1
|
Liu J, Zhang F, Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int J Biol Macromol 2025; 291:139017. [PMID: 39708854 DOI: 10.1016/j.ijbiomac.2024.139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Diabetic Retinopathy (DR) is a significant and progressive eye complication associated with diabetes mellitus, leading to potential vision loss. The pathophysiology of DR involves complex neurovascular changes due to prolonged hyperglycemia, resulting in microangiopathy and neurodegeneration. Current treatment modalities come with limitations such as low bioavailability of therapeutic agents, risk of side effects, and surgical complications. Consequently, the prevention and management of DR, particularly in its advanced stages, present ongoing challenges. This review investigates recent advancements in nanotechnology as a novel approach to enhance the treatment of DR. A comprehensive literature review of recent studies focusing on nanocarriers for drug delivery in DR treatment and an analysis of their efficacy compared to traditional methods was conducted for this study. The findings indicate that nanotechnology can significantly enhance the bioavailability of therapeutic agents while minimizing systemic exposure and associated side effects. The novelty of this study lies in its focus on the intersection of nanotechnology and ophthalmology, exploring innovative solutions that extend beyond existing literature on DR treatments. By highlighting recent advancements in this field, the study paves the way for future research aimed at developing more effective therapeutic strategies for managing DR.
Collapse
Affiliation(s)
- Junling Liu
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| | - Feng Zhang
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China.
| | - Xiaolong Shi
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| |
Collapse
|
2
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Wen W, Wei Y, Gao S. Functional nucleic acids for the treatment of diabetic complications. NANOSCALE ADVANCES 2023; 5:5426-5434. [PMID: 37822913 PMCID: PMC10563837 DOI: 10.1039/d3na00327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
In recent decades, diabetes mellitus (DM) has become a major global health problem owing to its high prevalence and increased incidence of diabetes-associated complications, including diabetic wounds (DWs), diabetic nephropathy, metabolic syndrome, diabetic retinopathy, and diabetic neuropathy. In both type 1 and type 2 diabetes, tissue damage is organ-specific, but closely related to the overproduction of reactive oxygen species (ROS) and hyperglycaemia-induced macrovascular system damage. However, existing therapies have limited effects on complete healing of diabetic complications. Fortunately, recent advances in functional nucleic acid materials have provided new opportunities for the treatment and diagnosis of diabetic complications. Functional nucleic acids possess independent structural functions that can replace traditional proteases and antibodies and perform specific biological non-genetic functions. This review summarises the current functional nucleic acid materials reported for the treatment of diabetic complications, including tetrahedral framework nucleic acids (tFNAs), short interfering RNA (siRNA), micorRNA (miRNA), locked nucleic acids, antisense oligonucleotides (ASOs), and DNA origami, which may assist in the development of novel nucleic acids with new functions and capabilities for better healing of diabetic complications.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yuzi Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
4
|
Yu J, Qin M, Li J, Cui S. LncRNA SNHG4 sponges miR-200b to inhibit cell apoptosis in diabetic retinopathy. Arch Physiol Biochem 2023; 129:1117-1122. [PMID: 33822671 DOI: 10.1080/13813455.2021.1900873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 4 (SNHG4) in diabetic retinopathy (DR). We found that SNHG4 was downregulated in DR. SNHG4 could directly interact with miR-200b, while overexpression of miR-200b did not affect the expression of SNHG4 in human retinal pigment epithelial cells ARPE-19. In contrast, overexpression of SNHG4 led to the upregulation of oxidation resistance 1 (Oxr1), a target of miR-200b. Cell apoptosis analysis showed that overexpression of miR-200b increased the apoptotic rate of ARPE-19 cells under high glucose treatment. Oxr1 and SNHG4 played opposite roles and reduced the effects of overexpression of miR-200b. In conclusion, SNHG4 may sponge miR-200b to inhibit cell apoptosis in DR by upregulating Oxr1.
