1
|
Raj B, Pg P, Sapa H, Shaji SS, T S, Kp AU, K K, Varma P. Small-Diameter Stents in Cardiovascular Applications. Chem Biodivers 2025:e202402008. [PMID: 39901606 DOI: 10.1002/cbdv.202402008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Small-diameter stents play a crucial role in treating congenital heart diseases and variety of vascular conditions that have application from paediatrics to geriatric conditions, and a comprehensive review in this direction is lacking. This review explores historical development, design innovations, material compositions and mechanistic insights into functions of small-diameter stents, with a specific emphasis on biodegradable options. The necessity for stents that can adapt to growth of paediatric patients is discussed, highlighting the transition from durable polymers to bioresorbable materials such as polylactic acid (PLA) and magnesium alloys. While acknowledging the advancements made in reducing complications like restenosis and thrombosis, the review addresses the challenges that persist, including the need for improved biocompatibility and minimization of late adverse cardiac events associated with certain stent technologies. A detailed examination of various stent generations emphasizes the importance of drug release kinetics, structural integrity and potential for personalized interventions based on patient-specific factors. The exploration of novel therapeutic compounds, including nanoparticles and interfering RNA, illustrates the ongoing research aimed at enhancing stent efficacy. Ultimately, the review seeks to provide a comprehensive understanding of current landscape while identifying the gaps that future research must address to develop the ideal stent for diverse patient populations.
Collapse
Affiliation(s)
- Bhavana Raj
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Prajitha Pg
- Vel Tech Dr. Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, (Veltech Dr. RR and Dr. SR. Technical University), Avadi, Chennai, India
- Kerala Law Academy Law College, Kerala Law Academy Law College Peroorkada, Thiruvananthapuram, Kerala, India
| | - Harika Sapa
- Department of Cardiovascular and Thoracic Surgery (C.V.T.S.), School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shona Sara Shaji
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sreejith T
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Althaf Umar Kp
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kaladhar K
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery (C.V.T.S.), School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
2
|
Brückner A, Brandtner A, Rieck S, Matthey M, Geisen C, Fels B, Stei M, Kusche-Vihrog K, Fleischmann BK, Wenzel D. Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE -/- mice. Angiogenesis 2024; 27:719-738. [PMID: 38965173 PMCID: PMC11564227 DOI: 10.1007/s10456-024-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
Collapse
Affiliation(s)
- Alexander Brückner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Adrian Brandtner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Geisen
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Benedikt Fels
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Bernd K Fleischmann
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Seidinger A, Roberts R, Bai Y, Müller M, Pfeil E, Matthey M, Rieck S, Alenfelder J, König GM, Pfeifer A, Kostenis E, Klinke A, Fleischmann BK, Wenzel D. Pharmacological Gq inhibition induces strong pulmonary vasorelaxation and reverses pulmonary hypertension. EMBO Mol Med 2024; 16:1930-1956. [PMID: 38977926 PMCID: PMC11319782 DOI: 10.1038/s44321-024-00096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease with limited survival. Herein, we propose the pharmacological inhibition of Gq proteins as a novel concept to counteract pulmonary vasoconstriction and proliferation/migration of pulmonary artery smooth muscle cells (PASMCs) in PAH. We demonstrate that the specific pan-Gq inhibitor FR900359 (FR) induced a strong vasorelaxation in large and small pulmonary arteries in mouse, pig, and human subjects ex vivo. Vasorelaxation by FR proved at least as potent as the currently used triple therapy. We also provide in vivo evidence that local pulmonary application of FR prevented right ventricular systolic pressure increase in healthy mice as well as in mice suffering from hypoxia (Hx)-induced pulmonary hypertension (PH). In addition, we demonstrate that chronic application of FR prevented and also reversed Sugen (Su)Hx-induced PH in mice. We also demonstrate that Gq inhibition reduces proliferation and migration of PASMCs in vitro. Thus, our work illustrates a dominant role of Gq proteins for pulmonary vasoconstriction as well as remodeling and proposes direct Gq inhibition as a powerful pharmacological strategy in PH.
Collapse
Affiliation(s)
- Alexander Seidinger
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Richard Roberts
- Pharmacology Research Group, University Hospital of Nottingham, Nottingham, UK
| | - Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Eva Pfeil
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany.
