1
|
Farooq U, Mirza MA, Alshetaili A, Mohapatra S, Jain P, Hassan N, Iqbal Z, Ali A. In silico and in vitro assessment of an optimized QbD-guided myoinositol and metformin-loaded mucus-penetrating particle-based gel for the amelioration of PCOS. NANOSCALE ADVANCES 2024; 6:648-668. [PMID: 38235090 PMCID: PMC10791119 DOI: 10.1039/d3na00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a multi-factorial endocrine disorder affecting women of reproductive age. However, its high prevalence and the unsuccessful translation of conventional modalities have made PCOS a pharmaco-therapeutic challenge. In the present study, we explored bi-formulations (comprising metformin-loaded mucus-penetrating nanoparticles, MTF-MPPs, and myoinositol-loaded mucus-penetrating particles, MI-MPPs) incorporated in a carbomer gel tailored for intravaginal administration. For the development and optimization of the MPPs-gel, a QbD (quality by design) approach was employed, including the initial and final risk assessment, central composite design of experts, and method validation. The optimized MTF-MPPs and MI-MPPs possessed an optimum nanometric particle size (195.0 nm and 178.8 nm, respectively) and a PDI of 0.150 and 0.123, respectively, together with a negligible negative zeta potential (-5.19 mV and -6.19 mV, respectively) through the vaginal mucus. It was observed that the MPPs are small and monodisperse with a neutral surface charge. It was observed that the MPPs-gel formulations released approximately 69.86 ± 4.65% of MTF and 67.14 ± 5.74% of MI within 120 h (5 days), which was observed to be sustained unlike MFT-MI-gel with approximately 94.89 ± 4.17% of MTF and 90.91 ± 15% of MI drugs released within 12 h. The confocal microscopy study of rhodamine-loaded MPPs indicated that they possessed a high fluorescence intensity at a depth of 15 μm, while as the penetration trajectory in the vaginal tissue increased to 35 μm, their intensity was reduced, appearing to be more prominent in the blood vessels. The analyzed data of MPPs-gel suggest that the optimized MPPs-gel formulation has potential to reach the targeted area via the uterovaginal mucosa, which has a wide network of blood vessels. Subsequently, in vivo studies were conducted and the results revealed that the proposed MPPs-gel formulation could regulate the estrous cycle of the reproductive system compared to the conventional formulation. Moreover, the formulation significantly reduced the weight of the ovaries compared to the control and conventional vaginal gel. Biochemical estimation showed improved insulin and sex hormone levels. Thus, the obtained data revealed that the deep penetration and deposition of MTF and MI on the targeted area through intravaginal delivery resulted in better therapeutic effects than the conventional vaginal gel. The obtained results confirmed the amelioration of PCOS upon treatment using the prepared MPPs-gel formulation. According to the relevant evaluation studies, it was concluded that MPPs-gel was retained in the vaginal cavity for systemic effects. Also, the sustained and non-irritating therapeutic effect meets the safety aspects. This work serves as a promising strategy for intravaginal drug delivery.
Collapse
Affiliation(s)
- Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj Saudi Arabia
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| |
Collapse
|
2
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
3
|
Krovi SA, Johnson LM, Luecke E, Achilles SL, van der Straten A. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention. Adv Drug Deliv Rev 2021; 176:113849. [PMID: 34186143 DOI: 10.1016/j.addr.2021.113849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
Worldwide, women face compounding reproductive health risks, including human immunodeficiency virus (HIV), sexually-transmitted infections (STIs), and unintended pregnancy. Multipurpose prevention technologies (MPTs) offer combined protection against these overlapping risks in singular prevention products that offer potential for simplified use, lower burden, higher acceptability, and increased public health benefits. Over the past decade, substantial progress has been made in development of extended-release MPTs, which have further potential to grant sexual and reproductive health autonomy to women globally and to offer choice for women to accommodate varying needs during their reproductive lives. Here, we highlight the advances made in injectable, implant, and ring delivery forms, and the importance of incorporating end-user preferences early in the research and development of these products.