Collapse
Affiliation(s)
- Jia Yu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Mei Qin
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Shumin Cui
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| |
Collapse
|
5
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Li Z, Yu H, Liu C, Wang C, Zeng X, Yan J, Sun Y. Efficiency co-delivery of ellagic acid and oxygen by a non-invasive liposome for ameliorating diabetic retinopathy. Int J Pharm 2023; 641:122987. [PMID: 37207860 DOI: 10.1016/j.ijpharm.2023.122987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications of diabetes, which has become the fourth leading cause of vision loss worldwide. Current treatment of DR relies on intravitreal injections of antiangiogenic agents, which has made considerable achievements in reducing visual impairment. However, long-term invasive injections require advanced technology and can lead to poor patient compliance as well as the incidence of ocular complications including bleeding, endophthalmitis, retinal detachment and others. Hence, we developed non-invasive liposomes (EA-Hb/TAT&isoDGR-Lipo) for efficiency co-delivery of ellagic acid and oxygen, which can be administered intravenously or by eye drops. Among that, ellagic acid (EA), as an aldose reductase inhibitor, could remove excessive reactive oxygen species (ROS) induced by high glucose for preventing retinal cell apoptosis, as well as reduce retinal angiogenesis through the blockage of VEGFR2 signaling pathway; carried oxygen could ameliorate DR hypoxia, and further enhanced the anti-neovascularization efficacy. Our results showed that EA-Hb/TAT&isoDGR-Lipo not only effectively protected retinal cells from high glucose-induced damage, but also inhibited VEGF-induced vascular endothelial cells migration, invasion, and tube formation in vitro. In addition, in a hypoxic cell model, EA-Hb/TAT&isoDGR-Lipo could reverse retinal cell hypoxia, thereby reducing the expression of VEGF. Significantly, after being administered as an injection or eye drops, EA-Hb/TAT&isoDGR-Lipo obviously ameliorated the structure (central retinal thickness and retinal vascular network) of retina by eliminating ROS and down-regulating the expression of GFAP, HIF-1α, VEGF and p-VEGFR2 in a DR mouse model. In summary, EA-Hb/TAT&isoDGR-Lipo holds great potentials in improvement of DR, which provides a novel approach for the treatment of DR.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
7
|
Sardoiwala MN, Nagpal S, Bhatt B, Roy Choudhury S, Karmakar S. Improved Melatonin Delivery by a Size-Controlled Polydopamine Nanoformulation Attenuates Preclinical Diabetic Retinopathy. Mol Pharm 2023. [PMID: 37116080 DOI: 10.1021/acs.molpharmaceut.2c01039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Oxidative stress, reactive oxygen species generation, and overexpression of VEGF are signatory events in diabetic retinopathy. The downregulation of VEGF and anti-inflammatory action pave the way for diabetic retinopathy (DR) therapy. In that, lower absorption kinetics of melatonin limits its immense therapeutic potential. Hence, we have demonstrated a reverse microemulsion method to synthesize melatonin-loaded polydopamine nanoparticles to replenish both at a single platform with an improved melatonin delivery profile. The study has evaluated in vitro and in vivo protection efficiency of biocompatible melatonin-loaded polydopamine nanoparticles (MPDANPs). The protection mechanism was explained by downregulation of VEGF, CASPASE3, and PKCδ against high-glucose/streptozotocin (STZ)-induced insults, in vitro and in vivo. The anti-inflammatory and antiangiogenic effect and potential of MPDANPs to enhance melatonin in vivo stability with prolonged circulation time have proved MPDANPs as a potential therapeutic candidate in DR management. The DR therapeutic potential of MPDANPs has been arbitrated by improving the bioavailability of melatonin and inhibition of VEGF-PKCδ crosstalk in vivo.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Shakti Nagpal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Babita Bhatt
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| |
Collapse
|
8
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
9
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
10
|
He Y, Quan Z, Zhang R, He B, Xu Y, Chen Z, Ren Y, Li K. Preparation of Targeted Mitochondrion Nanoscale-Release Peptides and Their Efficiency on Eukaryotic Cells. J Biomed Nanotechnol 2021; 17:1679-1689. [PMID: 34544544 DOI: 10.1166/jbn.2021.3141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We established a self-decomposable SiO₂ encapsulated mitochondrial targeting short peptide SS31 drug loading system (SiO₂@SS31) to determine its nano-sustained release characteristics in eukaryotic cells. We explored the protection of SiO₂@SS31 on the 661W cells after oxidative injury by H₂O₂. After the drug loading, we detected the morphology of SiO₂@SS31 by transmission electron microscopy (TEM). Moreover, high-pressure liquid chromatography (HPLC) was used to determine the drug capacity and encapsulation efficiency of the nanoparticles. Then, the release curve in vitro was drawn. The 661W cells were cultured in vitro to allow the detection of cytotoxicity by the MTT assay. The SS31loaded nanoscale microspheres labeled with fluorescein isothiocyanate (SiO₂@FITC-SS31) were prepared, and their sustained release effect was detected with intracellular endocytosis, using confocal microscopy and flow cytometry. Within 15 days, the SiO2@SS31 nanoparticles were completely decomposed and simultaneously released the SS31 peptide in deionized water and normal saline. Nonetheless, the process was faster in simulated body fluid and serum. The MTT assay suggested that SiO₂@SS31 has sustained protection compared with SS31 in the 661W cells at 48 h. Flow cytometry proved SiO₂@FITC-SS31 could maintain a high level and last longer after 24 h. The SS31 peptide, which has excellent medical application prospects, can be slowly and continuously released from self-decomposable SiO₂ and targeted to concentrate on mitochondria.