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC Basic Transl Sci 2024; 9:691-709. [PMID: 38984042 PMCID: PMC11228123 DOI: 10.1016/j.jacbts.2023.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/11/2024]
Abstract
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Department of Biochemical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen E. Townley
- Nuffield Department of Women’s and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Paul G. Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
6
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Hajishoreh NK, Jamalpoor Z, Rasouli R, Asl AN, Sheervalilou R, Akbarzadeh A. The recent development of carbon-based nanoparticles as a novel approach to skin tissue care and management - A review. Exp Cell Res 2023; 433:113821. [PMID: 37858837 DOI: 10.1016/j.yexcr.2023.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Since the skin is the first barrier of the body's defense against pathogens, delays in the healing process are affected by infections. Therefore, applying advanced substitute assistance improves the patient's quality of life. Carbon-based nanomaterials show better capabilities than conventional methods for managing skin wound infections. Due to their physicochemical properties such as small size, large surface area, great surface-to-volume ratio, and excellent ability to communicate with the cells and tissue, carbon-based nanoparticles have been considered in regenerative medicine. moreover, the carbon nano family offers attractive potential in wound healing via the improvement of angiogenesis and antibacterial compared to traditional approaches become one of the particular research interests in the field of skin tissue engineering. This review emphasizes the wound-healing process and the role of carbon-based nanoparticles in wound care management interaction with tissue engineering technology.
Collapse
Affiliation(s)
| | - Zahra Jamalpoor
- Trauma research center, Aja University of Medical Sciences, Tehran, Iran.
| | - Ramin Rasouli
- Health Research Center Chamran Hospital, Tehran, Iran.
| | - Amir Nezami Asl
- Health Research Center Chamran Hospital, Tehran, Iran; Trauma research center, Aja University of Medical Sciences, Tehran, Iran.
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Simon A, von Einem T, Seidinger A, Matthey M, Bindila L, Wenzel D. The endocannabinoid anandamide is an airway relaxant in health and disease. Nat Commun 2022; 13:6941. [PMID: 36396957 PMCID: PMC9672354 DOI: 10.1038/s41467-022-34327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive airway diseases are a global medical burden that is expected to increase in the near future. However, the underlying mechanistic processes are poorly understood so far. Herein, we show that the endocannabinoid anandamide (AEA) induces prominent airway relaxation in vitro and in vivo. In contrast to 2-arachidonlyglycerol-induced airway relaxation, this is mediated by fatty acid amide hydrolase (FAAH)-dependent metabolites. In particular, we identify mouse and also human epithelial and airway smooth muscle cells as source of AEA-induced prostaglandin E2 production and cAMP as direct mediator of AEA-dependent airway relaxation. Mass spectrometry experiments demonstrate reduced levels of endocannabinoid-like compounds in lungs of ovalbumin-sensitized mice indicating a pathophysiological relevance of endocannabinoid signalling in obstructive airway disease. Importantly, AEA inhalation protects against airway hyper-reactivity after ovalbumin sensitization. Thus, this work highlights the AEA/FAAH axis as a critical regulator of airway tone that could provide therapeutic targets for airway relaxation.
Collapse
Affiliation(s)
- Annika Simon
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Thomas von Einem
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alexander Seidinger
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Michaela Matthey
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Laura Bindila
- grid.410607.4Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Daniela Wenzel
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany ,grid.10388.320000 0001 2240 3300Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology 2022; 20:393. [PMID: 36045375 PMCID: PMC9428876 DOI: 10.1186/s12951-022-01595-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.
Collapse
|
10
|
Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells 2022; 11:cells11111845. [PMID: 35681540 PMCID: PMC9180657 DOI: 10.3390/cells11111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality all over the world. Extracellular vesicles (EVs), small lipid-bilayer membrane vesicles released by most cellular types, exert pivotal and multifaceted roles in physiology and disease. Emerging evidence emphasizes the importance of EVs in intercellular communication processes with key effects on cell survival, endothelial homeostasis, inflammation, neoangiogenesis, and thrombosis. This review focuses on EVs as effective signaling molecules able to both derail vascular homeostasis and induce vascular dysfunction, inflammation, plaque progression, and thrombus formation as well as drive anti-inflammation, vascular repair, and atheroprotection. We provide a comprehensive and updated summary of the role of EVs in the development or regression of atherosclerotic lesions, highlighting the link between thrombosis and inflammation. Importantly, we also critically describe their potential clinical use as disease biomarkers or therapeutic agents in atherothrombosis.
