1
|
Kumar S, Corkran M, Cheema Y, Scull MA, Duncan GA. AAV-mediated MUC5AC siRNA delivery to prevent mucociliary dysfunction in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642720. [PMID: 40161599 PMCID: PMC11952410 DOI: 10.1101/2025.03.12.642720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The main structural components of mucus produced in the lung are mucin 5B (MUC5B) and mucin 5AC (MUC5AC) where a relatively higher expression of MUC5B is typical in health. In the lungs of individuals with asthma, there is a shift from MUC5B to MUC5AC as the predominantly secreted mucin which has been shown to impair mucociliary clearance (MCC) and increase mucus plug formation in the airways. Given its role in asthmatic lung disease, MUC5AC represents a potential therapeutic target where a gene delivery approach could be leveraged to modulate its expression. For these purposes, we explored adeno-associated virus serotype 6 (AAV6), as a lung-tropic viral gene vector to target airway epithelial cells and reduce MUC5AC expression via siRNA delivery. We confirmed that AAV6 was able to transduce epithelial cells in the airways of healthy mice with high transgene expression in mucus-secreting goblet cells. Using multiple particle tracking analysis, we observed that AAV6 was capable of penetrating both normal and MUC5AC-enriched mucus barriers. Successful transduction with AAV6 was also achieved in IL-13 stimulated human airway epithelial (HAE) cells differentiated at air-liquid interface (ALI). AAV6 expressing MUC5AC-targeting siRNA was evaluated as a prophylactic treatment in HAE cell cultures before IL-13 challenge. IL-13 stimulated HAE cultures treated with AAV6-MUC5AC siRNA had significantly reduced MUC5AC mRNA and protein expression compared to untreated controls. Mucociliary transport in IL-13 stimulated HAE cultures was also maintained and comparable to healthy controls following AAV6-MUC5AC siRNA treatment. Together, these findings support that AAV6 may be used as an inhaled gene therapy to suppress MUC5AC overexpression and restore normal airway clearance function in asthma.
Collapse
Affiliation(s)
- Sahana Kumar
- Department of Cell Biology & Molecular Genetics, Maryland Pathogen Research Institute (MPRI) University of Maryland, College Park, MD 20742
| | - Maria Corkran
- Department of Cell Biology & Molecular Genetics, Maryland Pathogen Research Institute (MPRI) University of Maryland, College Park, MD 20742
| | - Yahya Cheema
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Margaret A Scull
- Department of Cell Biology & Molecular Genetics, Maryland Pathogen Research Institute (MPRI) University of Maryland, College Park, MD 20742
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Gregg A Duncan
- Department of Cell Biology & Molecular Genetics, Maryland Pathogen Research Institute (MPRI) University of Maryland, College Park, MD 20742
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
2
|
Cui L, Yang Y, Hao Y, Zhao H, Zhang Y, Wu T, Song X. Nanotechnology-Based Therapeutics for Airway Inflammatory Diseases. Clin Rev Allergy Immunol 2025; 68:12. [PMID: 39928241 PMCID: PMC11811441 DOI: 10.1007/s12016-024-09019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
Under the concept of "one airway, one disease", upper and lower airway inflammatory diseases share similar pathogenic mechanisms and are collectively referred to as airway inflammatory diseases. With industrial development and environmental changes, the incidence of these diseases has gradually increased. Traditional treatments, including glucocorticoids, antihistamines, and bronchodilators, have alleviated much of the discomfort experienced by patients. However, conventional drug delivery routes have inherent flaws, such as significant side effects, irritation of the respiratory mucosa, and issues related to drug deactivation. In recent years, nanomaterials have emerged as excellent carriers for drug delivery and are being increasingly utilized in the treatment of airway inflammatory diseases. These materials not only optimize the delivery of traditional medications but also facilitate the administration of various new drugs that target novel pathways, thereby enhancing the treatment outcomes of inflammatory diseases. This study reviews the latest research on nano-drug delivery systems used in the treatment of airway inflammatory diseases, covering traditional drugs, immunotherapy drugs, antimicrobial drugs, plant-derived drugs, and RNA drugs. The challenges involved in developing nano-delivery systems for these diseases are discussed, along with a future outlook. This review offers new insights that researchers can utilize to advance further research into the clinical application of nano-drug delivery systems for treating airway inflammatory diseases.
Collapse
Affiliation(s)
- Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yan Hao
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongfei Zhao
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| |
Collapse
|
3
|
Roustazadeh A, Askari M, Heidari MH, Kowsari M, Askari F, Mehrzad J, Hosseinkhani S, Alipour M, Bardania H. Enhancing non-viral gene delivery to human T cells through tuning nanoparticles physicochemical features, modulation cellular physiology, and refining transfection strategies. Biomed Pharmacother 2025; 183:117820. [PMID: 39837215 DOI: 10.1016/j.biopha.2025.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Genetically engineered immune cells hold great promise for treating immune-related diseases, but their development is hindered by technical challenges, primarily related to nucleic acid delivery. Polyethylenimine (PEI) is a cost-effective transfection agent, yet it requires significant optimization for effective T cell transfection. In this study, we comprehensively fine-tuned the characteristics of PEI/DNA nanoparticles, culture conditions, cellular physiology, and transfection protocols to enhance gene delivery into T cells. Gel retardation and dynamic light scattering (DLS) analyses confirmed that PEI effectively bound to DNA, forming size- and charge-adjustable particles based on the N/P ratio, which remained stable in RPMI 1640 medium for 3 days at 25°C. At an N/P ratio of 8.0, these nanoparticles achieved an optimal transfection rate, which improved further with adjustments in DNA dosage and complex volume. Additionally, increasing the cell seeding density and adding complete media shortly after transfection significantly boosted PEI-mediated gene delivery. Notably, reversing the transfection in vials resulted in a 20-fold increase in cellular uptake and transfection efficiency compared to the conventional direct transfection method in culture plates. Finally, modifying cellular physiology with hypotonic extracellular media at pH 9.0 dramatically enhanced transfection rates while maintaining minimal cytotoxicity. These findings could reduce the cost and complexity of preparing engineered T cells, potentially accelerating the development of immune cell therapies for human diseases.
