282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| |
Collapse
|
17
|
Radiolabeling and Quantitative In Vivo SPECT/CT Imaging Study of Liposomes Using the Novel Iminothiolane- 99mTc-Tricarbonyl Complex. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:4693417. [PMID: 29097923 PMCID: PMC5612672 DOI: 10.1155/2017/4693417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023]
Abstract
The in vivo biodistribution of liposomal formulations greatly influences the pharmacokinetics of these novel drugs; therefore the radioisotope labeling of liposomes and the use of nuclear imaging methods for in vivo studies are of great interest. In the present work, a new procedure for the surface labeling of liposomes is presented using the novel 99mTc-tricarbonyl complex. Liposomes mimicking the composition of two FDA approved liposomal drugs were used. In the first step of the labeling, thiol-groups were formed on the surface of the liposomes using Traut's reagent, which were subsequently used to bind 99mTc-tricarbonyl complex to the liposomal surface. The labeling efficiency determined by size exclusion chromatography was 95%, and the stability of the labeled liposomes in bovine serum was found to be 94% over 2 hours. The obtained specific activity was 50 MBq per 1 μmol lipid which falls among the highest values reported for 99mTc labeling of liposomes. Quantitative in vivo SPECT/CT biodistribution studies revealed distinct differences between the labeled liposomes and the free 99mTc-tricarbonyl, which indicates the in vivo stability of the labeling. As the studied liposomes were non-PEGylated, fast clearance from the blood vessels and high uptake in the liver and spleen were observed.
Collapse
|
18
|
Ergen C, Heymann F, Al Rawashdeh W, Gremse F, Bartneck M, Panzer U, Pola R, Pechar M, Storm G, Mohr N, Barz M, Zentel R, Kiessling F, Trautwein C, Lammers T, Tacke F. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 2016; 114:106-120. [PMID: 27855336 DOI: 10.1016/j.biomaterials.2016.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery.
Collapse
Affiliation(s)
- Can Ergen
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Felix Heymann
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Wa'el Al Rawashdeh
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Ulf Panzer
- Department of Medicine III, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nicole Mohr
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Twan Lammers
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
19
|
Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ, Jiang G. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett 2016; 379:24-31. [DOI: 10.1016/j.canlet.2016.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
|
20
|
van der Geest T, Laverman P, Metselaar JM, Storm G, Boerman OC. Radionuclide imaging of liposomal drug delivery. Expert Opin Drug Deliv 2016; 13:1231-42. [PMID: 27351233 DOI: 10.1080/17425247.2016.1205584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Ever since their discovery, liposomes have been radiolabeled to monitor their fate in vivo. Despite extensive preclinical studies, only a limited number of radiolabeled liposomal formulations have been examined in patients. Since they can play a crucial role in patient management, it is of importance to enable translation of radiolabeled liposomes into the clinic. AREAS COVERED Liposomes have demonstrated substantial advantages as drug delivery systems and can be efficiently radiolabeled. Potentially, radiolabeled drug-loaded liposomes form an elegant theranostic system, which can be tracked in vivo using single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. In this review, we discuss important aspects of liposomal research with a focus on the use of radiolabeled liposomes and their potential role in drug delivery and monitoring therapeutic effects. EXPERT OPINION Radiolabeled drug-loaded liposomes have been poorly investigated in patients and no radiolabeled liposomes have been approved for use in clinical practice. Evaluation of the risks, pharmacokinetics, pharmacodynamics and toxicity is necessary to meet pharmaceutical and commercial requirements. It remains to be demonstrated whether the results found in animal studies translate to humans before radiolabeled liposomes can be implemented into clinical practice.
Collapse
Affiliation(s)
- Tessa van der Geest
- a Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Peter Laverman
- a Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Josbert M Metselaar
- b Department of Experimental Molecular Imaging , University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH - Aachen University , Aachen , Germany.,c Department of Targeted Therapeutics , MIRA Institute, University of Twente , Enschede , The Netherlands
| | - Gert Storm
- c Department of Targeted Therapeutics , MIRA Institute, University of Twente , Enschede , The Netherlands.,d Department of Pharmaceutics , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , The Netherlands
| | - Otto C Boerman
- a Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|