1
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
2
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
3
|
Xue J, Liu Y. Mesenchymal Stromal/Stem Cell (MSC)-Based Vector Biomaterials for Clinical Tissue Engineering and Inflammation Research: A Narrative Mini Review. J Inflamm Res 2023; 16:257-267. [PMID: 36713049 PMCID: PMC9875582 DOI: 10.2147/jir.s396064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have the ability of self-renewal, the potential of multipotent differentiation, and a strong paracrine capacity, which are mainly used in the field of clinical medicine including dentistry and orthopedics. Therefore, tissue engineering research using MSCs as seed cells is a current trending directions. However, the healing effect of direct cell transplantation is unstable, and the paracrine/autocrine effects of MSCs cannot be effectively elicited. Tumorigenicity and heterogeneity are also concerns. The combination of MSCs as seed cells and appropriate vector materials can form a stable cell growth environment, maximize the secretory features of stem cells, and improve the biocompatibility and mechanical properties of vector materials that facilitate the delivery of drugs and various secretory factors. There are numerous studies on tissue engineering and inflammation of various biomaterials, mainly involving bioceramics, alginate, chitosan, hydrogels, cell sheets, nanoparticles, and three-dimensional printing. The combination of bioceramics, hydrogels and cell sheets with stem cells has demonstrated good therapeutic effects in clinical applications. The application of alginate, chitosan, and nanoparticles in animal models has also shown good prospects for clinical applications. Three-dimensional printing technology can circumvent the shortage of biomaterials, greatly improve the properties of vector materials, and facilitate the transplantation of MSCs. The purpose of this narrative review is to briefly discuss the current use of MSC-based carrier biomaterials to provide a useful resource for future tissue engineering and inflammation research using stem cells as seed cells.
Collapse
Affiliation(s)
- Junshuai Xue
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan City, People’s Republic of China,Correspondence: Yang Liu, Department of General surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Tel +86 18560088317, Email
| |
Collapse
|
4
|
Anwar I, Ashfaq UA. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Crit Rev Ther Drug Carrier Syst 2023; 40:89-116. [PMID: 37585310 DOI: 10.1615/critrevtherdrugcarriersyst.2023042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The liver is one of the crucial organs of the body that performs hundreds of chemical reactions needed by the body to survive. It is also the largest gland of the body. The liver has multiple functions, including the synthesis of chemicals, metabolism of nutrients, and removal of toxins. It also acts as a storage unit. The liver has a unique ability to regenerate itself, but it can lead to permanent damage if the injury is beyond recovery. The only possible treatment of severe liver damage is liver transplant which is a costly procedure and has several other drawbacks. Therefore, attention has been shifted towards the use of stem cells that have shown the ability to differentiate into hepatocytes. Among the numerous kinds of stem cells (SCs), the mesenchymal stem cells (MSCs) are the most famous. Various studies suggest that an MSC transplant can repair liver function, improve the signs and symptoms, and increase the chances of survival. This review discusses the impact of combining stem cell therapy with nanotechnology. By integrating stem cell science and nanotechnology, the information about stem cell differentiation and regulation will increase, resulting in a better comprehension of stem cell-based treatment strategies. The augmentation of SCs with nanoparticles has been shown to boost the effect of stem cell-based therapy. Also, the function of green nanoparticles in liver therapies is discussed.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Liu H, Liu S, Song X, Jiang A, Zou Y, Deng Y, Yue C, Li Z, Yang D, Yang C, Sun D, Yang F, Li M, Jiang K, Lu H, Hu W, Zheng Y. Nanoparticle encapsulated CQ/TAM combination harmonizes with MSCs in arresting progression of severity in AP mice through iNOS (IDO) signaling. Mater Today Bio 2022; 14:100226. [PMID: 35308042 PMCID: PMC8924312 DOI: 10.1016/j.mtbio.2022.100226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Background Sever acute pancreatitis (SAP) is a critical disease with high mortality, and lack of clinically available treatments with specificity and effectiveness. Bone marrow derived mesenchymal stem cells (BMSCs) exhibited moderate effect on AP which needs further improvement. Methods Pancreatic infiltrating lymphocytes were analyzed to demonstrate the intervention of BMSCs on inflammatory cell infiltration of AP. Gene silencing with siRNA and small molecule inhibitor were utilized to determine the key effector molecule of BMSCs on AP. Pharmacological regulation and nanotechnology were introduced to further ameliorate BMSCs action. Results It was revealed that BMSCs prevent the progression of acute pancreatitis (AP) by reducing recruitment of macrophages, neutrophils and CD4+T cells in the lesion site. The pivotal role of chemokine–iNOS–IDO axis for BMSCs to intervene AP was confirmed. Compared with any single drug, Chloroquine/Tamoxifen combination together with IFN-γ pronouncedly up-regulated the transcription of several MSC immune regulators such as COX-2, PD-L1, HO-1 especially iNOS/IDO. As expected, BMSCs and human umbilical cord mesenchymal stem cells (UMSCs) pretreated with CQ/TAM/IFN-γ exerted enhanced intervention in AP and SAP mice. Moreover, pretreatment with CQ-LPs/TAM-NPs combination not only counteracted MSCs proliferation inhibition induced by free drugs but also enhanced their efficacy. Conclusion Under the background of rapid progress in MSCs clinical translation, this study focuses on the urgent clinical issue and initiates an original mechanism-based strategy to promote intervention on severity progression of SAP, which promises its clinical translation in future.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Simeng Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Xiaoshuang Song
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Ailing Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Yu Zou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Yuchuan Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Chao Yue
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhenlu Li
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dujiang Yang
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Dan Sun
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mao Li
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huimin Lu
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Weiming Hu
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yu Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
- Corresponding author.
