1
|
Yu Z, Xu Z, Zeng R, Xu M, Zheng H, Huang D, Weng Z, Tang D. D-Band-Center-Engineered Platinum-Based Nanozyme for Personalized Pharmacovigilance. Angew Chem Int Ed Engl 2025; 64:e202414625. [PMID: 39254212 DOI: 10.1002/anie.202414625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
A high-efficiency PtZnCd nanozyme was screened with density functional theory (DFT) and unique d-orbital coupling features for sensitive enrichment and real-time analysis of CO-releasing molecule-3 (CORM-3). Multicatalytic sites in the nanozyme showed a high reactivity of up to 72.89 min-1 for peroxidase (POD)-like reaction, which was 2.2, 4.07, and 14.67 times higher than that of PtZn (32.67 min-1), PtCd (17.89 min-1), and Pt (4.97 min-1), respectively. Normalization of the catalytic sites showed that the catalytic capacity of the active site in PtZnCd was 2.962 U μmol-1, which was four times higher than that of a pure Pt site (0.733 U μmol-1). DFT calculations showed that improved d-orbital coupling between different metals reduces the position of the center of the shifted whole d-band relative to the Fermi energy level, thereby increasing the contribution of the sites to the electron transfer from the active center, accompanied by enhanced substrate adsorption and intermediate conversion in the catalytic process. The potential adsorption principle and color development mechanism of CORM-3 on PtZnCd were determined, and its practical application in drug metabolism was validated in vitro and in zebrafish and mice models, demonstrating that transition-metal doping effectively engineers high-performance nanozymes and optimizes artificial enzymes.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Man Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Haisu Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350108, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
2
|
Zhang X, Zhang X, Yang Y. Update of gut gas metabolism in ulcerative colitis. Expert Rev Gastroenterol Hepatol 2024; 18:339-349. [PMID: 39031456 DOI: 10.1080/17474124.2024.2383635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disease of the intestine. The intestinal microbiota is essential in the occurrence and development of UC. Gut gases are produced via bacterial fermentation or chemical interactions, which can reveal altered intestinal microbiota, abnormal cellular metabolism, and inflammation responses. Recent studies have demonstrated that UC patients have an altered gut gas metabolism. AREAS COVERED In this review, we integrate gut gas metabolism advances in UC and discuss intestinal gases' clinical values as new biomarkers or therapeutic targets for UC, providing the foundation for further research. Literature regarding gut gas metabolism and its significance in UC from inception to October 2023 was searched on the MEDLINE database and references from relevant articles were investigated. EXPERT OPINION Depending on their type, concentration, and volume, gut gases can induce or alleviate clinical symptoms and regulate intestinal motility, inflammatory responses, immune function, and oxidative stress, significantly impacting UC. Gut gases may function as new biomarkers and provide potential diagnostic or therapeutic targets for UC.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Medical School, Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuli Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Greenwood JC, Morgan RW, Abella BS, Shofer FS, Baker WB, Lewis A, Ko TS, Forti RM, Yodh AG, Kao SH, Shin SS, Kilbaugh TJ, Jang DH. Carbon monoxide as a cellular protective agent in a swine model of cardiac arrest protocol. PLoS One 2024; 19:e0302653. [PMID: 38748750 PMCID: PMC11095756 DOI: 10.1371/journal.pone.0302653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.
Collapse
Affiliation(s)
- John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ryan W. Morgan
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Benjamin S. Abella
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Frances S. Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Wesley B. Baker
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Alistair Lewis
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Tiffany S. Ko
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rodrigo M. Forti
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Shih-Han Kao
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Samuel S. Shin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Zhou Y, Yang M, Yan X, Zhang L, Lu N, Ma Y, Zhang Y, Cui M, Zhang M, Zhang M. Oral Nanotherapeutics of Andrographolide/Carbon Monoxide Donor for Synergistically Anti-inflammatory and Pro-resolving Treatment of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:36061-36075. [PMID: 37463480 DOI: 10.1021/acsami.3c09342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology affecting the colon and rectum. Current therapeutics are focused on suppressing inflammation but are ineffective. Combining anti-inflammatory therapeutic approaches with pro-resolution might be a superior strategy for UC treatment. Andrographolide (AG), an active compound from the plant Andrographis paniculata, presented anti-inflammatory effects in various inflammatory diseases. Gaseous mediators, such as carbon monoxide (CO), have a role in inflammatory resolution. Herein, we developed a dextran-functionalized PLGA nanocarrier for efficient delivery of AG and a carbon monoxide donor (CORM-2) for synergistically anti-inflammatory/pro-resolving treatment of UC (AG/CORM-2@NP-Dex) based on PLGA with good biocompatibility, slow drug release, efficient targeting, and biodegradability. The resulting nanocarrier had a nano-scaled diameter of ∼200 nm and a spherical shape. After being coated with dextran (Dex), the resulting AG/CORM-2@NP-Dex could be efficiently internalized by Colon-26 and Raw 264.7 cells in vitro and preferentially localized to the inflamed colon with chitosan/alginate hydrogel protection by gavage. AG/CORM-2@NP-Dex performed anti-inflammatory effects by eliminating the over-production of pro-inflammatory mediator, nitric oxide (NO), and down-regulating the expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), while it showed pro-resolving function by accelerating M1 to M2 macrophage conversion and up-regulating resolution-related genes (IL-10, TGF-β, and HO-1). In the colitis model, oral administration of AG/CORM-2@NP-Dex in a chitosan/alginate hydrogel also showed synergistically anti-inflammatory/pro-resolving effects, therefore relieving UC effectively. Without appreciable systemic toxicity, this bifunctional nanocarrier represents a novel therapeutic approach for UC and is expected to achieve long-term inflammatory remission.