Collapse
Affiliation(s)
| | | | - Ellen Luecke
- Women's Global Health Imperative, RTI International, Berkeley, CA, USA
| | - Sharon L Achilles
- University of Pittsburgh, School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Ariane van der Straten
- Center for AIDS Prevention Studies, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA; ASTRA Consulting, Kensington, CA, USA
| |
Collapse
|
4
|
Carson L, Merkatz R, Martinelli E, Boyd P, Variano B, Sallent T, Malcolm RK. The Vaginal Microbiota, Bacterial Biofilms and Polymeric Drug-Releasing Vaginal Rings. Pharmaceutics 2021; 13:pharmaceutics13050751. [PMID: 34069590 PMCID: PMC8161251 DOI: 10.3390/pharmaceutics13050751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
The diversity and dynamics of the microbial species populating the human vagina are increasingly understood to play a pivotal role in vaginal health. However, our knowledge about the potential interactions between the vaginal microbiota and vaginally administered drug delivery systems is still rather limited. Several drug-releasing vaginal ring products are currently marketed for hormonal contraception and estrogen replacement therapy, and many others are in preclinical and clinical development for these and other clinical indications. As with all implantable polymeric devices, drug-releasing vaginal rings are subject to surface bacterial adherence and biofilm formation, mostly associated with endogenous microorganisms present in the vagina. Despite more than 50 years since the vaginal ring concept was first described, there has been only limited study and reporting around bacterial adherence and biofilm formation on rings. With increasing interest in the vaginal microbiome and vaginal ring technology, this timely review article provides an overview of: (i) the vaginal microbiota, (ii) biofilm formation in the human vagina and its potential role in vaginal dysbiosis, (iii) mechanistic aspects of biofilm formation on polymeric surfaces, (iv) polymeric materials used in the manufacture of vaginal rings, (v) surface morphology characteristics of rings, (vi) biomass accumulation and biofilm formation on vaginal rings, and (vii) regulatory considerations.
Collapse
Affiliation(s)
- Louise Carson
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.C.); (P.B.)
| | - Ruth Merkatz
- Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA; (R.M.); (E.M.); (B.V.); (T.S.)
| | - Elena Martinelli
- Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA; (R.M.); (E.M.); (B.V.); (T.S.)
| | - Peter Boyd
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.C.); (P.B.)
| | - Bruce Variano
- Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA; (R.M.); (E.M.); (B.V.); (T.S.)
| | - Teresa Sallent
- Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA; (R.M.); (E.M.); (B.V.); (T.S.)
| | - Robert Karl Malcolm
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.C.); (P.B.)
- Correspondence:
| |
Collapse
|
5
|
Prasher A, Shrivastava R, Dahl D, Sharma-Huynh P, Maturavongsadit P, Pridgen T, Schorzman A, Zamboni W, Ban J, Blikslager A, Dellon ES, Benhabbour SR. Steroid Eluting Esophageal-Targeted Drug Delivery Devices for Treatment of Eosinophilic Esophagitis. Polymers (Basel) 2021; 13:557. [PMID: 33668571 PMCID: PMC7917669 DOI: 10.3390/polym13040557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test "entero-test" and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.
Collapse
Affiliation(s)
- Alka Prasher
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Roopali Shrivastava
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Denali Dahl
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Preetika Sharma-Huynh
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA;
| | - Panita Maturavongsadit
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Tiffany Pridgen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (T.P.); (A.B.)
| | - Allison Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-3290, USA; (A.S.); (W.Z.); (J.B.)
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3290, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599-3290, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, Chapel Hill, NC 27599-3290, USA
| | - William Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-3290, USA; (A.S.); (W.Z.); (J.B.)
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3290, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599-3290, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, Chapel Hill, NC 27599-3290, USA
| | - Jisun Ban
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-3290, USA; (A.S.); (W.Z.); (J.B.)
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3290, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599-3290, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, Chapel Hill, NC 27599-3290, USA
| | - Anthony Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (T.P.); (A.B.)