Collapse
Affiliation(s)
- Abazar Roustazadeh
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Maryam Askari
- School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Majid Kowsari
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fatemeh Askari
- Department of Obstetrics and Gynecology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
4
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Shah H, Schlüter S, Amin MU, Abu Dayyih A, Engelhardt KH, Pinnapireddy SR, Preis E, Bakowsky U. In Vitro Photoselective Gene Transfection of Hepatocellular Carcinoma Cells with Hypericin Lipopolyplexes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43416-43429. [PMID: 39121233 PMCID: PMC11345729 DOI: 10.1021/acsami.4c10438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
The lipopolyplex, a multicomponent nonviral gene carrier, generally demonstrates superior colloidal stability, reduced cytotoxicity, and high transfection efficiency. In this study, a new concept, photochemical reaction-induced transfection, using photosensitizer (PS)-loaded lipopolyplexes was applied, which led to enhanced transfection and cytotoxic effects by photoexcitation of the photosensitizer. Hypericin, a hydrophobic photosensitizer, was encapsulated in the lipid bilayer of liposomes. The preformed nanosized hypericin liposomes enclosed the linear polyethylenimine (lPEI)/pDNA polyplexes, resulting in the formation of hypericin lipopolyplexes (Hy-LPP). The diameters of Hy-LPP containing 50 nM hypericin and 0.25 μg of pDNA were 185.6 ± 7.74 nm and 230.2 ± 4.60 nm, respectively, measured by dynamic light scattering (DLS) and atomic force microscopy (AFM). Gel electrophoresis confirmed the encapsulation of hypericin and pDNA in lipopolyplexes. Furthermore, in vitro irradiation of intracellular Hy-LPP at radiant exposures of 200, 600, and 1000 mJ/cm2 was evaluated. It demonstrated 60- to 75-fold higher in vitro luciferase expression than that in nonirradiated cells. The lactate dehydrogenase (LDH) assay supported that reduced transfection was a consequence of photocytotoxicity. The developed photosensitizer-loaded lipopolyplexes improved the transfection efficiency of an exogenous gene or induced photocytotoxicity; however, the frontier lies in the applied photochemical dose. The light-triggered photoexcitation of intracellular hypericin resulted in the generation of reactive oxygen species (ROS), leading to photoselective transfection in HepG2 cells. It was concluded that the two codelivered therapeutics resulted in enhanced transfection and a photodynamic effect by tuning the applied photochemical dose.
Collapse
Affiliation(s)
| | | | | | - Alice Abu Dayyih
- Department of Pharmaceutics
and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Konrad H. Engelhardt
- Department of Pharmaceutics
and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | | | - Eduard Preis
- Department of Pharmaceutics
and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics
and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
7
|
Long J, Wang Y, Jiang X, Ge J, Chen M, Zheng B, Wang R, Wang M, Xu M, Ke Q, Wang J. Nanomaterials Boost CAR-T Therapy for Solid Tumors. Adv Healthc Mater 2024; 13:e2304615. [PMID: 38483400 DOI: 10.1002/adhm.202304615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 05/22/2024]
Abstract
T cell engineering, particularly via chimeric antigen receptor (CAR) modifications for enhancing tumor specificity, has shown efficacy in treating hematologic malignancies. The extension of CAR-T cell therapy to solid tumors, however, is impeded by several challenges: The absence of tumor-specific antigens, antigen heterogeneity, a complex immunosuppressive tumor microenvironment, and physical barriers to cell infiltration. Additionally, limitations in CAR-T cell manufacturing capacity and the high costs associated with these therapies restrict their widespread application. The integration of nanomaterials into CAR-T cell production and application offers a promising avenue to mitigate these challenges. Utilizing nanomaterials in the production of CAR-T cells can decrease product variability and lower production expenses, positively impacting the targeting and persistence of CAR-T cells in treatment and minimizing adverse effects. This review comprehensively evaluates the use of various nanomaterials in the production of CAR-T cells, genetic modification, and in vivo delivery. It discusses their underlying mechanisms and potential for clinical application, with a focus on improving specificity and safety in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, 1001 Xueyuan Road, Shenzhen, 518055, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, 362000, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Qi Ke
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| |
Collapse
|
8
|
Pu X, Li Z, Chen R, Shi J, Qin J, Zhu Y, Du J. Lung-selective nucleic acid vectors generated by in vivo lung-targeting-protein decoration of polyplexes. Biomater Sci 2024; 12:3600-3609. [PMID: 38836707 DOI: 10.1039/d4bm00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nucleic acid drugs show immense therapeutic potential, but achieving selective organ targeting (SORT) for pulmonary disease therapy remains a formidable challenge due to the high mortality rate caused by pulmonary embolism via intravenous administration or the mucus barrier in the respiratory tract via nebulized delivery. To meet this important challenge, we propose a new strategy to prepare lung-selective nucleic-acid vectors generated by in vivo decoration of lung-targeting proteins on bioreducible polyplexes. First, we synthesized polyamidoamines, named pabol and polylipo, to encapsulate and protect nucleic acids, forming polyamidoamines/mRNA polyplexes. Second, bovine serum albumin (BSA) was coated on the surface of these polyplexes, called BSA@polyplexes, including BSA@pabol polyplexes and BSA@polylipo polyplexes, to neutralize excess positive charge, thereby enhancing biosafety. Finally, after subcutaneous injection, proteins, especially vitronectin and fibronectins, attached to the polyplexes, resulting in the formation of lung-selective nucleic-acid vectors that achieve efficient lung targeting.
Collapse
Affiliation(s)
- Xu Pu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Zejuan Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jinlong Qin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
9
|
Jin Y, Wang X, Kromer AP, Müller JT, Zimmermann C, Xu Z, Hartschuh A, Adams F, Merkel OM. Role of Hydrophobic Modification in Spermine-Based Poly(β-amino ester)s for siRNA Delivery and Their Spray-Dried Powders for Inhalation and Improved Storage. Biomacromolecules 2024; 25:4177-4191. [PMID: 38866384 PMCID: PMC11238323 DOI: 10.1021/acs.biomac.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
After RNAi was first discovered over 20 years ago, siRNA-based therapeutics are finally becoming reality. However, the delivery of siRNA has remained a challenge. In our previous research, we found that spermine-based poly(β-amino ester)s are very promising for siRNA delivery. However, the role of hydrophobic modification in siRNA delivery of spermine-based poly(β-amino ester)s is not fully understood yet. In the current work, we synthesized spermine-based poly(β-amino ester)s with different percentages of oleylamine side chains, named P(SpOABAE). The chemical structures of the polymers were characterized by 1H NMR. The polymers showed efficient siRNA encapsulation determined by SYBR Gold assays. The hydrodynamic diameters of the P(SpOABAE) polyplexes from charge ratio N/P 1 to 20 were 30-100 nm except for aggregation phenomena observed at N/P 3. Morphology of the polyplexes was visualized by atomic force microscopy, and cellular uptake was determined by flow cytometry in H1299 cells, where all the polyplexes showed significantly higher cellular uptake than hyperbranched polyethylenimine (25 kDa). The most hydrophobic P(SpOABAE) polyplexes were able to achieve more than 90% GFP knockdown in H1299/eGFP cells. The fact that gene silencing efficacy increased with hydrophobicity but cellular uptake was affected by both charge and hydrophobic interactions highlights the importance of endosomal escape. For pulmonary administration and improved storage stability, the polyplexes were spray-dried. Results confirmed the maintained siRNA activity after storage for 3 months at room temperature, indicating potential for dry powder inhalation.
Collapse
Affiliation(s)
- Yao Jin
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Xiaoxuan Wang
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Adrian P.E. Kromer
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Joschka T. Müller
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christoph Zimmermann
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Zehua Xu
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstr.
5-13, 81377 Munich, Germany
| | - Achim Hartschuh
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstr.