| |
Collapse
|
6
|
Xue Y, Baig R, Dong Y. Recent advances of biomaterials in stem cell therapies. NANOTECHNOLOGY 2022; 33:10.1088/1361-6528/ac4520. [PMID: 34933291 PMCID: PMC10068913 DOI: 10.1088/1361-6528/ac4520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Stem cells have been utilized as 'living drugs' in clinics for decades. Their self-renewal, differentiation, and immunomodulating properties provide potential solutions for a variety of malignant diseases and disorders. However, the pathological environment may diminish the therapeutic functions and survival of the transplanted stem cells, causing failure in clinical translation. To overcome these challenges, researchers have developed biomaterial-based strategies that facilitatein vivotracking, functional engineering, and protective delivery of stem cells, paving the way for next-generation stem cell therapies. In this perspective, we briefly overview different types of stem cells and the major clinical challenges and summarize recent progress of biomaterials applied to boost stem cell therapies.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
| | - Rafia Baig
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|
7
|
Alcala-Orozco CR, Mutreja I, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Bone 2022; 154:116198. [PMID: 34534709 DOI: 10.1016/j.bone.2021.116198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/02/2022]
Abstract
Tissue engineering approaches for bone repair have rapidly evolved due to the development of novel biofabrication technologies, providing an opportunity to fabricate anatomically-accurate living implants with precise placement of specific cell types. However, limited availability of biomaterial inks, that can be 3D-printed with high resolution, while providing high structural support and the potential to direct cell differentiation and maturation towards the osteogenic phenotype, remains an ongoing challenge. Aiming towards a multifunctional biomaterial ink with high physical stability and biological functionality, this work describes the development of a nanocomposite biomaterial ink (Mg-PCL) comprising of magnesium hydroxide nanoparticles (Mg) and polycaprolactone (PCL) thermoplastic for 3D printing of strong and bioactive bone regenerative scaffolds. We characterised the Mg nanoparticle system and systematically investigated the cytotoxic and osteogenic effects of Mg supplementation to human mesenchymal stromal cells (hMSCs) 2D-cultures. Next, we prepared Mg-PCL biomaterial ink using a solvent casting method, and studied the effect of Mg over mechanical properties, printability and scaffold degradation. Furthermore, we delivered MSCs within Mg-PCL scaffolds using a gelatin-methacryloyl (GelMA) matrix, and evaluated the effect of Mg over cell viability and osteogenic differentiation. Nanocomposite Mg-PCL could be printed with high fidelity at 20 wt% of Mg content, and generated a mechanical reinforcement between 30%-400% depending on the construct internal geometry. We show that Mg-PCL degrades faster than standard PCL in an accelerated-degradation assay, which has positive implications towards in vivo implant degradation and bone regeneration. Mg-PCL did not affect MSCs viability, but enhanced osteogenic differentiation and bone-specific matrix deposition, as demonstrated by higher ALP/DNA levels and Alizarin Red calcium staining. Finally, we present proof of concept of Mg-PCL being utilised in combination with a bone-specific bioink (Sr-GelMA) in a coordinated-extrusion bioprinting strategy for fabrication of hybrid constructs with high stability and synergistic biological functionality. Mg-PCL further enhanced the osteogenic differentiation of encapsulated MSCs and supported bone ECM deposition within the bioink component of the hybrid construct, evidenced by mineralised nodule formation, osteocalcin (OCN) and collagen type-I (Col I) expression within the bioink filaments. This study demonstrated that magnesium-based nanocomposite bioink material optimised for extrusion-based 3D printing of bone regenerative scaffolds provide enhanced mechanical stability and bone-related bioactivity with promising potential for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Cesar R Alcala-Orozco
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Isha Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand.
