1
|
Gong L, Zhao H, Chen L, Liu Y, Wu H, Liu C, Feng J, Liu C, Xiao C, Wang Q, Jin M, Gao Z, Huang W, Guan Y. Novel Peptide-Modified Zeolitic Imidazolate Framework-8 Nanoparticles with pH-Sensitive Release of Doxorubicin for Targeted Treatment of Colorectal Cancer. Pharmaceutics 2025; 17:246. [PMID: 40006613 PMCID: PMC11858906 DOI: 10.3390/pharmaceutics17020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Colorectal cancer (CRC) is one of the common malignant tumors. Chemotherapeutic agents represented by doxorubicin (DOX) are common adjuvant therapies for patients with advanced CRC. However, DOX suffers from dose-dependent cardiotoxicity and myelosuppression due to a lack of targeting and specificity, which severely limits its clinical application. Methods: Herein, we constructed a zeolitic imidazolate framework-8 (ZIF-8) modified by a novel peptide (LT peptide) to deliver the chemotherapeutic drug doxorubicin (DOX) for the targeted treatment of CRC. Results: In this study, LT-PEG@DOX@ZIF-8 nanoparticles were prepared by a simple method with suitable particle size and zeta potential, which were also capable of pH-responsive drug release. In vitro assays exhibited that LT-PEG@DOX@ZIF-8 nanoparticles were effectively taken up by C26 cells, significantly inhibited cell proliferation, and induced apoptosis. Furthermore, in mice models with colorectal tumors, LT-PEG@DOX@ZIF-8 nanoparticles also displayed specific tumor aggregation and exerted anti-tumor effects to prolong the survival of the mice. Conclusions: In conclusion, LT-PEG@DOX@ZIF-8 provides a promising strategy for the delivery of DOX to effectively treat CRC.
Collapse
Affiliation(s)
- Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenfei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.G.); (H.Z.); (L.C.); (Y.L.); (H.W.); (C.L.); (J.F.); (C.L.); (C.X.); (Q.W.); (M.J.); (Z.G.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
2
|
Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging. Mol Biol Rep 2023; 50:4653-4664. [PMID: 37014570 PMCID: PMC10072011 DOI: 10.1007/s11033-023-08380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Collapse
Affiliation(s)
- Hai Shin Pung
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Woei Kean Ng
- Faculty of Medicine, AIMST University, Bedong, Kedah, 08100, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Liu Z, Gray BD, Barber C, Wan L, Furenlid LR, Liang R, Li Z, Woolfenden JM, Pak KY, Martin DR. PEGylated and Non-PEGylated TCP-1 Probes for Imaging of Colorectal Cancer. Mol Imaging Biol 2023; 25:133-143. [PMID: 34845659 PMCID: PMC9148376 DOI: 10.1007/s11307-021-01684-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous studies indicate that 99mTc- and fluorescent-labeled c[Cys-Thr-Pro-Ser-Pro-Phe-Ser-His-Cys]OH (TCP-1) peptides were able to detect colorectal cancer (CRC) and tumor-associated vasculature. This study was designed to characterize the targeting properties of PEGylated and non-PEGylated TCP-1 peptides for CRC imaging. PROCEDURES Cell uptake of cyanine 7 (Cy7)-labeled TCP-1 probes (Cy7-PEG4-TCP-1 and Cy7-TCP-1) was investigated in three CRC cell lines (human, HCT116 and HT29; mouse, CT26). Xenograft and orthotopic CRC tumor models with HCT116 and CT26 cells were used to characterize biodistribution and CRC tumor-targeting properties of TCP-1 fluorescence and radioligand with and without PEGylation, [99mTc]Tc-HYNIC-PEG4-TCP-1 vs. [99mTc]Tc-HYNIC-TCP-1. RESULTS Fluorescence images showed that TCP-1 probes were distributed in the cytoplasm and nucleus of CRC cells. When CT26 cells were treated with unlabeled TCP-1 peptide prior to the cell incubation with Cy7-PEG4-TCP-1, cell fluorescent signals were significantly reduced relative to the cells without blockade. Relative to Cy7-TCP-1, superior brilliance and visibility of fluorescence was observed in the tumor with Cy7-PEG4-TCP-1 and maintained up to 18 h post-injection. [99mTc]Tc-HYNIC-PEG4-TCP-1 images in xenograft and orthotopic CRC models demonstrated that TCP-1 PEGylation preserved tumor-targeting capability of TCP-1, but its distribution (%ID/g) in the liver and intestine was higher than that of [99mTc]Tc-HYNIC-TCP-1 (1.51 ± 0.29 vs 0.53 ± 0.12, P < 0.01). Better tumor visualization by [99mTc]Tc-HYNIC-TCP-1 was observed in the orthotopic CRC model due to lower intestinal radioactivity. CONCLUSIONS TCP-1-based probes undergo endocytosis and localize in the cytoplasm and nucleus of human and mouse CRC cells. Tumor detectability of fluorescent TCP-1 peptide with a PEG4 spacer is promising due to its enhanced tumor binding affinity and rapid clearance kinetics from nontumor tissues. Non-PEGylated [99mTc]Tc-HYNIC-TCP-1 exhibits lower nonspecific accumulation in the liver and gastrointestinal tract and might have better capability for detecting CRC lesions in clinical sites. TCP-1 may represent an innovative targeting molecule for detecting CRC noninvasively.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA.