5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Ludwig-Maximilians-Universität
München, 80799 München, Germany
| | - Friederike Adams
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Ludwig-Maximilians-Universität
München, 80799 München, Germany
| |
Collapse
|
10
|
Binder J, Winkeljann J, Steinegger K, Trnovec L, Orekhova D, Zähringer J, Hörner A, Fell V, Tinnefeld P, Winkeljann B, Frieß W, Merkel OM. Closing the Gap between Experiment and Simulation─A Holistic Study on the Complexation of Small Interfering RNAs with Polyethylenimine. Mol Pharm 2024; 21:2163-2175. [PMID: 38373164 PMCID: PMC7616749 DOI: 10.1021/acs.molpharmaceut.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Rational design is pivotal in the modern development of nucleic acid nanocarrier systems. With the rising prominence of polymeric materials as alternatives to lipid-based carriers, understanding their structure-function relationships becomes paramount. Here, we introduce a newly developed coarse-grained model of polyethylenimine (PEI) based on the Martini 3 force field. This model facilitates molecular dynamics simulations of true-sized PEI molecules, exemplified by molecules with molecular weights of 1.3, 5, 10, and 25 kDa, with degrees of branching between 50.0 and 61.5%. We employed this model to investigate the thermodynamics of small interfering RNA (siRNA) complexation with PEI. Our simulations underscore the pivotal role of electrostatic interactions in the complexation process. Thermodynamic analyses revealed a stronger binding affinity with increased protonation, notably in acidic (endosomal) pH, compared to neutral conditions. Furthermore, the molecular weight of PEI was found to be a critical determinant of binding dynamics: smaller PEI molecules closely enveloped the siRNA, whereas larger ones extended outward, facilitating the formation of complexes with multiple RNA molecules. Experimental validations, encompassing isothermal titration calorimetry and single-molecule fluorescence spectroscopy, aligned well with our computational predictions. Our findings not only validate the fidelity of our PEI model but also accentuate the importance of in silico data in the rational design of polymeric drug carriers. The synergy between computational predictions and experimental validations, as showcased here, signals a refined and precise approach to drug carrier design.
Collapse
Affiliation(s)
- Jonas Binder
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Joshua Winkeljann
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Katharina Steinegger
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Lara Trnovec
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Daria Orekhova
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Jonas Zähringer
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Andreas Hörner
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Valentin Fell
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Philip Tinnefeld
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Benjamin Winkeljann
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Wolfgang Frieß
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Olivia M Merkel
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| |
Collapse
|
11
|
Jürgens DC, Müller JT, Nguyen A, Merkel OM. Tailoring lipid nanoparticles for T-cell targeting in allergic asthma: Insights into efficacy and specificity. Eur J Pharm Biopharm 2024; 198:114242. [PMID: 38442794 PMCID: PMC7616735 DOI: 10.1016/j.ejpb.2024.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Asthma impacts over 300 million patients globally, with significant health implications, especially in cases of its allergic subtype. The disease is characterized by a complex interplay of airway inflammation and immune responses, often mediated by Th2 cell-related cytokines. In this study, we engineered lipid nanoparticles (LNPs) to specifically deliver therapeutic siRNA via the transferrin receptor to T cells. Strain-promoted azide-alkyne cycloaddition (SPAAC) was employed for the conjugation of transferrin ligands to PEGylated lipids in the LNPs, with the goal of enhancing cellular uptake and gene knockdown. The obtained LNPs exhibited characteristics that make them suitable for pulmonary delivery. Using methods such as nanoparticle tracking analysis (NTA) and enzyme-linked immunosorbent assay (ELISA), we determined the average number of transferrin molecules bound to individual LNPs. Additionally, we found that cellular uptake was ligand-dependent, achieving a GATA3 knockdown of more than 50% in relevant in vitro and ex vivo models. Notably, our findings highlight the limitations inherent to modifying the surface of LNPs, particularly with regard to their targeting capabilities. This work paves the way for future research aimed at optimizing targeted LNPs for the treatment of immunologic diseases such as allergic asthma.
Collapse
Affiliation(s)
- David C Jürgens
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Joschka T Müller
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Anny Nguyen
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany; Ludwig-Maximilians-University Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
12
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
13
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
14
|
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev 2023; 203:115144. [PMID: 37995899 DOI: 10.1016/j.addr.2023.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In recent years, RNA-based therapies have gained much attention as biomedicines due to their remarkable therapeutic effects with high specificity and potency. Lung diseases offer a variety of currently undruggable but attractive targets that could potentially be treated with RNA drugs. Inhaled RNA drugs for the treatment of lung diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome, have attracted more and more attention. A variety of novel nanoformulations have been designed and attempted for the delivery of RNA drugs to the lung via inhalation. However, the delivery of RNA drugs via inhalation poses several challenges. It includes protection of the stability of RNA molecules, overcoming biological barriers such as mucus and cell membrane to the delivery of RNA molecules to the targeted cytoplasm, escaping endosomal entrapment, and circumventing unwanted immune response etc. To address these challenges, ongoing researches focus on developing innovative nanoparticles to enhance the stability of RNA molecules, improve cellular targeting, enhance cellular uptake and endosomal escape to achieve precise delivery of RNA drugs to the intended lung cells while avoiding unwanted nano-bio interactions and off-target effects. The present review first addresses the pathologic hallmarks of different lung diseases, disease-related cell types in the lung, and promising therapeutic targets in these lung cells. Subsequently we highlight the importance of the nano-bio interactions in the lung that need to be addressed to realize disease-related cell-specific delivery of inhaled RNA drugs. This is followed by a review on the physical and chemical characteristics of inhaled nanoformulations that influence the nano-bio interactions with a focus on surface functionalization. Finally, the challenges in the development of inhaled nanomedicines and some key aspects that need to be considered in the development of future inhaled RNA drugs are discussed.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Liangkun Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Zeng Y, Shen M, Pattipeiluhu R, Zhou X, Zhang Y, Bakkum T, Sharp TH, Boyle AL, Kros A. Efficient mRNA delivery using lipid nanoparticles modified with fusogenic coiled-coil peptides. NANOSCALE 2023; 15:15206-15218. [PMID: 37671560 DOI: 10.1039/d3nr02175k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Gene delivery has great potential in modulating protein expression in specific cells to treat diseases. Such therapeutic gene delivery demands sufficient cellular internalization and endosomal escape. Of various nonviral nucleic acid delivery systems, lipid nanoparticles (LNPs) are the most advanced, but still, are very inefficient as the majority are unable to escape from endosomes/lysosomes. Here, we develop a highly efficient gene delivery system using fusogenic coiled-coil peptides. We modified LNPs, carrying EGFP-mRNA, and cells with complementary coiled-coil lipopeptides. Coiled-coil formation between these lipopeptides induced fast nucleic acid uptake and enhanced GFP expression. The cellular uptake of coiled-coil modified LNPs is likely driven by membrane fusion thereby omitting typical endocytosis pathways. This direct cytosolic delivery circumvents the problems commonly observed with the limited endosomal escape of mRNA. Therefore fusogenic coiled-coil peptide modification of existing LNP formulations to enhance nucleic acid delivery efficiency could be beneficial for several gene therapy applications.
Collapse
Affiliation(s)
- Ye Zeng
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Mengjie Shen
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Xuequan Zhou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Yun Zhang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Thomas Bakkum
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
16
|
Wang C, Wang S, Kang DD, Dong Y. Biomaterials for in situ cell therapy. BMEMAT 2023; 1:e12039. [PMID: 39574564 PMCID: PMC11581612 DOI: 10.1002/bmm2.12039] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 11/24/2024]
Abstract
Cell therapy has revolutionized the treatment of various diseases, such as cancers, genetic disorders, and autoimmune diseases. Currently, most cell therapy products rely on ex vivo cell engineering, which requires sophisticated manufacturing processes and poses safety concerns. The implementation of in situ cell therapy holds the potential to overcome the current limitations of cell therapy and provides a broad range of applications and clinical feasibility in the future. A variety of biomaterials have been developed to improve the function and target delivery to specific cell types due to their excellent biocompatibility, tunable properties, and other functionalities, which provide a reliable method to achieve in vivo modulation of cell reprogramming. In this article, we summarize recent advances in biomaterials for in situ cell therapy including T cells, macrophages, dendritic cells, and stem cells reprogramming leveraging lipid nanoparticles, polymers, inorganic materials, and other biomaterials. Finally, we discuss the current challenges and future perspectives of biomaterials for in situ cell therapy.