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
8
|
Villarreal-Leal RA, Healey GD, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Adv Drug Deliv Rev 2021; 179:113913. [PMID: 34371087 DOI: 10.1016/j.addr.2021.113913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Inflammation plays a central role in wound healing following injury or disease and is mediated by a precise cascade of cellular and molecular events. Unresolved inflammatory processes lead to chronic inflammation and fibrosis, which can result in prolonged wound healing lasting months or years that hampers tissue function. Therapeutic interventions mediated by immunomodulatory drugs, cells, or biomaterials, are therefore most effective during the inflammatory phase of wound healing when a pro-regenerative environment is essential. In this review, we discuss the advantages of exploiting knowledge of the native tissue microenvironment to develop therapeutics capable of modulating the immune response and promoting functional tissue repair. In particular, we provide examples of the most recent biomimetic platforms proposed to accomplish this goal, with an emphasis on those able to induce macrophage polarization towards a pro-regenerative phenotype.
Collapse
|
9
|
Zhang J, Chen H, Chen C, Liu H, He Y, Zhao J, Yang P, Mao Q, Xia H. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying IL-24/endostatin enhances glioma therapy. Cancer Lett 2021; 509:26-38. [PMID: 33819529 DOI: 10.1016/j.canlet.2021.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Oncolytic adenovirus-mediated gene therapy shows promise for cancer treatment; however, the systemic delivery of oncolytic adenovirus to tumors remains challenging. Recently, mesenchymal stem cells (MSCs) have emerged as potential vehicles for improving delivery. Yet, because the oncolytic adenovirus replicates in MSCs, balancing MSC viability with viral load is key to achieving optimal therapeutic effect. We thus developed an all-in-one Tet-on system that can regulate replication of oncolytic adenovirus. Then, we loaded the novel oncolytic adenovirus carrying interleukin (IL)-24 and/or Endostatin in human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) for glioma therapy. In vitro assays demonstrated that this novel oncolytic adenovirus could efficiently replicate and kill glioma cells while sparing normal cells. Moreover, doxycycline effectively regulated oncolytic adenovirus replication in the hUCB-MSCs. The doxycycline induction group with dual expression of IL-24 and Endostatin exhibited significantly greater antitumor effects than other groups in a xenograft model of glioma. Thus, this strategy for systemic delivery of oncolytic adenovirus with its oncolytic activity controlled by a Tet-on system is a promising method for achieving antitumor efficacy in glioma, especially for metastatic tumors.
Collapse
Affiliation(s)
- Junhe Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Hao Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chen Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Haimeng Liu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Yurou He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA.
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
10
|
Liang S, Sun M, Lu Y, Shi S, Yang Y, Lin Y, Feng C, Liu J, Dong C. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B 2021; 8:8368-8382. [PMID: 32966532 DOI: 10.1039/d0tb01391a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maximizing the accumulation of anticancer medicine in the tumor is the priority to achieve minimal invasive cancer therapy, which raises high demands on tumor-targeting ability of drug delivery systems. Herein, we adopted an emerging "cell-drug" strategy via the nanoplatform construction to achieve high aggregation and intratumoral distribution. We fabricated gold nanostars (GNSs) with HER-2 monoclonal antibody (trastuzumab) and near-infrared region (NIR) photosensitizer indocyanine green (ICG) to obtain GNS@ICG-Ab, which combined the photothermal therapy with photodynamic therapy (PTT/PDT) that rely on enhanced photothermal conversion efficiency of GNS and 1O2 generator ICG under the exposure of a NIR laser. Tumor-tropism CIK cells loaded with GNS@ICG-Ab were able to migrate into tumors and make a difference in efficient accumulation and uniform distribution of the GNS@ICG-Ab-CIK nanoplatform inside tumors based on fluorescence, photoacoustic (PA), and computed tomography (CT) imaging observations. Encouraged by the improvements in tumor targeting and retention presented by real-time imaging, we employed the novel nanoplatform to synergistically inhibit the progression of tumors in SK-BR-3 tumor-bearing mice via PTT/PDT and immunotherapy-implemented by CIK cells for activating the immune response, and with the specific linkage between trastuzumab and SK-BR-3 tumor cells, our platform could exert a precise strike of PDT/PTT. Taken together, the integrating tri-modal imaging with tri-modal therapy endows CIK-GNS@ICG-Ab with promising potential in cancer theranostics and lays a solid foundation for the development of immune cell application in nanomedicine delivery.