Collapse
Affiliation(s)
- Yuan He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Zhuoya Quan
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Ruixue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Beilei He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Yun Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Zejun Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Yuan Ren
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| | - Ke Li
- Xi'an Medical University, Xi'an 710021, Shaanxi, PR China
| |
Collapse
|
11
|
Swetledge S, Jung JP, Carter R, Sabliov C. Distribution of polymeric nanoparticles in the eye: implications in ocular disease therapy. J Nanobiotechnology 2021; 19:10. [PMID: 33413421 PMCID: PMC7789499 DOI: 10.1186/s12951-020-00745-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Advantages of polymeric nanoparticles as drug delivery systems include controlled release, enhanced drug stability and bioavailability, and specific tissue targeting. Nanoparticle properties such as hydrophobicity, size, and charge, mucoadhesion, and surface ligands, as well as administration route and suspension media affect their ability to overcome ocular barriers and distribute in the eye, and must be carefully designed for specific target tissues and ocular diseases. This review seeks to discuss the available literature on the biodistribution of polymeric nanoparticles and discuss the effects of nanoparticle composition and administration method on their ocular penetration, distribution, elimination, toxicity, and efficacy, with potential impact on clinical applications. ![]()
Collapse
Affiliation(s)
- Sean Swetledge
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jangwook P Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Renee Carter
- Veterinary Clinical Sciences, Louisiana State University and LSU Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Cristina Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
12
|
Wang J, Yao Y, Wang K, Li J, Chu T, Shen H. MicroRNA-148a-3p alleviates high glucose-induced diabetic retinopathy by targeting TGFB2 and FGF2. Acta Diabetol 2020; 57:1435-1443. [PMID: 32661705 DOI: 10.1007/s00592-020-01569-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
AIMS Diabetic retinopathy (DR), a common complication of type 1 or type 2 diabetes mellitus, has become the leading cause of blindness among adults in working age. The dysregulation of microRNA has been reported to be strongly related to the initiation or progression of DR. However, neither the biological role nor the molecular mechanism of miR-148a-3p has been researched in DR. This study is designed to investigate the function and mechanism of miR-148a-3p in DR. METHODS The bioinformatics analysis (Targetscan: https://www.targetscan.org/vert_72/ ) and numerous experiments including real-time quantitative polymerase chain reaction, terminal deoxynucleotidyltransferase dUTP nick end labeling, CCK-8, western blot, vasculogenesis and luciferase reporter assays were used to research the function and mechanism of miR-148a-3p in DR. RESULTS We constructed DR cell model by treating human retinal microvascular endothelial cells (HRECs) with different concentration gradients of high glucose (HG). Additionally, HG treatment reduced miR-148a-3p level in HRECs. In function, overexpression of miR-148a-3p caused an increase in cell viability and a decrease in cell apoptosis. Besides, miR-148a-3p overexpression led to a damage on blood-retinal barrier (BRB) and suppressed angiogenesis. In mechanism, miR-148a-3p specifically bound to 3' untranslated region of TGFB2 and FGF2. At least, rescue assays demonstrated that the inhibitive influence of miR-148a-3p mimics on BRB injury was offset by overexpression of TGFB2 and the attenuation of angiogenesis resulting from miR-148a-3p mimics was abrogated by overexpression of FGF2 CONCLUSIONS: In a word, we discovered that miR-148a-3p alleviated HG-induced DR by targeting TGFB2 and FGF2. This novel discovery indicated miR-148a-3p as a potential target for DR diagnosis or treatment.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China.
| | - Yong Yao
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Kelei Wang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Jia Li
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Ting Chu
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Haicui Shen
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| |
Collapse
|
13
|
Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerfaces 2020; 194:111151. [DOI: 10.1016/j.colsurfb.2020.111151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
|
14
|
Glucose-induced microRNA-218 suppresses the proliferation and promotes the apoptosis of human retinal pigment epithelium cells by targeting RUNX2. Biosci Rep 2020; 39:221484. [PMID: 31830266 PMCID: PMC6928524 DOI: 10.1042/bsr20192580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE MicroRNA-218 (miR-218) critical for preventing the progression of numerous diseases, including diseases of the retinal pigment epithelium (RPE). However, the mechanism by which miR-218 regulates the PRE in humans remains largely unknown. Our study investigated the effects of glucose-induced miR-218 expression on human RPE cells (ARPE-19), as well as its targeted regulatory effect. METHODS The levels of miR-218 and runt-related transcription factor 2 (RUNX2) expression were investigated by RT-qPCR or Western blot assays. Cell viability and apoptosis were assessed by CCK-8 assays, flow cytometry, and Hoechst staining. A luciferase reporter assay was performed to determine whether Runx2 is a target gene of miR-218. RESULTS Our results showed that glucose up-regulated miR-218 expression, suppressed proliferation, and induced the apoptosis of ARPE-19 cells. We verified that miR-218 could inhibit the proliferation and facilitate the apoptosis of ARPE-19 cells, while inhibition of miR-218 expression produced the opposite effects. In terms of mechanism, we demonstrated that RUNX2 was a direct target of miR-218. Functional experiments showed that Runx2 served as a miR-218 target to help inhibit the proliferation and induction of apoptosis in ARPE-19 cells. CONCLUSION Our findings suggest the miR-218/Runx2 axis as a potential target for treating diabetic retinopathy (DR).