Collapse
Affiliation(s)
- Chang Wang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Siyu Wang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Diana D. Kang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yizhou Dong
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Hartl N, Jürgens DC, Carneiro S, König AC, Xiao X, Liu R, Hauck SM, Merkel OM. Protein corona investigations of polyplexes with varying hydrophobicity - From method development to in vitro studies. Int J Pharm 2023; 643:123257. [PMID: 37482228 DOI: 10.1016/j.ijpharm.2023.123257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.
Collapse
Affiliation(s)
- Natascha Hartl
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - David C Jürgens
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simone Carneiro
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ann-Christine König
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Ximian Xiao
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Runhui Liu
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Stefanie M Hauck
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Olivia M Merkel
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
18
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
19
|
Kandil R, Baldassi D, Böhlen S, Müller JT, Jürgens DC, Bargmann T, Dehmel S, Xie Y, Mehta A, Sewald K, Merkel OM. Targeted GATA3 knockdown in activated T cells via pulmonary siRNA delivery as novel therapy for allergic asthma. J Control Release 2023; 354:305-315. [PMID: 36634709 PMCID: PMC7614985 DOI: 10.1016/j.jconrel.2023.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Sebastian Böhlen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - David C Jürgens
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Tonia Bargmann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yuran Xie
- Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Katherina Sewald
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
20
|
Paul D, Miller MH, Born J, Samaddar S, Ni H, Avila H, Krishnamurthy VR, Thirunavukkarasu K. The Promising Therapeutic Potential of Oligonucleotides for Pulmonary Fibrotic Diseases. Expert Opin Drug Discov 2023; 18:193-206. [PMID: 36562410 DOI: 10.1080/17460441.2023.2160439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fibrotic lung diseases represent a large subset of diseases with an unmet clinical need. Oligonucleotide therapies (ONT) are a promising therapeutic approach for the treatment of pulmonary disease as they can inhibit pathways that are otherwise difficult to target. Additionally, targeting the lung specifically with ONT is advantageous because it reduces the possibilities of systemic side effects and tolerability concerns. AREAS COVERED This review presents the chemical basis of designing various ONTs currently known to treat fibrotic lung diseases. Further, the authors have also discussed the delivery vehicle, routes of administration, physiological barriers of the lung, and toxicity concerns with ONTs. EXPERT OPINION ONTs provide a promising therapeutic approach for the treatment of fibrotic diseases of the lung, particularly because ONTs directly delivered to the lung show little systemic side effects compared to current therapeutic strategies. Dry powder aerosolized inhalers may be a good strategy for getting ONTs into the lung in humans. However, as of now, no dry powder ONTs have been approved for use in the clinical setting, and this challenge must be overcome for future therapies. Various delivery methods that can aid in direct targeting may also improve the use of ONTs for lung fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Josh Born
- Genetic Medicine, Eli Lilly and Company
| | - Shayak Samaddar
- Bioproduct Drug Development, Eli Lilly and Company, Indianapolis, IN, US
| | | | | | | | | |
Collapse
|
21
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
22
|
Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023; 353:518-534. [PMID: 36496051 PMCID: PMC9900387 DOI: 10.1016/j.jconrel.2022.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
For the longest time, the field of nucleic acid delivery has remained skeptical whether or not polycationic drug carrier systems would ever make it into clinical practice. Yet, with the disclosure of patents on polyethyleneimine-based RNA carriers through leading companies in the field of nucleic acid therapeutics such as BioNTech SE and the progress in clinical studies beyond phase I trials, this aloofness seems to regress. As one of the most striking characteristics of polymer-based vectors, the extraordinary tunability can be both a blessing and a curse. Yet, knowing about the adjustment screws and how they impact the performance of the drug carrier provides the formulation scientist committed to its development with a head start. Here, we equip the reader with a toolbox - a toolbox that should advise and support the developer to conceptualize a cutting-edge poly- or micelleplex system for the delivery of therapeutic nucleic acids; to be specific, to engineer the vector towards maximum endosomal escape performance at minimum toxicity. Therefore, after briefly sketching the boundary conditions of polymeric vector design, we will dive into the topic of endosomal trafficking. We will not only discuss the most recent knowledge of the endo-lysosomal compartment but further depict different hypotheses and mechanisms that facilitate the endosomal escape of polyplex systems. Finally, we will combine the different facets introduced in the previous chapters with the fundamental building blocks of polymer vector design and evaluate the advantages and drawbacks. Throughout the article, a particular focus will be placed on cellular peculiarities, not only as an additional barrier, but also to give inspiration to how such cell-specific traits might be capitalized on.
Collapse
Affiliation(s)
- Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany
| | - David C. Keul
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany,Corresponding author at: Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany
| |
Collapse
|
23
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
24
|
Dowling CV, Cevaal PM, Faria M, Johnston ST. On predicting heterogeneity in nanoparticle dosage. Math Biosci 2022; 354:108928. [PMID: 36334785 DOI: 10.1016/j.mbs.2022.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
Nanoparticles are increasingly employed as a vehicle for the targeted delivery of therapeutics to specific cell types. However, much remains to be discovered about the fundamental biology that dictates the interactions between nanoparticles and cells. Accordingly, few nanoparticle-based targeted therapeutics have succeeded in clinical trials. One element that hinders our understanding of nanoparticle-cell interactions is the presence of heterogeneity in nanoparticle dosage data obtained from standard experiments. It is difficult to distinguish between heterogeneity that arises from stochasticity in nanoparticle-cell interactions, and that which arises from heterogeneity in the cell population. Mathematical investigations have revealed that both sources of heterogeneity contribute meaningfully to the heterogeneity in nanoparticle dosage. However, these investigations have relied on simplified models of nanoparticle internalisation. Here we present a stochastic mathematical model of nanoparticle internalisation that incorporates a suite of relevant biological phenomena such as multistage internalisation, cell division, asymmetric nanoparticle inheritance and nanoparticle saturation. Critically, our model provides information about nanoparticle dosage at an individual cell level. We perform model simulations to examine the influence of specific biological phenomena on the heterogeneity in nanoparticle dosage in the absence of heterogeneity in the cell population. Under certain modelling assumptions, we derive analytic approximations of the nanoparticle dosage distribution. We demonstrate that the analytic approximations are accurate, and show that nanoparticle dosage can be described by a Poisson mixture distribution with rate parameters that are a function of Beta-distributed random variables. We discuss the implications of the analytic results with respect to parameter estimation and model identifiability from standard experimental data. Finally, we highlight extensions and directions for future research.