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA.
| | - Christy Barber
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Li Wan
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Lars R Furenlid
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Rongguang Liang
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Zheng Li
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - James M Woolfenden
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Diego R Martin
- Department of Medical Imaging at College of Medicine, University of Arizona, Tucson, AZ , USA
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Yu H, Wen B, Huang M, Feng R, Pan L, Xu M, Lin H, Cong L, Zhang S, Li Y, Cho CH, Zhang C, Chen X, Wang Y. TCP-1, a novel peptide to diagnose early colon cancer. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Abstract
Cancer is the second leading cause of death worldwide, and the search for specialised therapy options has been a challenge for decades. The emergence of active targeted therapies provides the opportunity to treat cancerous tissues without harming healthy ones due to peculiar physiological changes. Herein, peptides and peptide analogs have been gaining a lot of attention over the last decade, especially for the on-site delivery of therapeutics to target tissues in order to achieve efficient and reliable cancer treatment. Combining peptides with highly efficient drug delivery platforms could potentially eliminate off-target adverse effects encountered during active targeting of conventional chemotherapeutics. Small size, ease of production and characterisation, low immunogenicity and satisfactory binding affinity of peptides offer some advantages over other complex targeting moiety, no wonder the market of peptide-based drugs continues to expand expeditiously. It is estimated that the global peptide drug market will be worth around USD 48.04 billion by 2025, with a compound annual growth rate of 9.4%. In this review, the current state of art of peptide-based therapeutics with special interest on tumour targeting peptides has been discussed. Moreover, various active targeting strategies such as the use functionalised peptides or peptide analogs are also elaborated.
Collapse
Affiliation(s)
- Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Kwak MH, Yi G, Yang SM, Choe Y, Choi S, Lee HS, Kim E, Lim YB, Na K, Choi MG, Koo H, Park JM. A Dodecapeptide Selected by Phage Display as a Potential Theranostic Probe for Colon Cancers. Transl Oncol 2020; 13:100798. [PMID: 32454443 PMCID: PMC7248426 DOI: 10.1016/j.tranon.2020.100798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Aim Colon cancer is one of the leading causes of cancer-related mortality. However, specific biomarkers for its diagnosis or treatment are not established well. Methods We developed a colon-cancer specific peptide probe using phage display libraries. We validated the specificity of this probe to colon cancer cells with immunohistochemical staining and FACS analysis using one normal cell and five colon cancer cell lines. Results This peptide probe maintained binding affinity even after serum incubation. For therapeutic applications, this peptide probe was conjugated to hematoporphyrin, a photosensitizer, which showed a significantly enhanced cellular uptake and high photodynamic effect to kill tumor cells. As another application, we made a nanoparticle modified from the peptide probe. It efficiently delivered SN-38, an anticancer drug, into tumor cells, and its tumor-targeting ability was observed in vivo after intravenous injection to the same xenograft model. Conclusion The noble dodecapeptide probe can be a promising candidate for both colon tumor diagnosis and targeted drug delivery.