Collapse
|
15
|
Zeng Q, Liu J. Silencing circ_0001879 inhibits the proliferation and migration of human retinal microvascular endothelial cells under high-glucose conditions via modulating miR-30-3p. Gene 2020; 760:144992. [PMID: 32721474 DOI: 10.1016/j.gene.2020.144992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Diabetic retinopathy is a severe diabetic complication and a major cause of blindness. In this study, we explored the role of circ_0001879 in retinal vascular dysfunction under diabetic conditions. METHODS Human retinal microvascular endothelial cells (HRMECs) were divided into normal glucose group (NG, 5.5 mmol/L d-glucose), high glucose group (HG, 25 mmol/L d-glucose), and osmotic control group (5.5 mmol/L d-glucose + 19.5 mmol/L mannitol). The expression of circ_0001879 and miR-30-3p was assessed via qRT-PCR. The circ_0001879/miR-30-3p roles in retinal vascular dysfunction were investigated through Cell Counting Kit-8 and Transwell assay. Bioinformatics analysis and luciferase reporter assays were applied to examine interactions between circ_0001879 and miR-30-3p in HRMECs. RESULTS The relative circ_0001879 expression was remarkably increased in diabetic retinas group than that in the control group. Silencing circ_0001879 suppressed the proliferation and migration of HRMECs under high-glucose conditions. In addition, circ_0001879 acted as a binding platform and miRNA sponge for miR-30-3p. Circ_0001879 modulated the function of HRMECs via targeting miR-30-3p. CONCLUSION Silencing circ_0001879 inhibited the proliferation and migration of HRMECs under high-glucose conditions via modulating miR-30-3p, which might shed new light on a novel potentially marker and molecular therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Qingshan Zeng
- Clinical Nutrition, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou 510000, China
| | - Jia Liu
- Clinical Nutrition, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou 510000, China.
| |
Collapse
|
16
|
|
17
|
Zheng M, Mitra RN, Weiss ER, Han Z. Rhodopsin Genomic Loci DNA Nanoparticles Improve Expression and Rescue of Retinal Degeneration in a Model for Retinitis Pigmentosa. Mol Ther 2019; 28:523-535. [PMID: 31879189 DOI: 10.1016/j.ymthe.2019.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
The use of gene therapy may allow replacement of the defective gene. Minigenes, such as cDNAs, are often used. However, these may not express normal physiological genetic profiles due to lack of crucial endogenous regulatory elements. We constructed DNA nanoparticles (NPs) that contain either the mouse or human full-length rhodopsin genomic locus, including endogenous promoters, all introns, and flanking regulatory sequences of the 15-16 kb genomic rhodopsin DNA inserts. We transduced the NPs into primary retinal cell cultures from the rhodopsin knockout (RKO) mouse in vitro and into the RKO mouse in vivo and compared the effects on different functions to plasmid cDNA NP counterparts that were driven by ubiquitous promoters. Our results demonstrate that genomic DNA vectors resulted in long-term high levels of physiological transgene expression over a period of 5 months. In contrast, the cDNA counterparts exhibited low levels of expression with sensitivity to the endoplasmic reticulum (ER) stress mechanism using the same transgene copy number both in vitro and in vivo. This study demonstrates for the first time the transducing of the rhodopsin genomic locus using compacted DNA NPs.
Collapse
Affiliation(s)
- Min Zheng
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Yu F, Zheng M, Zhang AY, Han Z. A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J Control Release 2019; 315:40-54. [PMID: 31669212 DOI: 10.1016/j.jconrel.2019.10.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 01/01/2023]
Abstract
Dry eye (DE) disease is an uprising health epidemic that directly affects the surface of the eye. We developed a water soluble cerium oxide loaded glycol chitosan nanoparticle as a new type of eye drop, namely GCCNP (glycol chitosan cerium oxide nanoparticles). GCCNP is capable of scavenging cellular reactive oxygen species (ROS) for the treatment of DE disease. The antioxidative effects of GCCNP were assessed in mice primary corneal and conjunctival cells in vitro and in a DE murine model in vivo. GCCNP's effect on the DE models was assessed via histological evaluations, migration assays, cell viability assays, cellular uptake analyses, intracellular ROS scavenging assays, wound healing assays, mitochondrial membrane potential readings, corneal fluorescein staining, tear volume concentrations, tear film break up time analyses, and lastly, analytical/spectroscopic analyses of GCCNP eye drop formulations. Spectroscopic analysis showed that cerium oxide was entrapped into the glycol chitosan (GC). The solubility of cerium in GC (GCCNP) increased to 709.854±24.3μg/ml compared to its original solubility in cerium oxide, which was measured as 0.020±0.002μg/ml. GCCNP had no cytotoxic effect and showed improvements on dry eye disease models by stabilizing the tear film, scavenging ROS, up-regulating SOD, promoting and maintaining corneal and conjunctival cell growth and integrity. We provided convincing evidence that GCCNP is an effective treatment for DE and may represent a potential new class of drug for DE disease.