Collapse
Affiliation(s)
- Celia V Dowling
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Paula M Cevaal
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Australia.
| |
Collapse
|
25
|
Miguel Pereira Souza L, Camacho Lima M, Filipe Silva Bezerra L, Silva Pimentel A. Transposition of polymer-encapsulated small interfering RNA through lung surfactant models at the air-water interface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Li R, Chen Z, Li J, Dai Z, Yu Y. Nano-drug delivery systems for T cell-based immunotherapy. NANO TODAY 2022; 46:101621. [DOI: 10.1016/j.nantod.2022.101621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
28
|
Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022; 39:1065-1083. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Charos Omonova Tuychi Qizi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Merkel OM. Can pulmonary RNA delivery improve our pandemic preparedness? J Control Release 2022; 345:549-556. [PMID: 35358609 PMCID: PMC8958776 DOI: 10.1016/j.jconrel.2022.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
The coronavirus pandemic has changed our perception of RNA medicines, and RNA vaccines have revolutionized our pandemic preparedness. But are we indeed prepared for the next variant or the next emerging virus? How can we prepare? And what does the role of inhaled antiviral RNA play in this regard? When the pandemic started, I rerouted much of the ongoing inhaled RNA delivery research in my group towards the inhibition and treatment of respiratory viral infections. Two years later, I have taken the literature, past and ongoing clinical trials into consideration and have gained new insights based on our collaborative research which I will discuss in this oration.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany.
| |
Collapse
|
30
|
Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/02/2025]
Abstract
AbstractThe respiratory system holds crucial importance in the biology of vertebrate animals. Injuries of the respiratory system caused by viral infections (e.g., by COVID‐19, MERS, and SARS) can lead to severe or lethal conditions. So far there are no effective treatments for respiratory injuries. This represents a highly unmet clinical need, e.g., during the current COVID‐19 pandemic. Nanomedicines have high potential in the treatment of respiratory injuries. In this review, the pathology and clinical treatments of major respiratory injuries, acute lung injury, and acute respiratory distress syndrome are briefly summarized. The review primarily focuses on nanomedicines based on liposomes, solid lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, which are tested in preclinical models for the treatment of respiratory injuries. These nanomedicines are utilized to deliver a variety of therapeutic agents, including corticosteroids, statins, and nucleic acids. Furthermore, nanomedicines are also investigated for other respiratory diseases including chronic obstructive pulmonary disease and asthma. The promising preclinical results of various nanoformulations from these studies suggest the potential of nanomedicines for future clinical management of respiratory viral infections and diseases.
Collapse
Affiliation(s)
- Dong Liu
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Mengmeng Long
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| | - Leilei Gao
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yanjun Chen
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Fang Li
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yang Shi
- Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University 52074 Aachen Germany
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| |
Collapse
|
31
|
Baldassi D, Ambike S, Feuerherd M, Cheng CC, Peeler DJ, Feldmann DP, Porras-Gonzalez DL, Wei X, Keller LA, Kneidinger N, Stoleriu MG, Popp A, Burgstaller G, Pun SH, Michler T, Merkel OM. Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes. J Control Release 2022; 345:661-674. [PMID: 35364120 PMCID: PMC8963978 DOI: 10.1016/j.jconrel.2022.03.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/11/2023]
Abstract
SARS-CoV-2 has been the cause of a global pandemic since 2019 and remains a medical urgency. siRNA-based therapies are a promising strategy to fight viral infections. By targeting a specific region of the viral genome, siRNAs can efficiently downregulate viral replication and suppress viral infection. However, to achieve the desired therapeutic activity, siRNA requires a suitable delivery system. The VIPER (virus-inspired polymer for endosomal release) block copolymer has been reported as promising delivery system for both plasmid DNA and siRNA in the past years. It is composed of a hydrophilic block for condensation of nucleic acids as well as a hydrophobic, pH-sensitive block that, at acidic pH, exposes the membrane lytic peptide melittin, which enhances endosomal escape. In this study, we aimed at developing a formulation for pulmonary administration of siRNA to suppress SARS-CoV-2 replication in lung epithelial cells. After characterizing siRNA/VIPER polyplexes, the activity and safety profile were confirmed in a lung epithelial cell line. To further investigate the activity of the polyplexes in a more sophisticated cell culture system, an air-liquid interface (ALI) culture was established. siRNA/VIPER polyplexes reached the cell monolayer and penetrated through the mucus layer secreted by the cells. Additionally, the activity against wild-type SARS-CoV-2 in the ALI model was confirmed by qRT-PCR. To investigate translatability of our findings, the activity against SARS-CoV-2 was tested ex vivo in human lung explants. Here, siRNA/VIPER polyplexes efficiently inhibited SARS-CoV-2 replication. Finally, we verified the delivery of siRNA/VIPER polyplexes to lung epithelial cells in vivo, which represent the main cellular target of viral infection in the lung. In conclusion, siRNA/VIPER polyplexes efficiently delivered siRNA to lung epithelial cells and mediated robust downregulation of viral replication both in vitro and ex vivo without toxic or immunogenic side effects in vivo, demonstrating the potential of local siRNA delivery as a promising antiviral therapy in the lung.
Collapse
Affiliation(s)
- Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Shubhankar Ambike
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum Munich, Trogerstr.30, 81675 Munich, Germany
| | - Martin Feuerherd
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum Munich, Trogerstr.30, 81675 Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum Munich, Trogerstr.30, 81675 Munich, Germany
| | - David J Peeler
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
| | - Daniel P Feldmann
- Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States
| | - Diana Leidy Porras-Gonzalez
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Wei
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lea-Adriana Keller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Mircea Gabriel Stoleriu
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Pulmonary Hospital; Marchioninistraße 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
| | - Thomas Michler
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Zentrum Munich, Trogerstr.30, 81675 Munich, Germany; Institute of Laboratory Medicine, University Hospital, LMU, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
32
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
33
|
Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2022; 83:100991. [PMID: 34366123 PMCID: PMC8792155 DOI: 10.1016/j.mam.2021.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
The use of a variety of RNA molecules, including messenger RNA, small interfering RNA, and microRNA, has shown great potential for prevention and therapy of many pathologies. However, this therapeutic promise has historically been limited by short in vivo half-life, lack of targeted delivery, and safety issues. Nanoparticle (NP)-mediated delivery has been a successful platform to overcome these limitations, with multiple formulations already in clinical trials and approved by the FDA. Although there is a diversity of NPs in terms of material formulation, size, shape, and charge that have been proposed for biomedical applications, specific modifications are required to facilitate sufficient RNA delivery and adequate therapeutic effect. This includes optimization of (i) RNA incorporation into NPs, (ii) specific cell targeting, (iii) cellular uptake and (iv) endosomal escape ability. In this review, we summarize the methods by which NPs can be modified for RNA delivery to achieve optimal therapeutic effects.