Collapse
Affiliation(s)
- Ying Zhou
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Mei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lingmin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yana Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
5
|
Trallero J, Camacho M, Marín-García M, Álvarez-Marimon E, Benseny-Cases N, Barnadas-Rodríguez R. Properties and cellular uptake of photo-triggered mixed metallosurfactant vesicles intended for controlled CO delivery in gas therapy. Colloids Surf B Biointerfaces 2023; 228:113422. [PMID: 37356136 DOI: 10.1016/j.colsurfb.2023.113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The scientific relevance of carbon monoxide has increased since it was discovered that it is a gasotransmitter involved in several biological processes. This fact stimulated research to find a secure and targeted delivery and lead to the synthesis of CO-releasing molecules. In this paper we present a vesicular CO delivery system triggered by light composed of a synthetized metallosurfactant (TCOL10) with two long carbon chains and a molybdenum-carbonyl complex. We studied the characteristics of mixed TCOL10/phosphatidylcholine metallosomes of different sizes. Vesicles from 80 to 800 nm in diameter are mainly unilamellar, do not disaggregate upon dilution, in the dark are physically and chemically stable at 4 °C for at least one month, and exhibit a lag phase of about 4 days before they show a spontaneous CO release at 37 °C. Internalization of metallosomes by cells was studied as function of the incubation time, and vesicle concentration and size. Results show that large vesicles are more efficiently internalized than the smaller ones in terms of the percentage of cells that show TCOL10 and the amount of drug that they take up. On balance, TCOL10 metallosomes constitute a promising and viable approach for efficient delivery of CO to biological systems.
Collapse
Affiliation(s)
- Jan Trallero
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Camacho
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - Centre CERCA, Genomics of Complex Diseases, Barcelona, Spain
| | - Maribel Marín-García
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Elena Álvarez-Marimon
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Núria Benseny-Cases
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain; Consorcio para la Construcción Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Catalonia, Spain.
| | - Ramon Barnadas-Rodríguez
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
6
|
Yang X, Tripathi R, Wang M, Lu W, Anifowose A, Tan C, Wang B. Toward "CO in a Pill": Silica-Immobilized Organic CO Prodrugs for Studying the Feasibility of Systemic Delivery of CO via In Situ Gastrointestinal CO Release. Mol Pharm 2023; 20:1850-1856. [PMID: 36802675 PMCID: PMC9997063 DOI: 10.1021/acs.molpharmaceut.2c01104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Carbon monoxide (CO), an endogenous signaling molecule, is known to exert a range of pharmacological effects, including anti-inflammation, organ protection, and antimetastasis in various animal models. We have previously shown the ability of organic prodrugs to deliver CO systemically through oral administration. As part of our efforts for the further development of these prodrugs, we are interested in minimizing the potential negative impact of the "carrier" portion of the prodrug. Along this line, we have previously published our work on using benign "carriers" and physically trapping the "carrier" portion in the gastrointestinal (GI) tract. We herein report our feasibility studies on using immobilized organic CO prodrugs for oral CO delivery while minimizing systemic exposure to the prodrug and the "carrier portion." In doing so, we immobilize a CO prodrug to silica microparticles, which are generally recognized as safe by the US FDA and known to provide large surface areas for loading and water accessibility. The latter point is essential for the hydrophobicity-driven activation of the CO prodrug. Amidation-based conjugation with silica is shown to provide 0.2 mmol/g loading degree, effective prodrug activation in buffer with comparable kinetics as the parent prodrug, and stable tethering to prevent detachment. One representative silica conjugate, SICO-101, is shown to exhibit anti-inflammation activity in LPS-challenged RAW264.7 cells and to deliver CO systemically in mice through oral administration and GI CO release. We envision this strategy as a general approach for oral CO delivery to treat systemic and GI-specific inflammatory conditions.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38677, United States
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Abiodun Anifowose
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38613, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
7
|
Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B. De Novo Construction of Fluorophores via CO Insertion-Initiated Lactamization: A Chemical Strategy toward Highly Sensitive and Highly Selective Turn-On Fluorescent Probes for Carbon Monoxide. J Am Chem Soc 2023; 145:78-88. [PMID: 36548940 PMCID: PMC10287542 DOI: 10.1021/jacs.2c07504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule. Another reason is the need for appropriate tools for the sensitive detection and concentration determination of CO in the biological system. We herein report a new chemical approach to the design of fluorescent CO probes through de novo construction of fluorophores by a CO insertion-initiated lactamization reaction, which allows for ultra-low background and exclusivity in CO detection. Two series of CO detection probes have been designed and synthesized using this strategy. Using these probes, we have extensively demonstrated their utility in quantifying CO in blood, tissue, and cell culture and in cellular imaging of CO from exogenous and endogenous sources. The probes described will enable many biology and chemistry labs to study CO's functions in a concentration-dependent fashion with very high sensitivity and selectivity. The chemical and design principles described will also be applicable in designing fluorescent probes for other small molecules.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zach Fultz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
8
|
Reiländer S, Schmehl W, Popp K, Nuss K, Kronen P, Verdino D, Wiezorek C, Gutmann M, Hahn L, Däubler C, Meining A, Raschig M, Kaiser F, von Rechenberg B, Scherf-Clavel O, Meinel L. Oral Use of Therapeutic Carbon Monoxide for Anyone, Anywhere, and Anytime. ACS Biomater Sci Eng 2022. [DOI: 10.1021/acsbiomaterials.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Reiländer
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Wolfgang Schmehl
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Kevin Popp
- German Plastics Center (SKZ), Friedrich-Bergius-Ring 22, Wuerzburg97076, Germany
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Peter Kronen
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Dagmar Verdino
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Christina Wiezorek
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lukas Hahn
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Christof Däubler
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Alexander Meining
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Martina Raschig
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg97070, Germany
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Würzburg97070, Germany
| |
Collapse
|
9
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 PMCID: PMC9553107 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
10
|
Byrne JD, Gallo D, Boyce H, Becker SL, Kezar KM, Cotoia AT, Feig VR, Lopes A, Csizmadia E, Longhi MS, Lee JS, Kim H, Wentworth AJ, Shankar S, Lee GR, Bi J, Witt E, Ishida K, Hayward A, Kuosmanen JLP, Jenkins J, Wainer J, Aragon A, Wong K, Steiger C, Jeck WR, Bosch DE, Coleman MC, Spitz DR, Tift M, Langer R, Otterbein LE, Traverso G. Delivery of therapeutic carbon monoxide by gas-entrapping materials. Sci Transl Med 2022; 14:eabl4135. [PMID: 35767653 DOI: 10.1126/scitranslmed.abl4135] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.
Collapse
Affiliation(s)
- James D Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Radiation Oncology Residency Program, Boston, MA 02114, USA.,Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah Boyce
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristi M Kezar
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Vivian R Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Lopes
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jung Seung Lee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Intelligent Precision Healthcare Convergence, SKKU Institute of Convergence, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyunjoon Kim
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Wentworth
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ghee Rye Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianling Bi
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Emily Witt
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Keiko Ishida
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob Wainer
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Aya Aragon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Steiger
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Dustin E Bosch
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Yuan Z, Yang X, Wang B. Redox and catalase-like activities of four widely used carbon monoxide releasing molecules (CO-RMs). Chem Sci 2021; 12:13013-13020. [PMID: 34745532 PMCID: PMC8513939 DOI: 10.1039/d1sc03832j] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022] Open
Abstract