| | - Evan S. Dellon
- Division of Gastroenterology and Hepatology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599-3290, USA;
| | - Soumya Rahima Benhabbour
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA;
| |
Collapse
|
6
|
Pharmacokinetics and tolerability of a novel progesterone intravaginal ring in sheep. Drug Deliv Transl Res 2020; 9:1008-1016. [PMID: 31066007 DOI: 10.1007/s13346-019-00646-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objectives of this work were to evaluate the in vitro release and in vivo pharmacokinetics and local tolerability of a novel, segmented ethylene-vinyl acetate (EVA) intravaginal ring (IVR) delivering progesterone (P) in drug-naïve ovariectomized female Dorset crossbred sheep. Following preparation and assessment of in vitro release of P, animals were randomized into one of six treatment groups: group 1 Crinone® 8% gel (90 mg); group 2 Prometrium® 200-mg capsules; group 3 placebo IVR; group 4 progesterone (P) IVR 4 mg/day; group 5 P IVR 8 mg/day; or group 6 P IVR 12 mg/day. Crinone 8% gel and Prometrium capsules were administered once daily for 28 days. IVRs were inserted vaginally on day 1 and remained in place through day 14; a new ring was administered on day 15 and was removed at day 28. Animals underwent daily examinations to confirm ring placement, and vaginal irritation was scored from 0 (none) to 4 (severe). Blood samples were taken at scheduled times for pharmacokinetic analysis. Postmortem examinations performed on all IVR groups included vaginal irritation, macroscopic, and microscopic evaluations, including irritation scoring and histopathology. Intravaginal rings were retained over 28 days in all animals. Clinical observations showed no significant abnormal findings in any group. Pharmacokinetic analysis in animals showed sustained release of P over from days 0 through 14 of ring use. Irritation scores and microscopic assessments were consistent with the IVRs being well tolerated. These results will guide future human clinical studies to ultimately develop an IVR for use in women for the prevention of preterm birth.
Collapse
|
7
|
In vitro release testing methods for drug-releasing vaginal rings. J Control Release 2019; 313:54-69. [PMID: 31626862 DOI: 10.1016/j.jconrel.2019.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Drug-releasing vaginal rings are torus-shaped devices, generally fabricated from thermoplastic polymers or silicone elastomers, used to administer pharmaceutical drugs to the human vagina for periods typically ranging from three weeks to twelve months. One of the most important product performance tests for vaginal rings is the in vitro release test. Although it has been fifty years since a vaginal ring device was first described in the scientific literature, and despite seven drug-releasing vaginal rings having been approved for market, there is no universally accepted method for testing in vitro drug release, and only one non-compendial shaking incubator method (for the estradiol-releasing ring Estring®) is described in the US Food and Drug Administration's Dissolution Methods Database. Here, for the first time, we critically review the diverse range of test methods that have been described in the scientific literature for testing in vitro release of drug-releasing vaginal rings. Issues around in vitro-in vivo correlation and modelling of in vitro release data are also discussed.
Collapse
|
8
|
Weiss H, Martell B, Constantine GD, Davis SM, Vidal JD, Mayer PR, Doorbar M, Friend DR. Pharmacokinetics and Tolerability of a Novel 17β-Estradiol and Progesterone Intravaginal Ring in Sheep. J Pharm Sci 2019; 108:2677-2684. [PMID: 30959058 DOI: 10.1016/j.xphs.2019.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
This study reports the preparation, in vitro release, pharmacokinetics, and local tolerability of novel ethylene-vinyl acetate intravaginal rings (IVRs) delivering 17β-estradiol (E2) and progesterone (P), in drug-naïve ovariectomized female Dorset crossbred sheep. After preparation and assessment of in vitro release of E2 and P, animals were randomized to treatment groups 1 or 2 (comparator rings releasing 50 or 100 μg/d E2, respectively), groups 3 or 4 (ethylene-vinyl acetate IVRs, 160 μg/d E2 with 4 [160/4 IVR] or 8 mg/d P [160/8 IVR], respectively), or group 5 (160 μg E2 and 10 mg P administered intravenously). IVRs were placed on day 1 and remained in place through day 29. Animals underwent daily examinations to confirm ring placement, and vaginal irritation was scored from 0 (none) to 4 (severe). Blood samples were taken at scheduled times for pharmacokinetic analysis. Postmortem examinations performed on groups 1-4 were macroscopic and microscopic evaluations, including irritation scoring and histopathology. IVRs were retained over 28 days in all but 1 animal (group 4). In all animal groups, clinical observations showed no significant abnormal findings. Pharmacokinetic analysis in the animals showed sustained release of E2 and P over a 28-day period. Irritation scores and microscopic assessments were consistent with foreign object placement. A novel 2-drug IVR delivery system was well tolerated in a sheep model and pharmacokinetic release was as expected over a 28-day release period. These results will guide future human clinical studies.