Collapse
Affiliation(s)
- Moon Hwa Kwak
- Catholic Photomedicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gawon Yi
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Mok Yang
- Catholic Photomedicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Younghee Choe
- Catholic Photomedicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sangkee Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hye-Soo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myung-Gyu Choi
- Catholic Photomedicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Jae Myung Park
- Catholic Photomedicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Ghasemi-Jangjoo A, Ghiasi H. Monte Carlo study on the secondary cancer risk estimations for patients undergoing prostate radiotherapy: A humanoid phantom study. Rep Pract Oncol Radiother 2020; 25:187-192. [PMID: 32021575 PMCID: PMC6994283 DOI: 10.1016/j.rpor.2019.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022] Open
Abstract
AIM The aim of this study was to estimate the secondary malignancy risk from the radiation in FFB prostate linac-based radiotherapy for different organs of the patient. BACKGROUND Radiation therapy is one of the main procedures of cancer treatment. However, the application the radiation may impose dose to organs of the patient which can be the cause of some malignancies. MATERIALS AND METHODS Monte Carlo (MC) simulation was used to calculate radiation doses to patient organs in 18 MV linear accelerator (linac) based radiotherapy. A humanoid MC phantom was used to calculate the equivalent dose s for different organs and probability of secondary cancer, fatal and nonfatal risk, and other risks and parameters related to megavoltage radiation therapy. In out-of-field radiation calculation, it could be seen that neutrons imparted a higher dose to distant organs, and the dose to surrounding organs was mainly due to absorbed scattered photons and electron contamination. RESULTS Our results showed that the bladder and skin with 54.89 × 10-3 mSv/Gy and 46.09 × 10-3 mSv/Gy, respectively, absorbed the highest equivalent dose s from photoneutrons, while a lower dose was absorbed by the lung at 3.42 × 10-3 mSv/Gy. The large intestine and bladder absorbed 55.00 × 10-3 mSv/Gy and 49.08 × 10-3, respectively, which were the highest equivalent dose s due to photons. The brain absorbed the lowest out-of-field dose, at 1.87 × 10-3 mSv/Gy. CONCLUSIONS We concluded that secondary neutron portion was higher than other radiation. Then, we recommended more attention to neutrons in the radiation protection in linac based high energy radiotherapy.
Collapse
Affiliation(s)
- Amir Ghasemi-Jangjoo
- Medical Radiation Sciences Research Team, Imam Hospital, Tabriz University of Medical Sciences, Imam Hospital, Tabriz, Iran
- Department of Radiology and Radiotherapy, Medicine School, Tabriz University of Medical Sciences, Imam Hospital, Tabriz, Iran
| | - Hosein Ghiasi
- Medical Radiation Sciences Research Team, Imam Hospital, Tabriz University of Medical Sciences, Imam Hospital, Tabriz, Iran
| |
Collapse
|
8
|
Identification of a specific peptide binding to colon cancer cells from a phage-displayed peptide library. Br J Cancer 2017; 118:79-87. [PMID: 29065111 PMCID: PMC5765222 DOI: 10.1038/bjc.2017.366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND New molecular probes are essential for early colon cancer diagnosis. A phage-display screening was performed to select novel binding peptides for early colon cancer imaging detection. METHODS A human colon cancer cell line (COLO320HSR) and a normal human intestinal epithelial cell line (NCM460) were used for subtractive screening with a phage peptide library. The positive peptides were identified, and their binding capacities were confirmed by confocal immunofluorescence both in human colon cancer cells and in biopsy specimens. The sequences were further analysed for homology and the existing mimotopes by the BLAST algorithm and the MimoDB database. RESULTS A peptide termed as CBP-DWS, which was demonstrated to be capable of binding to a panel of human colon cancer cell lines and tissues, was identified; it had virtually no binding to normal human intestinal epithelial cell line NCM460 and normal surrounding colon tissues. Bioinformatics analyses suggest that CBP-DWS targets human Glypican-3, which may be involved in important cellular functions in multiple cancer types. CONCLUSIONS These studies suggest that the selected peptide CBP-DWS may be a candidate to serve as a novel probe for colon cancer imaging.
Collapse
|
9
|
David A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev 2017; 119:120-142. [PMID: 28506743 DOI: 10.1016/j.addr.2017.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Since their initial discovery more than 30years ago, tumor-homing peptides have become an increasingly useful tool for targeted delivery of therapeutic and diagnostic agents into tumors. Today, it is well accepted that cells at the tumor microenvironment (TME) contribute in many ways to cancer development and progression. Tumor-homing peptide-decorated nanomedicines can interact specifically with surface receptors expressed on cells in the TME, improve cellular uptake of nanomedicines by target cells, and impair tumor growth and progression. Moreover, peptide ligand-modified nanomedicines can potentially accumulate in the target tissue at higher concentrations than would small conjugates, thus increasing overall target tissue exposure to the therapeutic agent, enhance therapeutic efficacy and reduce side effects. This review describes the most studied peptide ligands aimed at targeting cells in the TME, discusses major obstacles and principles in the design of ligands for drug targeting and provides an overview of homing peptides in ligand-targeted nanomedicines that are currently in development for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|