Collapse
Affiliation(s)
- Fan Yu
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources, School of Pharmacy, Yancheng Teachers University, Yancheng City, Jiangsu Province, PR China; Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alice Yang Zhang
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Zheng Q, Zhang X, Yang H, Xie J, Xie Y, Chen J, Yu C, Zhong C. Internal Ribosome Entry Site Dramatically Reduces Transgene Expression in Hematopoietic Cells in a Position-Dependent Manner. Viruses 2019; 11:v11100920. [PMID: 31597367 PMCID: PMC6833044 DOI: 10.3390/v11100920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bicistronic transgene expression mediated by internal ribosome entry site (IRES) elements has been widely used. It co-expresses heterologous transgene products from a message RNA driven by a single promoter. Hematologic gene delivery is a promising treatment for both inherited and acquired diseases. A combined strategy was recently documented for potential genome editing in hematopoietic cells. A transduction efficiency exceeding ~90% can be achieved by capsid-optimized recombinant adeno-associated virus serotype 6 (rAAV6) vectors. In this study, to deliver an encephalomyocarditis virus (EMCV) IRES-containing rAAV6 genome into hematopoietic cells, we observed that EMCV IRES almost completely shut down the transgene expression during the process of mRNA–protein transition. In addition, position-dependent behavior was observed, in which only the EMCV IRES element located between a promoter and the transgenes had an inhibitory effect. Although further studies are warranted to evaluate the involvement of cellular translation machinery, our results propose the use of specific IRES elements or an alternative strategy, such as the 2A system, to achieve bicistronic transgene expression in hematopoietic cells.
Collapse
Affiliation(s)
- Qingyun Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xueyan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Hua Yang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Department of Radiology, Central South University, Changsha, Hunan 410013, China.
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yilin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China.
| | - Chenghui Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China.
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
20
|
Zeng L, Ma W, Shi L, Chen X, Wu R, Zhang Y, Chen H, Chen H. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy. Int J Nanomedicine 2019; 14:6357-6369. [PMID: 31496691 PMCID: PMC6690602 DOI: 10.2147/ijn.s214727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a complication of diabetes that affects the eyes and vision. It is a leading cause of visual impairment and blindness in working-age people. Vascular endothelial growth factor-A (VEGF-A) is a primary initiator and potential mediator of DR. Matrix metalloproteinase-9 (MMP-9) plays a progressive role in the onset and severity of DR. Interleukin-12 (IL-12) is a cytokine of the chemokine family that could reduce the levels of MMP-9 and VEGF-A and suppress tumor angiogenesis. We hypothesize that IL-12 may also have superior therapeutic efficacy against DR. However, protein drugs are prone to degradation by various proteases after drug injection. Therefore, they have short half-lives and low blood concentrations. The objective of this study was to develop IL-12-loaded nanoparticles for long-term and sustained DR treatment. Methods IL-12-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IL-12-PNP) were developed by double emulsion. The characteristics, anti-DR activity, and mechanisms of IL-12-PNP were examined in vitro and in vivo. Results The nanoparticles had suitable particle size (~132.8 nm), drug encapsulation efficiency (~34.7%), and sustained drug release profile. Compared with IL-12 and blank nanoparticles, IL-12-PNP showed better inhibitory efficacy against VEGF-A and MMP-9 expression in rat endothelial cells and DR mouse retina. Intraocular IL-12-PNP administration significantly reduced retinal damage in DR mice as they presented with increased thickness and decreased neovascularization after treatment. Conclusion These data indicate that IL-12-PNP is an effective drug delivery platform for DR therapy. It restores the thickness and reduces neovascularization of the retinas of DR mice.