Collapse
Affiliation(s)
- Shujing Liang
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Menglin Sun
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yiting Yang
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Yun Lin
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Chan Feng
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Jie Liu
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| |
Collapse
|
11
|
Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 2021; 137:111236. [PMID: 33486201 DOI: 10.1016/j.biopha.2021.111236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023] Open
Abstract
Currently, stem cell nanotechnology is one of the novel and exciting fields. Certain experimental studies conducted on the interaction of stem cells with nanostructures or nanomaterials have made significant progress. The significance of nanostructures, nanotechnology, and nanomaterials in the development of stem cell-based therapies for degenerative diseases and injuries has been well established. Specifically, the structure and properties of nanomaterials affecting the propagation and differentiation of stem cells have become a new interdisciplinary frontier in material science and regeneration medicines. In the current review, we highlight the recent major progress in this field, explore the application prospects, and discuss the issues, approaches, and challenges, to improve the applications of nanotechnology in the research and development of stem cells.
Collapse
|
12
|
Ghaemi A, Javadi S, Heidari MK, Rashedi H, Yazdian F, Omidi M, Tavakoli Z, Sheikhpour M. Graphene-based materials in drug delivery and growth factor release: A critical review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.wndm.2020.100193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Lu GM, Rong YX, Liang ZJ, Hunag DL, Wu FX, Ma YF, Luo ZZ, Liu XH, Mo S, Li HM. FGF2-induced PI3K/Akt signaling evokes greater proliferation and adipogenic differentiation of human adipose stem cells from breast than from abdomen or thigh. Aging (Albany NY) 2020; 12:14830-14848. [PMID: 32706337 PMCID: PMC7425436 DOI: 10.18632/aging.103547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, human adipose stem cells were isolated from subcutaneous fat in the thigh (htASCs), abdomen (haASCs) and breast (hbASCs). Flow cytometry was used to detect cell surface markers, and an enzyme-linked immunosorbent assay was used to detect paracrine activity. Paracrine gene expression in the three cell types was examined using real-time qPCR, and adipogenic ability was assessed using Oil Red O staining. RNA from third-passage haASCs and hbASCs was sequenced. The results showed that the differentiation potential marker markers CD49d and CD54 were similar across hbASCs from 10 subjects. The hbASCs showed higher colony forming ability and expression of fibroblast growth factor-2, tissue inhibitor of metalloproteinase-1 and stromal cell derived factor-1 than htASCs and haASCs. Stimulating hbASCs with FGF2 promoted adipogenic differentiation, while treating the cells with the PI3K inhibitor LY294002 inhibited differentiation. These results suggest that the PI3K/Akt signaling pathway can promote proliferation and adipogenic differentiation of adipose stem cells, and that activation of this pathway by FGF2 may explain why hbASCs show greater proliferation and adipogenic differentiation than haASCs and htASCs.
Collapse
Affiliation(s)
- Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Yong-Xian Rong
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Zhi-Jie Liang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Dong-Lin Hunag
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Fang-Xiao Wu
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Yan-Fei Ma
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Zhi-Zhai Luo
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Xin-Heng Liu
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Steven Mo
- Nanning Life-Ontology Biotechnology Co., Ltd., Nanning 530229, Guangxi, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| |
Collapse
|
14
|
Application of Nanotechnology in Stem-Cell-Based Therapy of Neurodegenerative Diseases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.
Collapse
|
15
|
Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int 2019; 95:760-773. [PMID: 30827512 DOI: 10.1016/j.kint.2018.10.041] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Tissue macrophages are crucial players in homeostasis, inflammation, and immunity. They are characterized by heterogeneity and plasticity, due to which they display a continuum of phenotypes with M1/M2 presenting 2 extremes of this continuum. M2 macrophages are usually termed in the literature as anti-inflammatory and wound healing. Substantial progress has been made in elucidating the biology of M2 macrophages and their potential for clinical translation. In this review we discuss the current state of knowledge in M2 macrophage research with an emphasis on kidney disease. We explore their therapeutic potential and the challenges in using them as cellular therapies. Some new regulators that shape macrophage polarization and potential areas for future research are also examined.