Collapse
Affiliation(s)
- Alysia Cox
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Siyoung A Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022; 342:362-371. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
Harnessing RNA-based therapeutics for cancer, inflammation, and viral diseases is hindered by poor delivery of therapeutic RNA molecules. Targeting leukocytes to treat these conditions holds great promise, as they are key participants in their initiation, drug response, and treatment. The various extra- and intra-cellular obstacles that impediment the clinical implementation of therapeutic RNA can be overcome by utilizing drug delivery systems. However, delivery of therapeutic RNA to leukocytes poses an even greater challenge as these cells are difficult to reach and transfect upon systemic administration. This review briefly describes the existing successful delivery strategies that efficiently target leukocytes in vivo and discuss their potential clinical applicability.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
35
|
Wu M, Yang J, Liu T, Xuan P, Bu B, Xu X, Wu R. Effect of Src tyrosine kinase on a rat model of asthma. Exp Ther Med 2021; 23:172. [PMID: 35069853 PMCID: PMC8764580 DOI: 10.3892/etm.2021.11095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Src tyrosine kinase is a protein encoded by the Src gene. The present study aimed to determine the role of Src protein kinase in asthma using small interfering RNA (siRNA) technology. Several Src siRNAs were designed and the most effective siRNA pair was selected. A rat model of asthma was established using ovalbumin, and the rats were treated with Src siRNA, empty vector or phosphate-buffered saline (PBS). A non-asthmatic control group was also established. The rats were clinically observed and Src mRNA and protein levels were measured by reverse transcription-quantitative PCR and western blot analysis, respectively. Pathological observation of the lung tissue, counting of white blood cells (WBCs) and eosinophils (EOSs) and analysis of the concentrations of IL-5, IL-33 and IFN-γ in the bronchoalveolar lavage fluid were performed. The expression levels of Src mRNA in the control, PBS, empty vector and siRNA groups were 110±30.7x103, 253±55.4x103, 254±41.3x103 and 180±50.9x103, respectively. Histochemical analysis of the lung tissue of rats in the siRNA group exhibited a relatively complete lung structure and little damage to the alveolar cavity. Src protein expression and IL-5, IL-33 levels, WBC and EOS levels were positively correlated with Src mRNA expression, while the IFN-γ concentration was negatively correlated with Src mRNA expression. These results indicate that Src knockdown inhibits the release of tracheal inflammatory factors and significantly alleviates asthma in rats. In conclusion, the present study utilized a gene transfer technique to interfere with the expression of Src in rats, which decreased the levels of IL-5, IL-33, WBCs and EOSs and increased the level of IFN-γ; these changes effectively ameliorated the condition of the trachea in asthmatic rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Jingping Yang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Tao Liu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Pengfei Xuan
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Baoying Bu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Xiyuan Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Rina Wu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| |
Collapse
|
36
|
Lee NK, Kim SN, Park CG. Immune cell targeting nanoparticles: a review. Biomater Res 2021; 25:44. [PMID: 34930494 PMCID: PMC8690904 DOI: 10.1186/s40824-021-00246-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Immune cells are attractive targets for therapy as they are direct participants in a variety of diseases. Delivering a therapeutic agent only to cells that act on a disease by distinguishing them from other cells has the advantage of concentrating the therapeutic effect and lowering systemic side effects. Distinguishing each immune cell from other immune cells to deliver substances, including drugs and genes, can be achieved using nanotechnology. And also nanoparticles can ensure in vivo stability and sustained drug release. In addition, there is an ease of surface modification, which is an important characteristic that can be utilized in targeted drug delivery systems. This characteristic allows us to utilize various properties that are specifically expressed in each immune cell. A number of studies have delivered various substances specifically to immune cells through surface engineering with active target ligands that can target each immune cell and enzyme-responsive coating, and demonstrated high therapeutic effects compared to conventional treatments. Progress in research on target delivery has been suggested to be a breakthrough for the treatments of various diseases, including cancer treatment.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
37
|
Krhač Levačić A, Berger S, Müller J, Wegner A, Lächelt U, Dohmen C, Rudolph C, Wagner E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J Control Release 2021; 339:27-40. [PMID: 34547258 DOI: 10.1016/j.jconrel.2021.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023]
Abstract
Currently, messenger RNA (mRNA)-based lipid nanoparticle formulations revolutionize the clinical field. Cationic polymer-based complexes (polyplexes) represent an alternative compound class for mRNA delivery. After establishing branched polyethylenimine with a succinylation degree of 10% (succPEI) as highly effective positive mRNA transfection standard, a diverse library of PEI-like peptides termed sequence-defined oligoaminoamides (OAAs) was screened for mRNA delivery. Notably, sequences, which had previously been identified as potent plasmid DNA (pDNA) or small-interfering RNA (siRNA) carriers, displayed only moderate mRNA transfection activity. A second round of screening combined the cationizable building block succinoyl tetraethylene pentamine and histidines for endosomal buffering, tyrosine tripeptides and various fatty acids for mRNA polyplex stabilization, as well as redox-sensitive units for programmed intracellular release. For the tested OAA carriers, balancing of extracellular stability, endosomal lytic activity, and intracellular release capability was found to be of utmost importance for optimum mRNA transfection efficiency. OAAs with T-shape topology containing two oleic acids as well-stabilizing fatty acids, attached via a dynamic bioreducible building block, displayed superior activity with up to 1000-fold increased transfection efficiency compared to their non-reducible analogs. In the absence of the dynamic linkage, incorporation of shorter less stabilizing fatty acids could only partly compensate for mRNA delivery. Highest GFP expression and the largest fraction of transfected cells (96%) could be detected for the bioreducible OAA with incorporated histidines and a dioleoyl motif, outperforming all other tested carriers as well as the positive control succPEI. The good in vitro performance of the dynamic lead structure was verified in vivo upon intratracheal administration of mRNA complexes in mice.
Collapse
Affiliation(s)
- Ana Krhač Levačić
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Judith Müller
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Andrea Wegner
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
38
|
Lodhi M, Khan MT, Bukhari SMH, Sabir SH, Samra ZQ, Butt H, Akram MS. Probing Transferrin Receptor Overexpression in Gastric Cancer Mice Models. ACS OMEGA 2021; 6:29893-29904. [PMID: 34778662 PMCID: PMC8587131 DOI: 10.1021/acsomega.1c04382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 05/09/2023]
Abstract
Exposure to carcinogenic chemicals, Helicobacter pylori infection, and high dietary salt are the risk factors associated with gastric cancer. Mice models of gastric cancer are key to understanding the cancer mechanism, to discerning the role played by different factors, and to determining therapeutic effects of different treatments. The goal has been to find targets which are only expressed with cancer so that they can be targeted specifically without harming normal cells. One such target could be the transferrin receptor, a glycoprotein receptor that is expressed many-folds on rapidly growing cells due to the greater demand of iron. In this study, gastric cancer was developed in mice (BALB/c) with human cancer-associated risk factors by feeding them with tumor-inducing concentration of methyl nitrosourea, dietary salt, and H. pylori along with normal feed and water. Three strategies were adopted to induce gastric cancer; (1) use of N-methyl-N-nitrosourea (MNU) with high dietary salt (NaCl), (2) infection with H. pylori (isolated from human gastric tissue), and (3) use of MNU along with high concentration of NaCl after H. pylori infection. Mice were dissected after induction, and histological study of gastric tissue was done with Hematoxylin and Eosin staining. A diagnostic probe comprising transferrin conjugated with cadmium sulfide quantum dots was prepared and characterized. It was used to study the transferrin receptor overexpression in gastric tissue of cancer-induced mice relative to the normal mice. Mice of group 3 showed the highest rate of the cancer incidence ratio (96%) along with a high expression of transferrin receptors among the three groups. Histochemical studies showed that different types of gastric cancer depend upon the cancer-induction conditions. The mouse model of group 3 has the potential to be used in the future to study the therapeutic effects of cancer medicines, and overexpression of transferrin receptors could be identified through the designed probe to be used as diagnostics.