The pathophysiological roles of the endogenous signaling molecule, carbon monoxide (CO), have been extensively studied and validated in cell culture and animal models. Further, evidence supporting the therapeutic effects of CO in various human diseases has been mounting over the last two decades. Along this line, there has been intensive interest in developing various delivery forms including CO gas, CO in solution, metal–carbonyl complexes widely known as CO-releasing molecules (CO-RMs), and organic CO prodrugs. Among them, two ruthenium-based carbonyl complexes, CORM-2 and -3, occupy a very special place because they have been used in over 500 published studies. One of the mechanisms for CO's actions is known to be through attenuation of oxidative stress and regulation of production of reactive oxygen species (ROS). For this reason, it is important that CO delivery forms do not have intrinsic chemical redox properties. Herein, we describe our findings of catalase-like activities of CORM-2 and -3 in a CO-independent fashion, leading to the rapid degradation of hydrogen peroxide (H2O2) in PBS buffer (pH = 7.4) and in cell culture media. Further, we have found that CORM-2 and CORM-3 possess potent radical scavenging abilities. We have also studied two other widely used CO donors: CORM-401 and CORM-A1. Both showed chemical reactivity with ROS, but to a lesser degree than CORM-2 and -3. Because of the central role of ROS in some of the proposed mechanisms of actions for CO biology, the discovery of intrinsic chemical redox properties for these CO-RMs means that additional attention in designing proper controls is needed in future biological experiments using these CO-RMs for their CO-donating functions. Further, much more work is needed to understand the true implications of the chemical reactivity of these CO-RMs in cell-culture and animal-model studies of CO biology. Four CO-releasing molecules are found to degrade H2O2 and free radicals either catalytically (CORM-2 and -3) or through direct reactions (CORM-401 and -A1) in solution under near-physiological conditions.![]()
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30303 USA
| |
Collapse
|
13
|
Yang X, Lu W, Wang M, Tan C, Wang B. "CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications. J Control Release 2021; 338:593-609. [PMID: 34481027 PMCID: PMC8526413 DOI: 10.1016/j.jconrel.2021.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Along with the impressive achievements in understanding the endogenous signaling roles and mechanism(s) of action of carbon monoxide (CO), much research has demonstrated the potential of using CO as a therapeutic agent for treating various diseases. Because of CO's toxicity at high concentrations and the observed difference in toxicity profiles of CO depending on the route of administration, this review analyzes and presents the benefits of developing orally active CO donors. Such compounds have the potential for improved safety profiles, enhancing the chance for developing CO-based therapeutics. In this review, the difference between inhalation and oral administration in terms of toxicity, CO delivery efficiency, and the potential mechanism(s) of action is analyzed. The evolution from CO gas inhalation to oral administration is also extensively analyzed by summarizing published studies up to date. The concept of "CO in a pill" can be achieved by oral administration of novel formulations of CO gas or appropriate CO donors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Minjia Wang
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
14
|
Verbeure W, van Goor H, Mori H, van Beek AP, Tack J, van Dijk PR. The Role of Gasotransmitters in Gut Peptide Actions. Front Pharmacol 2021; 12:720703. [PMID: 34354597 PMCID: PMC8329365 DOI: 10.3389/fphar.2021.720703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Although gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) receive a bad connotation; in low concentrations these play a major governing role in local and systemic blood flow, stomach acid release, smooth muscles relaxations, anti-inflammatory behavior, protective effect and more. Many of these physiological processes are upstream regulated by gut peptides, for instance gastrin, cholecystokinin, secretin, motilin, ghrelin, glucagon-like peptide 1 and 2. The relationship between gasotransmitters and gut hormones is poorly understood. In this review, we discuss the role of NO, CO and H2S on gut peptide release and functioning, and whether manipulation by gasotransmitter substrates or specific blockers leads to physiological alterations.
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Harry van Goor
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - André P. van Beek
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Peter R. van Dijk
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
16
|