Collapse
Affiliation(s)
- Titi Chen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia.
| | - Qi Cao
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yiping Wang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - David C H Harris
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
16
|
Radwan RR, Mohamed HA. Nigella sativa oil modulates the therapeutic efficacy of mesenchymal stem cells against liver injury in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:447-456. [PMID: 29216568 DOI: 10.1016/j.jphotobiol.2017.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
Abstract
Stem cell transplantation is a novel strategy for regenerative medicine in liver disease. This study was conducted to explore the modulatory effect of Nigella sativa oil (NSO) on the therapeutic potential of mesenchymal stem cells (MSCs) against irradiation-induced liver damage in rats. Liver damage was induced by a total body exposure to a single dose of 7Gy. NSO (2mg/kg/day) was then given orally for 4 consecutive weeks starting 24h after irradiation with or without a single intravenous MSCs administration, then rats were sacrificed four weeks after exposure to γ radiation. Data revealed that irradiation elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum, increased hepatic malondialdehyde (MDA) content and reduced hepatic superoxide dismutase (SOD) activity. Furthermore, it caused elevation in pro-inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) associated with reduction in anti-inflammatory cytokine interleukin-10 (IL-10) and it increased fibrogenic marker transforming growth factor-β (TGF-β) in liver tissues. It was observed that combined NSO/MSCs therapy provided more beneficial tissue repair comparable to MSCs alone as demonstrated by modulating the tested parameters. Finally, these results were confirmed by histopathological examination. In conclusion, dual therapy with NSO and MSCs could serve as a promising approach for alleviating radiation-induced liver injury in patients with radiotherapy.
Collapse
Affiliation(s)
- Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Narayanan K, Mishra S, Singh S, Pei M, Gulyas B, Padmanabhan P. Engineering Concepts in Stem Cell Research. Biotechnol J 2017; 12. [PMID: 28901712 DOI: 10.1002/biot.201700066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/07/2017] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
18
|
Lee JH, Mandakhbayar N, El-Fiqi A, Kim HW. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater 2017; 60:93-108. [PMID: 28713017 DOI: 10.1016/j.actbio.2017.07.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric and micro-computed tomographic analyses. The bioactive nanoparticles releasing both Sr ion and Phenamil drug are considered to be a promising therapeutic nanocarrier platform for hard tissue regeneration. Furthermore, this novel ion/drug co-delivery concept through nanoparticles can be extensively used for other tissues that require different therapeutic treatment. STATEMENT OF SIGNIFICANCE This study reports a novel design concept in inorganic nanoparticle delivery system for hard tissues - the co-delivery of therapeutic molecules comprised of ion (Sr) and drug (Phenamil) through a unique nanoparticle of mesoporous bioactive glass (MBN). The physico-chemical and biological properties of MBN enabled an effective loading of both therapeutic molecules and a subsequently sustained/controlled release. The co-delivered Sr and Phenamil demonstrated significant stimulation of adult stem cell differentiation in vitro and osseous/dentinal regeneration in vivo, through BMP signaling pathways. We consider the current combination of Sr ion with Phenamil is suited for the osteo/odontogenesis of stem cells for hard tissue regeneration, and further, this ion/drug co-delivery concept can extend the applications to other areas that require specific cellular and tissue functions.
Collapse
|
19
|
Corradetti B, Taraballi F, Martinez JO, Minardi S, Basu N, Bauza G, Evangelopoulos M, Powell S, Corbo C, Tasciotti E. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci Rep 2017; 7:7991. [PMID: 28801676 PMCID: PMC5554184 DOI: 10.1038/s41598-017-08687-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
A major challenge in regenerative medicine is to improve therapeutic cells' delivery and targeting using an efficient and simple protocol. Mesenchymal stem cells (MSC) are currently employed for the treatment of inflammatory-based diseases, due to their powerful immunosoppressive potential. Here we report a simple and versatile method to transiently overexpress the hyaluronic acid (HA) receptor, CD44, on MSC membranes, to improve their homing potential towards an inflammatory site without affecting their behavior. The effect of HA-coatings on murine MSC was functionally determined both, in vitro and in vivo as a consequence of the transient CD44 overexpression induced by HA. Data obtained from the in vitro migration assay demonstrated a two-fold increase in the migratory potential of HA-treated MSC compared to untreated cells. In an LPS-induced inflamed ear murine model, HA-treated MSC demonstrated a significantly higher inflammatory targeting as observed at 72 hrs as compared to untreated cells. This increased accumulation for HA-treated MSC yielded a substantial reduction in inflammation as demonstrated by the decrease in the expression of pro-inflammatory markers and by the induction of a pro-regenerative environment.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Orthopaedic & Sports Medicine, The Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Silvia Minardi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Nupur Basu
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Centre for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, SA2 8PP, Wales, UK
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Sebastian Powell
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Centre for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, SA2 8PP, Wales, UK.