Collapse
Affiliation(s)
- Lina Zeng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Lingyu Shi
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Xiaohong Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Rong Wu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Yingying Zhang
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai 201507, People's Republic of China
| | - Huaiwen Chen
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai 201507, People's Republic of China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| |
Collapse
|
21
|
Huang X, Chau Y. Intravitreal nanoparticles for retinal delivery. Drug Discov Today 2019; 24:1510-1523. [DOI: 10.1016/j.drudis.2019.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/17/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
|
22
|
Han N, Tian W, Yu N, Yu L. YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1‐mediated miR‐200b‐3p in high glucose‐induced diabetic retinopathy. J Cell Physiol 2019; 235:1309-1320. [PMID: 31313295 DOI: 10.1002/jcp.29047] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Ning Han
- Department of Ophthalmology The Second Hospital of Jilin University Changchun P.R. China
| | - Wen Tian
- Department of Blood Transfusion The Second Hospital of Jilin University Changchun P.R. China
| | - Na Yu
- Department of Blood Transfusion The Second Hospital of Jilin University Changchun P.R. China
| | - Li Yu
- Department of Ophthalmology The Second Hospital of Jilin University Changchun P.R. China
| |
Collapse
|
23
|
Yang F, Cui Z, Deng H, Wang Y, Chen Y, Li H, Yuan L. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Medicine (Baltimore) 2019; 98:e16225. [PMID: 31277135 PMCID: PMC6635158 DOI: 10.1097/md.0000000000016225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play a great contribution to the development of diabetic nephropathy (DN). The aim of this study was to explore potential miRNAs-genes regulatory network and biomarkers for the pathogenesis of DN using bioinformatics methods.Gene expression profiling data related to DN (GSE1009) was obtained from the Gene Expression Omnibus (GEO) database, and then differentially expressed genes (DEGs) between DN patients and normal individuals were screened using GEO2R, followed by a series of bioinformatics analyses, including identifying key genes, conducting pathway enrichment analysis, predicting and identifying key miRNAs, and establishing regulatory relationships between key miRNAs and their target genes.A total of 600 DEGs associated with DN were identified. An additional 7 key DEGs, including 6 downregulated genes, such as vascular endothelial growth factor α (VEGFA) and COL4A5, and 1 upregulated gene (CCL19), were identified in another dataset (GSE30528) from glomeruli samples. Pathway analysis showed that the down- and upregulated DEGs were enriched in 14 and 6 pathways, respectively, with 7 key genes mainly involved in extracellular matrix-receptor interaction, PI3K/Akt signaling, focal adhesion, and Rap1 signaling. The relationships between miRNAs and target genes were constructed, showing that miR-29 targeted COL4A and VEGFA, miR-200 targeted VEGFA, miR-25 targeted ITGAV, and miR-27 targeted EGFR.MiR-29 and miR-200 may play important roles in DN. VEGFA and COL4A5 were targeted by miR-29 and VEGFA by miR-200, which may mediate multiple signaling pathways leading to the pathogenesis and development of DN.
Collapse
|
24
|
Biswas S, Chakrabarti S. Increased Extracellular Matrix Protein Production in Chronic Diabetic Complications: Implications of Non-Coding RNAs. Noncoding RNA 2019; 5:E30. [PMID: 30909482 PMCID: PMC6468528 DOI: 10.3390/ncrna5010030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Management of chronic diabetic complications remains a major medical challenge worldwide. One of the characteristic features of all chronic diabetic complications is augmented production of extracellular matrix (ECM) proteins. Such ECM proteins are deposited in all tissues affected by chronic complications, ultimately causing organ damage and dysfunction. A contributing factor to this pathogenetic process is glucose-induced endothelial damage, which involves phenotypic transformation of endothelial cells (ECs). This phenotypic transition of ECs, from a quiescent state to an activated dysfunctional state, can be mediated through alterations in the synthesis of cellular proteins. In this review, we discussed the roles of non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in such processes. We further outlined other epigenetic mechanisms regulating the biogenesis and/or function of non-coding RNAs. Overall, we believe that better understanding of such molecular processes may lead to the development of novel biomarkers and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5A5, Canada.
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5A5, Canada.
| |
Collapse
|
25
|
Dantas da Costa E Silva ME, Polina ER, Crispim D, Sbruzzi RC, Lavinsky D, Mallmann F, Martinelli NC, Canani LH, Dos Santos KG. Plasma levels of miR-29b and miR-200b in type 2 diabetic retinopathy. J Cell Mol Med 2018; 23:1280-1287. [PMID: 30467971 PMCID: PMC6349208 DOI: 10.1111/jcmm.14030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are involved in the pathogenesis of diabetes mellitus and its chronic complications, and their circulating levels have emerged as potential biomarkers for the development and progression of diabetes. However, few studies have examined the expression of miRNAs in diabetic retinopathy (DR) in humans. This case-control study aimed to investigate whether the plasma levels of miR-29b and miR-200b are associated with DR in 186 South Brazilians with type 2 diabetes (91 without DR, 46 with non-proliferative DR and 49 with proliferative DR). We also included 20 healthy blood donors to determine the miRNA expression in the general population. Plasma levels of miR-29b and miR-200b were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferative DR was inversely associated with plasma levels of miR-29b (unadjusted OR = 0.694, 95% CI: 0.535-0.900, P = 0.006) and miR-200b (unadjusted OR = 0.797, 95% CI: 0.637-0.997, P = 0.047). However, these associations were lost after controlling for demographic and clinical covariates. In addition, patients with type 2 diabetes had lower miR-200b levels than blood donors. Our findings reinforce the importance of addressing the role of circulating miRNAs, including miR-29 and miR-200b, in DR.