Yuan Z, Yang X, Ye Y, Tripathi R, Wang B. Chemical Reactivities of Two Widely Used Ruthenium-Based CO-Releasing Molecules with a Range of Biologically Important Reagents and Molecules. Anal Chem 2021; 93:5317-5326. [PMID: 33745269 DOI: 10.1021/acs.analchem.1c00533] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruthenium-based CO-releasing molecules (CO-RMs), CORM-2 and CORM-3, have been widely used as surrogates of CO for studying its biological effects in vitro and in vivo with much success. However, several previous solution-phase and in vitro studies have revealed the ability of such CO-RMs to chemically modify proteins and reduce aromatic nitro groups due to their intrinsic chemical reactivity under certain conditions. In our own work of studying the cytoprotective effects of CO donors, we were in need of assessing chemical factors that could impact the interpretation of results from CO donors including CORM-2,3 in various in vitro assays. For this, we examined the effects of CORM-2,3 toward representative reagents commonly used in various bioassays including resazurin, tetrazolium salts, nitrites, and azide-based H2S probes. We have also examined the effect of CORM-2,3 on glutathione disulfide (GSSG), which is a very important redox regulator. Our studies show the ability of these CO-RMs to induce a number of chemical and/or spectroscopic changes for several commonly used biological reagents under near-physiological conditions. These reactions/spectroscopic changes cannot be duplicated with CO-deleted CO-RMs (iCORMs), which are often used as negative controls. Furthermore, both CORM-2 and -3 are capable of consuming and reducing GSSG in solution. We hope that the results described will help in the future design of control experiments using Ru-based CO-RMs.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuqian Ye
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
17
|
Bakalarz D, Surmiak M, Yang X, Wójcik D, Korbut E, Śliwowski Z, Ginter G, Buszewicz G, Brzozowski T, Cieszkowski J, Głowacka U, Magierowska K, Pan Z, Wang B, Magierowski M. Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharm Sin B 2021; 11:456-475. [PMID: 33643824 PMCID: PMC7893125 DOI: 10.1016/j.apsb.2020.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Metal-based carbon monoxide (CO)-releasing molecules have been shown to exert anti-inflammatory and anti-oxidative properties maintaining gastric mucosal integrity. We are interested in further development of metal-free CO-based therapeutics for oral administration. Thus, we examine the protective effect of representative CO prodrug, BW-CO-111, in rat models of gastric damage induced by necrotic ethanol or aspirin, a representative non-steroidal anti-inflammatory drug. Treatment effectiveness was assessed by measuring the microscopic/macroscopic gastric damage area and gastric blood flow by laser flowmetry. Gastric mucosal mRNA and/or protein expressions of HMOX1, HMOX2, nuclear factor erythroid 2-related factor 2, COX1, COX2, iNos, Anxa1 and serum contents of TGFB1, TGFB2, IL1B, IL2, IL4, IL5, IL6, IL10, IL12, tumor necrosis factor α, interferon γ, and GM-CSF were determined. CO content in gastric mucosa was assessed by gas chromatography. Pretreatment with BW-CO-111 (0.1 mg/kg, i.g.) increased gastric mucosal content of CO and reduced gastric lesions area in both models followed by increased GBF. These protective effects of the CO prodrug were supported by changes in expressions of molecular biomarkers. However, because the pathomechanisms of gastric damage differ between topical administration of ethanol and aspirin, the possible protective and anti-inflammatory mechanisms of BW-CO-111 may be somewhat different in these models.
Collapse
Affiliation(s)
- Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Forensic Toxicology, Institute of Forensic Research, Cracow 31-033, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Internal Medicine, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| |
Collapse
|
18
|
Wang M, Yang X, Pan Z, Wang Y, De La Cruz LK, Wang B, Tan C. Towards "CO in a pill": Pharmacokinetic studies of carbon monoxide prodrugs in mice. J Control Release 2020; 327:174-185. [PMID: 32745568 PMCID: PMC7606817 DOI: 10.1016/j.jconrel.2020.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is a known endogenous signaling molecule with potential therapeutic indications in treating inflammation, cancer, neuroprotection, and sickle cell disease among many others. One of the hurdles in using CO as a therapeutic agent is the development of pharmaceutically acceptable delivery forms for various indications. Along this line, we have developed organic CO prodrugs that allow for packing this gaseous molecule into a dosage form for the goal of "carbon monoxide in a pill." This should enable non-inhalation administration including oral and intravenous routes. These prodrugs have previously demonstrated efficacy in multiple animal models. To further understand the CO delivery efficiency of these prodrugs in relation to their efficacy, we undertook the first pharmacokinetic studies on these prodrugs. In doing so, we selected five representative prodrugs with different CO release kinetics and examined their pharmacokinetics after administration via oral, intraperitoneal, and intravenous routes. It was found that all three routes were able to elevate systemic CO level with delivery efficiency in the order of intravenous, oral, and intraperitoneal routes. CO prodrugs and their CO-released products were readily cleared from the circulation. CO prodrugs demonstrate promising pharmaceutical properties in terms of oral CO delivery and minimal drug accumulation in the body. This represents the very first study of the interplay among CO release kinetics, CO prodrug clearance, route of administration, and CO delivery efficiency.