- Department of Orthopaedic & Sports Medicine, The Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Ding Y, Su Y, Lv Z, Sun H, Bi X, Lu L, Zhou H, You Z, Wang Y, Ruan J, Gu P, Fan X. Poly (fumaroyl bioxirane) maleate: A potential functional scaffold for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:249-259. [PMID: 28482524 DOI: 10.1016/j.msec.2017.02.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022]
Abstract
Proper scaffolds combined with mesenchymal stem cells (MSCs) represent a promising strategy for repairing bone defects. In a previous study, poly (fumaroyl bioxirane) maleate (PFM), a newly developed functional polymer with numerous functional groups, exhibited excellent biocompatibility and enhanced the alkaline phosphatase (ALP) activity of osteoblasts in vitro. Here, to provide further and comprehensive insight into the application of PFM in bone tissue engineering, we investigated the osteoinductive potential of PFM cultured with rat adipose-derived mesenchymal stem cells (rADSCs). The results showed that PFM resulted in greater proliferation of rADSCs and that the PFM substrate had stronger osteoinductivity than PLGA and the control, as indicated by the significant upregulation of osteogenesis-related genes, proteins and calcium mineralization in vitro. Next, PFM was combined with rADSCs to repair a critical-sized calvarial defect in rats. Compared to the PLGA scaffold, the PFM scaffold significantly promoted new bone formation and exhibited excellent effects in repairing rat calvarial defects. In conclusion, PFM possesses strong osteoinductivity, which could markedly enhance bone regeneration, suggesting that PFM could serve as a promising and effective optimization method for traditional scaffolds in bone regeneration.
Collapse
Affiliation(s)
- Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Yun Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Ziyin Lv
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Xiaoping Bi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Zhengwei You
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Yadong Wang
- Departments of Bioengineering, Chemical Engineering, Surgery, and the McGowan Institute, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China.
| |
Collapse
|
21
|
Lee S, Kivimäe S, Dolor A, Szoka FC. Macrophage-based cell therapies: The long and winding road. J Control Release 2016; 240:527-540. [PMID: 27422609 PMCID: PMC5064880 DOI: 10.1016/j.jconrel.2016.07.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
In the quest for better medicines, attention is increasingly turning to cell-based therapies. The rationale is that infused cells can provide a targeted therapy to precisely correct a complex disease phenotype. Between 1987 and 2010, autologous macrophages (MΦs) were used in clinical trials to treat a variety of human tumors; this approach provided a modest therapeutic benefit in some patients but no lasting remissions. These trials were initiated prior to an understanding of: the complexity of MΦ phenotypes, their ability to alter their phenotype in response to various cytokines and/or the environment, and the extent of survival of the re-infused MΦs. It is now known that while inflammatory MΦs can kill tumor cells, the tumor environment is able to reprogram MΦs into a tumorigenic phenotype; inducing blood vessel formation and contributing to a cancer cell growth-promoting milieu. We review how new information enables the development of large numbers of ex vivo generated MΦs, and how conditioning and gene engineering strategies are used to restrict the MΦ to an appropriate phenotype or to enable production of therapeutic proteins. We survey applications in which the MΦ is loaded with nanomedicines, such as liposomes ex vivo, so when the drug-loaded MΦs are infused into an animal, the drug is released at the disease site. Finally, we also review the current status of MΦ biodistribution and survival after transplantation into an animal. The combination of these recent advances opens the way for improved MΦ cell therapies.
Collapse
Affiliation(s)
- Simon Lee
- The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA
| | - Saul Kivimäe
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA
| | - Aaron Dolor
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA
| | - Francis C Szoka
- The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA; Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA.
| |
Collapse
|