Collapse
Affiliation(s)
- Madeeha
Shahzad Lodhi
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore 58810, Pakistan
- Institute
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Tahir Khan
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore 58810, Pakistan
| | | | - Sajjad Hussain Sabir
- Department
of Gastroenterology and Hepatology GHAQ Teaching Hospital, Sahiwal 57000, Pakistan
| | - Zahoor Qadir Samra
- Institute
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 23667, UAE
| | - Muhammad Safwan Akram
- School of
Science & Health, Teesside University, Middlesbrough TS1 3BA, U.K.
- National
Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, U.K.
| |
Collapse
|
39
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
40
|
Ayyadevara VSSA, Ahmadi A, Roh KH. Targeted Association and Intracellular Delivery of Nanocargoes into Primary T Lymphocytes via Interleukin-2 Receptor-Mediated Endocytosis. Bioconjug Chem 2021; 32:1675-1687. [PMID: 34242003 DOI: 10.1021/acs.bioconjchem.1c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the tremendous progress in immunotherapy regimens using T cells, efforts to modulate the functions of T cells are still significantly hampered by the lack of reliable methods to deliver various cargoes into the T cells. This ongoing challenge originates from the intrinsic resistance of T cells in taking up exogenous materials. Here, we strategically aimed to hijack the natural endocytosis of Interleukin-2 (IL2) by the activated T cells for the targeted association and intracellular delivery of cargoes in varying sizes. First, we carefully characterized the fluctuations in the expression levels of IL2 receptor (IL2R) subunits (CD25, CD122, and CD132) during the murine primary T cell cultures over 12 days. We identified the highest fraction of T cells that would express the high-affinity trimeric IL2R on Day 3. By examining the association and uptake efficiencies of IL2 molecules that are biotinylated via either random lysine-targeting chemical reaction (using NHS-PEG4-Biotin) or site-specific enzymatic modification (using Avitag sequence), we demonstrated that the most efficient delivery of cargo can be achieved by C-terminal conjugation. Upon confirmation of successful delivery of a small model cargo, streptavidin, we employed superparamagnetic iron oxide nanoparticles (SPIONs) as bigger model cargoes having core diameters of 50, 100, and 200 nm. We examined the association and intracellular delivery of the IL2-conjugated nanocargoes using flow cytometry, confocal laser scanning microscopy, and transmission electron microscopy. While cargoes of all tested sizes were successfully associated with the IL2R-expressing T cells in comparable efficiencies, the uptake efficiencies were inversely proportional to the sizes of the cargoes. Nevertheless, our current definitive report confirms that nanocargoes with a practical maximum size limit around 100-200 nm can be intracellularly delivered into activated primary T cells using IL2R-mediated endocytosis, which opens a new horizon for engineering and manufacturing of various T cell immunotherapeutics.
Collapse
Affiliation(s)
- V S S Abhinav Ayyadevara
- Department of Biotechnology Science and Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Kyung-Ho Roh
- Department of Biotechnology Science and Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States.,Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
41
|
Liu L, Chen Y, Liu C, Yan Y, Yang Z, Chen X, Liu G. Effect of Extracellular Matrix Coating on Cancer Cell Membrane-Encapsulated Polyethyleneimine/DNA Complexes for Efficient and Targeted DNA Delivery In Vitro. Mol Pharm 2021; 18:2803-2822. [PMID: 34086466 DOI: 10.1021/acs.molpharmaceut.1c00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyethyleneimine (PEI) has a good spongy proton effect and is an excellent nonviral gene vector, but its high charge density leads to the instability and toxicity of PEI/DNA complexes. Cell membrane (CM) capsules provide a universal and natural solution for this problem. Here, CM-coated PEI/DNA capsules (CPDcs) were prepared through extrusion, and the extracellular matrix was coated on CPDcs (ECM-CPDcs) for improved targeting. The results showed that compared with PEI/DNA complexes, CPDcs had core-shell structures (PEI/DNA complexes were coated by a 6-10 nm layer), lower cytotoxicity, and obvious homologous targeting. The internalization and transfection efficiency of 293T-CM-coated PEI70k/DNA capsules (293T-CP70Dcs) were 91.8 and 74.5%, respectively, which were higher than those of PEI70k/DNA complexes. Then, the internalization and transfection efficiency of 293T-CP70Dcs were further improved by ECM coating, which were 94.7 and 78.9%, respectively. Then, the internalization and transfection efficiency of 293T-CP70Dcs were further improved by ECM coating, which were 94.7 and 78.9%, respectively. Moreover, the homologous targeting of various CPDcs was improved by ECM coating, and other CPDcs also showed similar effects as 293T-CP70Dcs after ECM coating. These findings suggest that tumor-targeted CPDcs may have considerable advantages in gene delivery.
Collapse
Affiliation(s)
- Liang Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiran Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yujian Yan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhaojun Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gang Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
42
|
Keil TWM, Zimmermann C, Baldassi D, Adams F, Friess W, Mehta A, Merkel OM. Impact of crystalline and amorphous matrices on successful spray drying of siRNA polyplexes for inhalation of nano-in-microparticles. ADVANCED THERAPEUTICS 2021; 4:2100073. [PMID: 34337144 PMCID: PMC7611418 DOI: 10.1002/adtp.202100073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 11/09/2022]
Abstract
To develop stable and inhalable dry powder formulations with long shelf life, we spray dried polyplexes consisting of siRNA and a polyethylenimine based block copolymer in presence of mannitol or trehalose. We investigated the effect of inlet (T-In) and outlet (T-Out) temperature on the recovery of siRNA as well as adsorption effects within the tubing material. Choosing a low abrasion silicon tubing prevented siRNA loss due to adsorption. Mannitol and trehalose formulations preserved siRNA integrity regardless of excipient concentration and temperature at T-Out below the siRNA melting temperature. Trehalose formulations allowed full siRNA recovery whereas mannitol formulations resulted in spray drying induced losses of ~20 % siRNA and of 50-60 % polymer. Mannitol formulations showed optimal aerodynamic characteristics as confirmed by next generation impaction analysis based upon siRNA content. All spray dried formulations resulted in GFP silencing comparable or better than freshly prepared polyplexes. To test if the observed results could be transferred, formulations of siRNA and transferrin-PEI conjugates were spray dried, characterized and used to transfect primary human T cells ex vivo. Results confirmed successful silencing of the Th2 transcription factor GATA3 in primary CD4+ T cells with spray dried formulations as a potential treatment for severe asthma.