Collapse
Affiliation(s)
| | - Evelise Regina Polina
- Laboratory of Human Molecular Genetics, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Renan Cesar Sbruzzi
- Laboratory of Human Molecular Genetics, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Daniel Lavinsky
- Department of Ophthalmology and Otorhinolaryngology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Mallmann
- Ophthalmology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | | | - Luis Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Katia Gonçalves Dos Santos
- Laboratory of Human Molecular Genetics, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil.,Cardiology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Lo WY, Yang WK, Peng CT, Pai WY, Wang HJ. MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression. Front Physiol 2018; 9:355. [PMID: 29720943 PMCID: PMC5915961 DOI: 10.3389/fphys.2018.00355] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: Increased O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins by O-GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O-GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3′-untranslated region (3′-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O-GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3′-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O-GlcNAcylation levels; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Additionally, siRNA-mediated OGT depletion reduced HG-induced protein O-GlcNAcylation; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion, confirming that HG-induced endothelial inflammation is partially mediated via OGT-induced protein O-GlcNAcylation. These results were validated in vivo: tail-vein injection of miR-200a/200b mimics downregulated endothelial OGT and ICAM-1 expression in db/db mice. Conclusion: miR-200a/200b are involved in modulating HG-induced endothelial inflammation by regulating OGT-mediated protein O-GlcNAcylation, suggesting the therapeutic role of miR-200a/200b on vascular complications in diabetes.
Collapse
Affiliation(s)
- Wan-Yu Lo
- Cardiovascular and Translational Medicine Laboratory, Department of Biotechnology, Hungkuang University, Taichung, Taiwan.,Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan
| | - Wen-Kai Yang
- Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Tien Peng
- Department of Pediatrics, Children's Hospital, China Medical University and Hospital, Taichung, Taiwan
| | - Wan-Yu Pai
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Huang-Joe Wang
- School of Medicine, China Medical University, Taichung, Taiwan.,Cardiovascular Research Laboratory, Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Asokan P, Mitra RN, Periasamy R, Han Z, Borrás T. A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies. Invest Ophthalmol Vis Sci 2018; 59:746-756. [PMID: 29392320 PMCID: PMC5795899 DOI: 10.1167/iovs.17-22992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Methods Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. Results The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. Conclusions The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally.
Collapse
Affiliation(s)
- Priyadarsini Asokan
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States
| | - Rajendra N. Mitra
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States
| | - Ramesh Periasamy
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
28
|
Wang Y, Rajala A, Rajala RVS. Nanoparticles as Delivery Vehicles for the Treatment of Retinal Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:117-123. [PMID: 29721935 DOI: 10.1007/978-3-319-75402-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the last few years, huge progress has been made in the understanding of molecular mechanisms underlying the pathogenesis of retinal degenerative diseases. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Non-viral gene delivery has been recognized as a prospective treatment for retinal degenerative diseases. In this review, we will summarize the constituent characteristics and recent applications of three representative nanoparticles (NPs) in ocular therapy.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Dean McGee Eye Institute, Oklahoma City, OK, USA. .,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Mitra RN, Zheng M, Weiss ER, Han Z. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials 2017; 157:26-39. [PMID: 29232624 DOI: 10.1016/j.biomaterials.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 12/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative conditions and a leading cause of irreversible blindness. 25%-30% of RP cases are caused by inherited autosomal dominant (ad) mutations in the rhodopsin (Rho) protein of the retina, which impose a barrier for developing therapeutic treatments for this genetically heterogeneous disorder, as simple gene replacement is not sufficient to overcome dominant disease alleles. Previously, we have explored using the genomic short-form of Rho (sgRho) for gene augmentation therapy of RP in a Rho knockout mouse model. We have shown improved gene expression and fewer epigenetic modifications compared with the use of a Rho cDNA expression construct. In the current study, we altered our strategy by delivering a codon-optimized genomic form of Rho (co-sgRho) (for gene replacement) in combination with an RNAi-based inactivation of endogenous Rho alleles (gene suppression of both mutant Rho alleles, but mismatched with the co-sgRho) into a homozygous RhoP23H/P23H knock-in (KI) RP mouse model, which has a severe phenotype of adRP. In addition, we have conjugated a cell penetrating TAT peptide sequence to our previously established CK30PEG10 diblock co-polymer. The DNAs were compacted with CK30PEG10-TAT diblock co-polymer to form DNA nanoparticles (NPs). These NPs were injected into the sub-retinal space of the KI mouse eyes. As a proof of concept, we demonstrated the efficiency of this strategy in the partial improvement of visual function in the RhoP23H/P23H KI mouse model.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for NanoMedicine, University of North Carolina, Chapel Hill, NC 27599, USA; Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Protective effect of miR-200b/c by inhibiting vasohibin-2 in human retinal microvascular endothelial cells. Life Sci 2017; 191:245-252. [DOI: 10.1016/j.lfs.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