Collapse
|
11
|
Rieck S, Kilgus S, Meyer JH, Huang H, Zhao L, Matthey M, Wang X, Schmitz-Valckenberg S, Fleischmann BK, Wenzel D. Inhibition of Vascular Growth by Modulation of the Anandamide/Fatty Acid Amide Hydrolase Axis. Arterioscler Thromb Vasc Biol 2021; 41:2974-2989. [PMID: 34615374 PMCID: PMC8608012 DOI: 10.1161/atvbaha.121.316973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Pathological angiogenesis is a hallmark of various diseases characterized by local hypoxia and inflammation. These disorders can be treated with inhibitors of angiogenesis, but current compounds display a variety of side effects and lose efficacy over time. This makes the identification of novel signaling pathways and pharmacological targets involved in angiogenesis a top priority. Approach and Results: Here, we show that inactivation of FAAH (fatty acid amide hydrolase), the enzyme responsible for degradation of the endocannabinoid anandamide, strongly impairs angiogenesis in vitro and in vivo. Both, the pharmacological FAAH inhibitor URB597 and anandamide induce downregulation of gene sets for cell cycle progression and DNA replication in endothelial cells. This is underscored by cell biological experiments, in which both compounds inhibit proliferation and migration and evoke cell cycle exit of endothelial cells. This prominent antiangiogenic effect is also of pathophysiological relevance in vivo, as laser-induced choroidal neovascularization in the eye of FAAH−/− mice is strongly reduced. Conclusions: Thus, elevation of endogenous anandamide levels by FAAH inhibition represents a novel antiangiogenic mechanism.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Sofia Kilgus
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Johanna H Meyer
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Michaela Matthey
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany.,John A. Moran Eye Center, Ophthalmology & Visual Science, University of Utah, Salt Lake City (S.S.-V.)
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany.,Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| |
Collapse
|
12
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
13
|
Damiati LA, El-Messeiry S. An Overview of RNA-Based Scaffolds for Osteogenesis. Front Mol Biosci 2021; 8:682581. [PMID: 34169095 PMCID: PMC8217814 DOI: 10.3389/fmolb.2021.682581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering provides new hope for the combination of cells, scaffolds, and bifactors for bone osteogenesis. This is achieved by mimicking the bone's natural behavior in recruiting the cell's molecular machinery for our use. Many researchers have focused on developing an ideal scaffold with specific features, such as good cellular adhesion, cell proliferation, differentiation, host integration, and load bearing. Various types of coating materials (organic and non-organic) have been used to enhance bone osteogenesis. In the last few years, RNA-mediated gene therapy has captured attention as a new tool for bone regeneration. In this review, we discuss the use of RNA molecules in coating and delivery, including messenger RNA (mRNA), RNA interference (RNAi), and long non-coding RNA (lncRNA) on different types of scaffolds (such as polymers, ceramics, and metals) in osteogenesis research. In addition, the effect of using gene-editing tools-particularly CRISPR systems-to guide RNA scaffolds in bone regeneration is also discussed. Given existing knowledge about various RNAs coating/expression may help to understand the process of bone formation on the scaffolds during osseointegration.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Huang RY, Liu ZH, Weng WH, Chang CW. Magnetic nanocomplexes for gene delivery applications. J Mater Chem B 2021; 9:4267-4286. [PMID: 33942822 DOI: 10.1039/d0tb02713h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene delivery is an indispensable technique for various biomedical applications such as gene therapy, stem cell engineering and gene editing. Recently, magnetic nanoparticles (MNPs) have received increasing attention for their use in promoting gene delivery efficiency. Under magnetic attraction, gene delivery efficiency using viral or nonviral gene carriers could be universally enhanced. Besides, magnetic nanoparticles could be utilized in magnetic resonance imaging or magnetic hyperthermia therapy, providing extra theranostic opportunities. In this review, recent research integrating MNPs with a viral or nonviral gene vector is summarized from both technical and application perspectives. Applications of MNPs in cutting-edge research technologies, such as biomimetic cell membrane nano-gene carriers, exosome-based gene delivery, cell-based drug delivery systems or CRISPR/Cas9 gene editing, are also discussed.
Collapse
Affiliation(s)
- Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taiwan.