Collapse
Affiliation(s)
- Herman Weiss
- Todos Medical, Ltd., West Hempstead, New York 11552
| | - Bridget Martell
- Department of General Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Sarah M Davis
- Charles River Laboratories, Inc., Mattawan, Michigan 49071
| | - Justin D Vidal
- Charles River Laboratories, Inc., Mattawan, Michigan 49071
| | | | - Martin Doorbar
- Research and Development, Crossways Pharma Ltd., Thatcham, UK
| | | |
Collapse
|
9
|
McBride JW, Boyd P, Dias N, Cameron D, Offord RE, Hartley O, Kett VL, Malcolm RK. Vaginal rings with exposed cores for sustained delivery of the HIV CCR5 inhibitor 5P12-RANTES. J Control Release 2019; 298:1-11. [PMID: 30731150 PMCID: PMC6414755 DOI: 10.1016/j.jconrel.2019.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
Abstract
Antiretroviral-releasing vaginal rings are at the forefront of ongoing efforts to develop microbicide-based strategies for prevention of heterosexual transmission of the human immunodeficiency virus (HIV). However, traditional ring designs are generally only useful for vaginal administration of relatively potent, lipophilic, and small molecular weight drug molecules that have sufficient permeability in the non-biodegradable silicone elastomer or thermoplastic polymers. Here, we report a novel, easy-to-manufacture 'exposed-core' vaginal ring that provides sustained release of the protein microbicide candidate 5P12-RANTES, an experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. In vitro release, mechanical, and stability testing demonstrated the utility and practicality of this novel ring design. In a sheep pharmacokinetic model, a ring containing two ¼-length excipient-modified silicone elastomer cores - each containing lyophilised 5P12-RANTES and exposed to the external environment by two large windows - provided sustained concentrations of 5P12-RANTES in vaginal fluid and vaginal tissue between 10 and 10,000 ng/g over 28days, at least 50 and up to 50,000 times the reported in vitro IC50 value.
Collapse
Affiliation(s)
- John W McBride
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | - Robin E Offord
- Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Mintaka Foundation for Medical Research, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Taurin S, Almomen AA, Pollak T, Kim SJ, Maxwell J, Peterson CM, Owen SC, Janát-Amsbury MM. Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. J Drug Target 2017; 26:533-550. [PMID: 29096548 DOI: 10.1080/1061186x.2017.1400551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vaginal drug delivery represents an attractive strategy for local and systemic delivery of drugs otherwise poorly absorbed after oral administration. The rather dense vascular network, mucus permeability and the physiological phenomenon of the uterine first-pass effect can all be exploited for therapeutic benefit. However, several physiological factors such as an acidic pH, constant secretion, and turnover of mucus as well as varying thickness of the vaginal epithelium can impact sustained drug delivery. In recent years, polymers have been designed to tackle challenges mentioned above. In particular, thermosensitive hydrogels hold great promise due to their stability, biocompatibility, adhesion properties and adjustable drug release kinetics. Here, we discuss the physiological and anatomical uniqueness of the vaginal environment and how it impacts the safe and efficient vaginal delivery and also reviewed several thermosensitive hydrogels deemed suitable for vaginal drug delivery by addressing specific characteristics, which are essential to engage the vaginal environment successfully.