Collapse
Affiliation(s)
- Tobias WM Keil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Christoph Zimmermann
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Friederike Adams
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| |
Collapse
|
43
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
44
|
Mehta A, Michler T, Merkel OM. siRNA Therapeutics against Respiratory Viral Infections-What Have We Learned for Potential COVID-19 Therapies? Adv Healthc Mater 2021; 10:e2001650. [PMID: 33506607 PMCID: PMC7995229 DOI: 10.1002/adhm.202001650] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Acute viral respiratory tract infections (AVRIs) are a major burden on human health and global economy and amongst the top five causes of death worldwide resulting in an estimated 3.9 million lives lost every year. In addition, new emerging respiratory viruses regularly cause outbreaks such as SARS-CoV-1 in 2003, the "Swine flu" in 2009, or most importantly the ongoing SARS-CoV-2 pandemic, which intensely impact global health, social life, and economy. Despite the prevalence of AVRIs and an urgent need, no vaccines-except for influenza-or effective treatments were available at the beginning of the COVID-19 pandemic. However, the innate RNAi pathway offers the ability to develop nucleic acid-based antiviral drugs. siRNA sequences against conserved, essential regions of the viral genome can prevent viral replication. In addition, viral infection can be averted prophylactically by silencing host genes essential for host-viral interactions. Unfortunately, delivering siRNAs to their target cells and intracellular site of action remains the principle hurdle toward their therapeutic use. Currently, siRNA formulations and chemical modifications are evaluated for their delivery. This progress report discusses the selection of antiviral siRNA sequences, delivery techniques to the infection sites, and provides an overview of antiviral siRNAs against respiratory viruses.
Collapse
Affiliation(s)
- Aditi Mehta
- Department of PharmacyPharmaceutical Technology and BiopharmaceuticsLudwig‐Maximilians‐Universität MünchenButenandtstraße 5Munich81377Germany
| | - Thomas Michler
- Institute of VirologyTechnische Universität MünchenTrogerstr. 30Munich81675Germany
| | - Olivia M. Merkel
- Department of PharmacyPharmaceutical Technology and BiopharmaceuticsLudwig‐Maximilians‐Universität MünchenButenandtstraße 5Munich81377Germany
| |
Collapse
|
45
|
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS NANO 2021; 15:3736-3753. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Collapse
Affiliation(s)
| | | | - Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Sharon R Lewin
- Victorian Infectious Diseases, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Norouzi P, Motasadizadeh H, Atyabi F, Dinarvand R, Gholami M, Farokhi M, Shokrgozar MA, Mottaghitalab F. Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomater Sci Eng 2021; 7:1074-1087. [PMID: 33539074 DOI: 10.1021/acsbiomaterials.0c01511] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, polyethylenimine (PEI) modified silk fibroin nanoparticles (SFNPs) were prepared for codelivery of doxorubicin (DOX) and survivin siRNA. The prepared NPs were characterized in terms of stability and structural, functional, and physicochemical properties. Moreover, the ability of the conjugate to escape from the endosome and cellular uptake were assessed. Afterward, the in vivo therapeutic efficacy was analyzed in the mice model. The siRNA loaded PEI-SFNPs showed acceptable size, zeta potential, and stability in serum. It also effectively induced apoptosis in the 4T1 mouse mammary tumor cell line. Cellular uptake and endosomal escape analyses confirmed that PEI-SFNPs containing siRNA could escape from the endosome and accumulate in the cytoplasm of 4T1 cells. Real time-PCR indicated the significant decrease in the expression of survivin mRNA in the 4T1 cell line 48 h postincubation with siRNA loaded PEI-SFNPs. In vivo biodistribution of PEI-SFNPs confirmed higher accumulation of SFNPs in the tumor site compared with other organs. The codelivery systems remarkably reduced the growth rate of breast tumor in the mice model without any obvious weight lost. Histopathological and tunnel staining exhibited more apoptotic tumor cells in the group containing both DOX and survivin siRNA. Tumorigenic breast tissue resected from the animals after treatment with siRNA also exhibited significant suppression of survivin gene. In conclusion, the prepared drug delivery system had an acceptable potential in tumor removal, apoptosis induction in cancer cells, and therapeutic efficacy. Thus, it would be a good candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mahdi Gholami
- Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| |
Collapse
|
47
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
48
|
Harris E, Zimmerman D, Warga E, Bamezai A, Elmer J. Nonviral gene delivery to T cells with Lipofectamine LTX. Biotechnol Bioeng 2021; 118:1693-1706. [PMID: 33480049 DOI: 10.1002/bit.27686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Retroviral gene delivery is widely used in T cell therapies for hematological cancers. However, viral vectors are expensive to manufacture, integrate genes in semirandom patterns, and their transduction efficiency varies between patients. In this study, several nonviral gene delivery vehicles, promoters, and additional variables were compared to optimize nonviral transgene delivery and expression in both Jurkat and primary T cells. Transfection of Jurkat cells was maximized to a high efficiency (63.0% ± 10.9% EGFP+ cells) by transfecting cells with Lipofectamine LTX in X-VIVO 15 media. However, the same method yielded a much lower transfection efficiency in primary T cells (8.1% ± 0.8% EGFP+ ). Subsequent confocal microscopy revealed that a majority of the lipoplexes did not enter the primary T cells, which might be due to relatively low expression levels of heparan sulfate proteoglycans detected via messenger RNA-sequencing. Pyrin and HIN (PYHIN) DNA sensors (e.g., AIM2 and IFI16) that can induce apoptosis or repress transcription after binding cytoplasmic DNA were also detected at high levels in primary T cells. Therefore, transfection of primary T cells appears to be limited at the level of cellular uptake or DNA sensing in the cytoplasm. Both of these factors should be considered in the development of future viral and nonviral T cell gene delivery methods.
Collapse
Affiliation(s)
- Emily Harris
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Devon Zimmerman
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Eric Warga
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Anil Bamezai
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Jacob Elmer
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
49
|
Xu Y, Thakur A, Zhang Y, Foged C. Inhaled RNA Therapeutics for Obstructive Airway Diseases: Recent Advances and Future Prospects. Pharmaceutics 2021; 13:pharmaceutics13020177. [PMID: 33525500 PMCID: PMC7912103 DOI: 10.3390/pharmaceutics13020177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive airway diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma, represent leading causes of morbidity and mortality worldwide. However, the efficacy of currently available inhaled therapeutics is not sufficient for arresting disease progression and decreasing mortality, hence providing an urgent need for development of novel therapeutics. Local delivery to the airways via inhalation is promising for novel drugs, because it allows for delivery directly to the target site of action and minimizes systemic drug exposure. In addition, novel drug modalities like RNA therapeutics provide entirely new opportunities for highly specific treatment of airway diseases. Here, we review state of the art of conventional inhaled drugs used for the treatment of COPD and asthma with focus on quality attributes of inhaled medicines, and we outline the therapeutic potential and safety of novel drugs. Subsequently, we present recent advances in manufacturing of thermostable solid dosage forms for pulmonary administration, important quality attributes of inhalable dry powder formulations, and obstacles for the translation of inhalable solid dosage forms to the clinic. Delivery challenges for inhaled RNA therapeutics and delivery technologies used to overcome them are also discussed. Finally, we present future prospects of novel inhaled RNA-based therapeutics for treatment of obstructive airways diseases, and highlight major knowledge gaps, which require further investigation to advance RNA-based medicine towards the bedside.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Correspondence: ; Tel.: +45-3533-6402
| |
Collapse
|
50
|
Pérez-Alfonso D, López-López M, López-Cornejo P, Romero-Azogil L, Benito E, García-Martín MDG, García-Calderón CB, Rosado IV, Balestra FR, Huertas P, García-Calderón M, Moyá ML. Properties of polyplexes formed between a cationic polymer derived from l-arabinitol and nucleic acids. NEW J CHEM 2021. [DOI: 10.1039/d1nj00606a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyplexes formed between a cationic polymer, PUArab, and both linear and plasmid DNA were studied. The transfection efficiency of PURarab/pDNA was investigated.
Collapse
|