|
31
|
MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget 2017; 8:92914-92925. [PMID: 29190966 PMCID: PMC5696232 DOI: 10.18632/oncotarget.21656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-21 acts as an oncogene by promoting cell proliferation and migration, whereas inhibiting apoptosis in majority of cancers. MicroRNA-21 is upregulated in human keloid fibroblasts. We hypothesized that microRNA-21 may contribute to pathogenesis of keloid fibroblasts. First, enhanced miR-21 but reduced mitochondrial-mediated apoptosis observed in keloid tissues indicated its importance in keloids development. Second, upregulation of microRNA-21 induced a decrease in the ratio of BAX to BCL-2 and suppressed mitochondrial fission in keloid fibroblasts. Third, by attenuating the decline in cellular mitochondrial membrane potential, overexpression of miR-21 suppressed cytochrome c release to the cytoplasm, followed by a decrease in the activity of intracellular caspase-9 and caspase-3, suggesting that mitochondrial-mediated proapoptotic pathway was impaired. Simultaneously, intracellular reactive oxygen species were decreased, indicating microRNA-21 undermined oxidative stress. This phenotype was reversed by miR-21 inhibition. Therefore, our study demonstrates that inhibition of microRNA-21 induces mitochondrial-mediated apoptosis in keloid fibroblasts, proposing microRNA-21 as a potential therapeutic target in keloid fibroblasts.
Collapse
|
32
|
Mitra RN, Gao R, Zheng M, Wu MJ, Voinov MA, Smirnov AI, Smirnova TI, Wang K, Chavala S, Han Z. Glycol Chitosan Engineered Autoregenerative Antioxidant Significantly Attenuates Pathological Damages in Models of Age-Related Macular Degeneration. ACS NANO 2017; 11:4669-4685. [PMID: 28463509 DOI: 10.1021/acsnano.7b00429] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Age-related macular degeneration (AMD) is the foremost cause of irreversible blindness in people over the age of 65 especially in developing countries. Therefore, an exploration of effective and alternative therapeutic interventions is an unmet medical need. It has been established that oxidative stress plays a key role in the pathogenesis of AMD, and hence, neutralizing oxidative stress is an effective therapeutic strategy for treatment of this serious disorder. Owing to autoregenerative properties, nanoceria has been widely used as a nonenzymatic antioxidant in the treatment of oxidative stress related disorders. Yet, its potential clinical implementation has been greatly hampered by its poor water solubility and lack of reliable tracking methodologies/processes and hence poor absorption, distribution, and targeted delivery. The water solubility and surface engineering of a drug with biocompatible motifs are fundamental to pharmaceutical products and precision medicine. Here, we report an engineered water-soluble, biocompatible, trackable nanoceria with enriched antioxidant activity to scavenge intracellular reactive oxygen species (ROS). Experimental studies with in vitro and in vivo models demonstrated that this antioxidant is autoregenerative and more active in inhibiting laser-induced choroidal neovascularization by decreasing ROS-induced pro-angiogenic vascular endothelial growth factor (VEGF) expression, cumulative oxidative damage, and recruitment of endothelial precursor cells without exhibiting any toxicity. This advanced formulation may offer a superior therapeutic effect to deal with oxidative stress induced pathogeneses, such as AMD.
Collapse
Affiliation(s)
| | - Ruijuan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | | | | | - Maxim A Voinov
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Tatyana I Smirnova
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | - Sai Chavala
- North Texas Eye Research Institute at University of North Texas Health Science Center , Fort Worth, Texas 76107, United States
| | | |
Collapse
|
33
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
34
|
Saraiva SM, Castro-López V, Pañeda C, Alonso MJ. Synthetic nanocarriers for the delivery of polynucleotides to the eye. Eur J Pharm Sci 2017; 103:5-18. [PMID: 28263915 DOI: 10.1016/j.ejps.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Vanessa Castro-López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Covadonga Pañeda
- Sylentis, R&D Department, c/Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest 2017; 127:761-771. [PMID: 28248199 DOI: 10.1172/jci84424] [Citation(s) in RCA: 517] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide-based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.
Collapse
MESH Headings
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Cytomegalovirus Retinitis/drug therapy
- Cytomegalovirus Retinitis/genetics
- Cytomegalovirus Retinitis/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Neurodegenerative Diseases/drug therapy
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/metabolism
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
|