Collapse
Affiliation(s)
- Sebastien Taurin
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - Aliyah A Almomen
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Tatianna Pollak
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - Sun Jin Kim
- b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - John Maxwell
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - C Matthew Peterson
- c Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology , University of Utah Health Science Center , Salt Lake City , UT , USA
| | - Shawn C Owen
- b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA.,d Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| | - Margit M Janát-Amsbury
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA.,c Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology , University of Utah Health Science Center , Salt Lake City , UT , USA.,d Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
11
|
Pharmacokinetics of the Protein Microbicide 5P12-RANTES in Sheep following Single-Dose Vaginal Gel Administration. Antimicrob Agents Chemother 2017; 61:AAC.00965-17. [PMID: 28784672 DOI: 10.1128/aac.00965-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
5P12-RANTES, a chemokine analogue that potently blocks the HIV CCR5 coreceptor, is being developed as both a vaginal and rectal microbicide for prevention of sexual transmission of HIV. Here, we report the first pharmacokinetic data for 5P12-RANTES following single-dose vaginal gel administration in sheep. Aqueous gel formulations containing low (1.24-mg/ml), intermediate (6.18-mg/ml), and high (32.0-mg/ml; suspension-type gel) concentrations of 5P12-RANTES were assessed via rheology, syringeability, and in vitro release testing. Following vaginal gel administration to sheep, 5P12-RANTES concentrations were measured in vaginal fluid, vaginal tissue, and serum over a 96-h period. All gels showed non-Newtonian pseudoplastic behavior, with the high-concentration gels exhibiting a greater viscosity and cohesive structure than the intermediate- and low-concentration gels. In in vitro release testing, >90% 5P12-RANTES was released from the low- and intermediate-concentration gels after 72 h. For the high-concentration gel, ∼50% 5P12-RANTES was detected, attributed to protein denaturation during lyophilization and/or subsequent solvation of the protein within the gel matrix. In sheep, 5P12-RANTES concentrations in vaginal fluid, vaginal tissue, and serum increased in a dose-dependent manner. The highest concentrations were measured in vaginal fluid (105 to 107 ng/ml), followed by vaginal tissue (104 to 106 ng/ml). Both of these concentration ranges are several orders of magnitude above the reported half-maximal inhibitory concentrations. The lowest concentration was measured in serum (<102 ng/ml). The 5P12-RANTES pharmacokinetic data are similar to those reported previously for other candidate microbicides. These data, coupled with 5P12-RANTES's potency at picomolar concentrations, its strong barrier to resistance, and the full protection that it was observed to provide in a rhesus macaque vaginal challenge model, support the continued development of 5P12-RANTES as a microbicide.
Collapse
|
12
|
Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release 2017; 262:284-295. [DOI: 10.1016/j.jconrel.2017.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
13
|
McKay PF, Mann JFS, Pattani A, Kett V, Aldon Y, King D, Malcolm RK, Shattock RJ. Intravaginal immunisation using a novel antigen-releasing ring device elicits robust vaccine antigen-specific systemic and mucosal humoral immune responses. J Control Release 2017; 249:74-83. [PMID: 28115243 PMCID: PMC5333785 DOI: 10.1016/j.jconrel.2017.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
The generation of effective levels of antigen-specific immunity at the mucosal sites of pathogen entry is a key goal for vaccinologists. We explored topical vaginal application as an approach to initiate local antigen-specific immunity, enhance previously existing systemic immunity or re-target responses to the mucosae. To deliver a protein vaccine formulation to the vaginal mucosal surface, we used a novel vaginal ring device comprising a silicone elastomer body into which three freeze-dried, rod-shaped, hydroxypropylmethylcellulose inserts were incorporated. Each rod contained recombinant HIV-1 CN54gp140 protein (167μg)±R848 (167μg) adjuvant. The inserts were loaded into cavities within each ring such that only the ends of the inserts were initially exposed. Sheep received a prime-boost vaccination regime comprising intramuscular injection of 100μg CN54gp140+200μg R848 followed by three successive ring applications of one week duration and separated by one month intervals. Other sheep received only the ring devices without intramuscular priming. Serum and vaginal mucosal fluids were sampled every two weeks and analysed by CN54gp140 ELISA and antigen-specific B cells were measured by flow cytometry at necropsy. Vaccine antigen-specific serum antibody responses were detected in both the intramuscularly-primed and vaginal mucosally-primed groups. Those animals that received only vaginal vaccinations had identical IgG but superior IgA responses. Analysis revealed that all animals exhibited mucosal antigen-specific IgG and IgA with the IgA responses 30-fold greater than systemic levels. Importantly, very high numbers of antigen-specific B cells were detected in local genital draining lymph nodes. We have elicited local genital antigen-specific immune responses after topical application of an adjuvanted antigen formulation within a novel vaginal ring vaccine release device. This regimen and delivery method elicited high levels of antigen-specific mucosal IgA and large numbers of local antigen-reactive B cells, both likely essential for effective mucosal protection.
Collapse
Affiliation(s)
- Paul F McKay
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK.
| | - Jamie F S Mann
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Aditya Pattani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Deborah King
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
14
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|