Collapse
Affiliation(s)
- Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yingzhe Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
19
|
Taguchi K, Maruyama T, Otagiri M. Use of Hemoglobin for Delivering Exogenous Carbon Monoxide in Medicinal Applications. Curr Med Chem 2020; 27:2949-2963. [PMID: 30421669 DOI: 10.2174/0929867325666181113122340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/25/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
Carbon Monoxide (CO), at low concentrations, can have a variety of positive effects on the body including anti-apoptosis, anti-inflammatory, anti-oxidative and anti-proliferative effects. Although CO has great potential for use as a potent medical bioactive gas, for it to exist in the body in stable form, it must be associated with a carrier. Hemoglobin (Hb) represents a promising material for use as a CO carrier because most of the total CO in the body is stored associated with Hb in red blood cells (RBC). Attempts have been made to develop an Hb-based CO carrying system using RBC and Hb-based artificial oxygen carriers. Some of these have been reported to be safe and to have therapeutic value as a CO donor in preclinical and clinical studies. In the present review, we overview the potential of RBC and Hb-based artificial oxygen carriers as CO carriers based on the currently available literature evidence for their use in pharmaceutical therapy against intractable disorders.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| |
Collapse
|
20
|
Yuan Z, Yang X, De La Cruz LK, Wang B. Nitro reduction-based fluorescent probes for carbon monoxide require reactivity involving a ruthenium carbonyl moiety. Chem Commun (Camb) 2020; 56:2190-2193. [PMID: 31971171 DOI: 10.1039/c9cc08296d] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several arylnitro-based fluorescent CO probes have been reported. The design was based on CO's ability to reduce an arylnitro group for fluorescence turn-on. In this work, we assessed the response of three published arylnitro-based fluorescent CO probes, namely COFP, LysoFP-NO2, and NIR-CO toward CO from various sources. We found that only ruthenium-based CO releasing molecules (CO-RMs) were able to turn on the fluorescence while pure CO gas and CO from other sources did not turn-on the probe in the absence of ruthenium. Further experiments with different ruthenium complexes indicate that the reduction of arylnitro group requires the ruthenium carbonyl complex as an essential ingredient. As further confirmation, we also conducted the reduction of the nitro group in a p-nitrobenzamide compound and came to the same conclusion. As such, COFP and related arynitro-based probes are able to sense CORM-2 and CORM-3, but not CO in general. Our findings also indicate the need to use CO from various sources in future assessment of new CO probes.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | |
Collapse
|
21
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
22
|
Mansour AM, Steiger C, Nagel C, Schatzschneider U. Wavelength‐Dependent Control of the CO Release Kinetics of Manganese(I) Tricarbonyl PhotoCORMs with Benzimidazole Coligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry Faculty of Science Cairo University Gamma Street 12613 Cairo Giza Egypt
- Institut für Anorganische Chemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Steiger
- Institut für Pharmazie und Lebensmittelchemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
23
|
Design and Synthesis of New Protease‐Triggered CO‐Releasing Peptide–Metal‐Complex Conjugates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Sakai K, Katsumi H, Sugiura M, Tamba A, Kamano K, Yamauchi K, Tamura Y, Sakane T, Yamamoto A. Pharmacokinetics and Preventive Effects of Sulfo-Albumin as a Novel Macromolecular Hydrogen Sulfide Prodrug on Carbon Tetrachloride-Induced Hepatic Injury. J Pharm Sci 2018; 107:2686-2693. [DOI: 10.1016/j.xphs.2018.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/28/2018] [Accepted: 06/20/2018] [Indexed: 12/28/2022]
|
25
|
Van Dingenen J, Steiger C, Zehe M, Meinel L, Lefebvre RA. Investigation of orally delivered carbon monoxide for postoperative ileus. Eur J Pharm Biopharm 2018; 130:306-313. [DOI: 10.1016/j.ejpb.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 01/26/2023]
|
26
|
An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules. Bioinorg Chem Appl 2018; 2018:8547364. [PMID: 30158958 PMCID: PMC6109489 DOI: 10.1155/2018/8547364] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide (CO) has long been known as the “silent killer” owing to its ability to form carboxyhemoglobin—the main cause of CO poisoning in humans. Its role as an endogenous neurotransmitter, however, was suggested in the early 1990s. Since then, the biological activity of CO has been widely examined via both the direct administration of CO and in the form of so-called “carbon monoxide releasing molecules (CORMs).” This overview will explore the general physiological effects and potential therapeutic applications of CO when delivered in the form of CORMs.
Collapse
|
27
|
Reactivity of visible-light induced CO releasing thiourea-based Mn(I) tricarbonyl bromide (CORM-NS1) towards lysozyme. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Naito Y, Uchiyama K, Takagi T. Redox-related gaseous mediators in the gastrointestinal tract. J Clin Biochem Nutr 2018; 63:1-4. [PMID: 30087535 PMCID: PMC6064816 DOI: 10.3164/jcbn.18-56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Redox-related gaseous molecular species in the gastrointestinal tract are derived from the chemical oxidation-reduction reactions, enzymatic reactions, swallowing, and bacterial production. Recent studies have demonstrated the crucial roles of the microbiota and gaseous molecules in the pathogenesis of gastrointestinal inflammatory and functional diseases. Especially in the hypoxic condition of the large intestine, various bacteria produce acetic acid, methane, and hydrogen sulfide using hydrogen molecules generated by the fermentation reaction as an energy source. In this review, we summarized the recent advances in the biology of redox-related gaseous molecules in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.,Department of Endoscopy and Ultrasound Medicine, University Hospital, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
29
|
Abstract
Carbon monoxide is widely acknowledged as an important gasotransmitter in the mammalian system with importance on par with that of nitric oxide. It has also been firmly established as a potential therapeutic agent with a wide range of indications including organ transplantation, cancer, bacterial infection, and inflammation-related conditions such as colitis and sepsis. One major issue in developing CO based therapeutics is its delivery in a pharmaceutically acceptable form. Currently, there are generally five forms of deliveries: inhaled CO, photosensitive CO-releasing molecules, encapsulated CO, CO dissolved in drinks, and molecules that would release CO under physiological conditions without the need for light. For over a decade, the last category only included metal-based CO releasing molecules. What had been missing were organic CO prodrugs, which release CO under physiological conditions with tunable rates and in response to various exogenous and endogenous triggers such as water, chemical reagents, esterase, ROS, and changes in pH. This Account describes our work in this area as well as the demonstration for these organic prodrugs to recapitulate CO's pharmacological effects both in vitro and in vivo. Generally, two categories of CO prodrugs have been developed in our lab. Both can be considered as precursors of norbornadien-7-ones, which readily undergo cheletropic reaction under very mild conditions to extrude CO. The first category of CO prodrugs capitalizes on the inter- and intramolecular inverse electron demand Diels-Alder (DAinv) reaction to trigger CO release under physiological conditions. As for the bimolecular CO prodrugs, we proposed a new concept of "enrichment triggered CO release" by conjugating both components with a mitochondria-targeting moiety to achieve targeted CO delivery with improved biological outcomes in vitro and in vivo. As for the unimolecular CO prodrugs, the release half-lives can be readily tuned from minutes to days by varying the substituents on the dienone ring, the tethering linker, and the alkyne. Some significant structure-release rates relationships (SRRs) have been unveiled. An esterase-activated CO prodrug and a cascade prodrug system for co-delivery of CO and another payload have also been devised using such an intramolecular click and release strategy. The second category of CO prodrugs leverage on an elimination reaction to generate norbornadien-7-ones for CO release from norborn-2-en-7-ones. In the case of pH-sensitive ones, the CO release is triggered by β-elimination, and the release rate can be quantitatively predicted using the Hammett constant of the substituents on the leaving group. The ROS-activated ones take advantage of ROS-induced selenoxide elimination to achieve targeted CO delivery to disease sites with elevated ROS level. We strongly believe that these CO prodrugs could serve as powerful tools for CO-associated biological studies and are promising candidates for ultimate clinical applications.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 United States
| |
Collapse
|
30
|
Takagi T, Naito Y, Tanaka M, Mizushima K, Ushiroda C, Toyokawa Y, Uchiyama K, Hamaguchi M, Handa O, Itoh Y. Carbon monoxide ameliorates murine T-cell-dependent colitis through the inhibition of Th17 differentiation. Free Radic Res 2018; 52:1328-1335. [PMID: 29695203 DOI: 10.1080/10715762.2018.1470327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies have identified carbon monoxide (CO) as a potential therapeutic molecule for the treatment of inflammatory diseases including intestinal inflammation. In the present study, we explored the efficacy and the mechanisms of action of CO-releasing molecule (CORM)-A1 in T-cell transfer induced colitis model in mice. In addition, the impact of CORM-A1 on the T helper (Th) cell differentiation was evaluated using naïve CD4+ T cells isolated from the spleens in Balb/c mice. The results showed that CORM-A1 conferred protection against the development of intestinal inflammation and attenuated Th17 cell differentiation. Hence, the observed immunomodulatory effects of CORM-A1 could be useful for developing novel therapeutic approaches for managing intestinal inflammation through the regulation of Th17 differentiation.
Collapse
Affiliation(s)
- Tomohisa Takagi
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan.,b Department of Medical Innovation and Translational Medical Science, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Yuji Naito
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Makoto Tanaka
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Katsura Mizushima
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Chihiro Ushiroda
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Yuki Toyokawa
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Kazuhiko Uchiyama
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Masahide Hamaguchi
- c Department of Endocrinology and Metabolism, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Osamu Handa
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Yoshito Itoh
- a Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kyoto , Japan
| |
Collapse
|
31
|
Wollborn J, Hermann C, Goebel U, Merget B, Wunder C, Maier S, Schäfer T, Heuler D, Müller-Buschbaum K, Buerkle H, Meinel L, Schick MA, Steiger C. Overcoming safety challenges in CO therapy - Extracorporeal CO delivery under precise feedback control of systemic carboxyhemoglobin levels. J Control Release 2018; 279:336-344. [PMID: 29655987 DOI: 10.1016/j.jconrel.2018.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
Carbon monoxide (CO) has demonstrated therapeutic potential in multiple inflammatory conditions including intensive care applications such as organ transplantation or sepsis. Approaches to translate these findings into future therapies, however, have been challenged by multiple hurdles including handling and toxicity issues associated with systemic CO delivery. Here, we describe a membrane-controlled Extracorporeal Carbon Monoxide Release System (ECCORS) for easy implementation into Extracorporeal Membrane Oxygenation (ECMO) setups, which are being used to treat cardiac and respiratory diseases in various intensive care applications. Functionalities of the ECCORS were investigated in a pig model of veno-arterial ECMO. By precisely controlling CO generation and delivery as a function of systemic carboxyhemoglobin levels, the system allows for an immediate onset of therapeutic CO-levels while preventing CO-toxicity. Systemic carboxyhemoglobin levels were profiled in real-time by monitoring exhaled CO levels as well as by pulse oximetry, enabling self-contained and automatic feedback control of CO generation within ECCORS. Machine learning based mathematical modeling was performed to increase the predictive power of this approach, laying foundation for high precision systemic CO delivery concepts of tomorrow.
Collapse
Affiliation(s)
- Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, Germany
| | - Cornelius Hermann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, Germany
| | - Benjamin Merget
- Computational Chemistry and Biology, BASF SE, Ludwigshafen, Germany
| | - Christian Wunder
- Department of Anesthesiology and Critical Care, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Sven Maier
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Schäfer
- Institute for Inorganic Chemistry, University of Würzburg, Germany
| | - Dominik Heuler
- Institute for Inorganic Chemistry, University of Würzburg, Germany
| | | | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany
| | - Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, Germany
| | - Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Germany.
| |
Collapse
|
32
|
Qiao L, Zhang N, Huang JL, Yang XQ. Carbon monoxide as a promising molecule to promote nerve regeneration after traumatic brain injury. Med Gas Res 2017; 7:45-47. [PMID: 28480031 PMCID: PMC5402346 DOI: 10.4103/2045-9912.202909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon monoxide (CO) is known as a toxic gas. Although there have been many studies on both toxic and protective effects of CO, most of these studies lack novelty, except for Eng H Lo team's study on the therapeutic effect of CO on brain injuries. In this commentary, we summarize the potential application value of CO in the treatment of some clinical diseases, especially its protective effect and nerve regeneration in brain injuries, hoping that our interest in CO could promote related clinical application studies.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| | - Ning Zhang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Jun-Long Huang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Xiang-Qun Yang
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Ji X, De La Cruz LKC, Pan Z, Chittavong V, Wang B. pH-Sensitive metal-free carbon monoxide prodrugs with tunable and predictable release rates. Chem Commun (Camb) 2017; 53:9628-9631. [DOI: 10.1039/c7cc04866a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon monoxide prodrugs with triggered release profiles are highly desirable for targeted CO delivery to minimize their untoward side-effects.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- USA
| | | | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- USA
| | - Vayou Chittavong
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- USA
| |
Collapse
|
34
|
Ji X, Ji K, Chittavong V, Yu B, Pan Z, Wang B. An esterase-activated click and release approach to metal-free CO-prodrugs. Chem Commun (Camb) 2017; 53:8296-8299. [DOI: 10.1039/c7cc03832a] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free CO prodrugs with a biological trigger and tunable release rate are described herein for the first time.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- Georgia 30303
- USA
| | - Kaili Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- Georgia 30303
- USA
| | - Vayou Chittavong
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- Georgia 30303
- USA
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- Georgia 30303
- USA
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- Georgia 30303
- USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University Atlanta
- Georgia 30303
- USA
| |
Collapse
|
35
|
Steiger C, Hermann C, Meinel L. Localized delivery of carbon monoxide. Eur J Pharm Biopharm 2016; 118:3-12. [PMID: 27836646 DOI: 10.1016/j.ejpb.2016.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 01/18/2023]
Abstract
The heme oxygenase (HO)/carbon monoxide (CO) system is a physiological feedback loop orchestrating various cell-protective effects in response to cellular stress. The therapeutic use of CO is impeded by safety challenges as a result of high CO-Hemoglobin formation following non-targeted, systemic administration jeopardizing successful CO therapies as of this biological barrier. Another caveat is the use of CO-Releasing Molecules containing toxicologically critical transition metals. An emerging number of local delivery approaches addressing these issues have recently been introduced and provide exciting new starting points for translating the fascinating preclinical potential of CO into a clinical setting. This review will discuss these approaches and link to future delivery strategies aiming at establishing CO as a safe and effective medication of tomorrow.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Cornelius Hermann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|
36
|
Kautz AC, Kunz PC, Janiak C. CO-releasing molecule (CORM) conjugate systems. Dalton Trans 2016; 45:18045-18063. [DOI: 10.1039/c6dt03515a] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To try to advance CORMs toward medical applications, they are covalently bound to peptides, polymers, nanoparticles, dendrimers, and protein cages or are incorporated into non-wovens, tablets, or metal–organic frameworks.
Collapse
Affiliation(s)
- Anna Christin Kautz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| | - Peter C. Kunz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| |
Collapse
|