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Dai T, He W, Yao C, Ma X, Ren W, Mai Y, Wu A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater Sci 2020; 8:3784-3799. [PMID: 32469010 DOI: 10.1039/d0bm00196a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic progressive disease, which may result in serious clinical outcomes, such as acute heart events or stroke with high mortality. At present, the clinical problems of atherosclerosis mainly consist of the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase and the shortage of valid treatments. Fortunately, with the development of nanotechnology, various inorganic nanoparticles with imaging enhancement and noninvasive therapy functions have been studied in the imaging and treatment of atherosclerosis, which has brought new hope to patients. This review focuses on the recent progress in the use of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis, including the key processes in the development of atherosclerosis and the mainly involved cells, inorganic nanoparticle-based dual-mode imaging methods classified by the types of targeting cells, and inorganic nanoparticle-based therapeutic approaches, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), drug delivery, gene therapy and imaging-guided therapy for atherosclerosis. Finally, this review discusses the challenges and directions of inorganic nanoparticles in potential clinical translation of anti-atherosclerosis in future. We believe this review will enable readers to systematically understand the progress of the inorganic nanoparticle-based imaging and therapy of atherosclerosis and therefore promote the further development of anti-atherosclerosis.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical school of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Yan C, Quan XJ, Feng YM. Nanomedicine for Gene Delivery for the Treatment of Cardiovascular Diseases. Curr Gene Ther 2020; 19:20-30. [PMID: 30280665 PMCID: PMC6751340 DOI: 10.2174/1566523218666181003125308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Background: Myocardial infarction (MI) is the most severe ischemic heart disease and di-rectly leads to heart failure till death. Target molecules have been identified in the event of MI including increasing angiogenesis, promoting cardiomyocyte survival, improving heart function and restraining inflammation and myocyte activation and subsequent fibrosis. All of which are substantial in cardiomy-ocyte protection and preservation of cardiac function. Methodology: To modulate target molecule expression, virus and non-virus-mediated gene transfer have been investigated. Despite successful in animal models of MI, virus-mediated gene transfer is hampered by poor targeting efficiency, low packaging capacity for large DNA sequences, immunogenicity induced by virus and random integration into the human genome. Discussion: Nanoparticles could be synthesized and equipped on purpose for large-scale production. They are relatively small in size and do not incorporate into the genome. They could carry DNA and drug within the same transfer. All of these properties make them an alternative strategy for gene transfer. In the review, we first introduce the pathological progression of MI. After concise discussion on the current status of virus-mediated gene therapy in treating MI, we overview the history and development of nanoparticle-based gene delivery system. We point out the limitations and future perspective in the field of nanoparticle vehicle. Conclusion: Ultimately, we hope that this review could help to better understand how far we are with nanoparticle-facilitated gene transfer strategy and what obstacles we need to solve for utilization of na-nomedicine in the treatment of MI.
Collapse
Affiliation(s)
- Cen Yan
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Xiao-Jiang Quan
- Laboratory of Brain Development, Institut du Cerveau et de la Moelle Epiniere- ICM, Hospital Pitie-Salpetriere, 75013 Paris, France
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
17
|
Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for Angiogenesis in Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:203-216. [PMID: 31964266 DOI: 10.1089/ten.teb.2019.0337] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Damage to skin tissue, which causes the disorder of the patient's body homeostasis, threatens the patient's life and increases the personal and social treatment burden. Angiogenesis, a key step in the wound healing process, provides sufficient oxygen and nutrients to the wound area. However, traditional clinical interventions are not enough to stabilize the formation of the vascular system to support wound healing. Due to the unique properties and multiple functions of nanomaterials, it has made a major breakthrough in the application of medicine. Nanomaterials provide a more effective treatment to hasten the angiogenesis and wound healing, by stimulating fundamental factors in the vascular regeneration phase. In the present review article, the basic stages and molecular mechanisms of angiogenesis are analyzed, and the types, applications, and prospects of nanomaterials used in angiogenesis are detailed. Impact statement Wound healing (especially chronic wounds) is currently a clinically important issue. The long-term nonhealing of chronic wounds often plagues patients, medical systems, and causes huge losses to the social economy. There is currently no effective method of treating chronic wounds in the clinic. Angiogenesis is an important step in wound healing. Nanomaterials had properties that are not found in conventional materials, and they have been extensively studied in angiogenesis. This review article provides readers with the molecular mechanisms of angiogenesis and the types and applications of angiogenic nanomaterials, hoping to bring inspiration to overcome chronic wounds.
Collapse
Affiliation(s)
- Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jingan Li
- Henan Key Laboratory of Advanced Magnesium Alloy, Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Am J Cancer Res 2020; 10:3190-3205. [PMID: 32194862 PMCID: PMC7053199 DOI: 10.7150/thno.42640] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, more than 1.5 million patients undergo bone graft surgeries annually, and the development of biomaterial scaffolds that mimic natural bone for bone grafting remains a tremendous challenge. In recent decades, due to the improved understanding of the mechanisms of bone remodeling and the rapid development of gene therapy, RNA (including messenger RNA (mRNA), microRNA (miRNA), and short interfering RNA (siRNA)) has attracted increased attention as a new tool for bone tissue engineering due to its unique nature and great potential to cure bone defects. Different types of RNA play roles via a variety of mechanisms in bone-related cells in vivo as well as after synthesis in vitro. In addition, RNAs are delivered to injured sites by loading into scaffolds or systemic administration after combination with vectors for bone tissue engineering. However, the challenge of effectively and stably delivering RNA into local tissue remains to be solved. This review describes the mechanisms of the three types of RNAs and the application of the relevant types of RNA delivery vectors and scaffolds in bone regeneration. The improvements in their development are also discussed.
Collapse
|
19
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
20
|
Local anti-angiogenic therapy by magnet-assisted downregulation of SHP2 phosphatase. J Control Release 2019; 305:155-164. [PMID: 31121282 DOI: 10.1016/j.jconrel.2019.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
Abstract
Anti-angiogenic therapies are promising options for diseases with enhanced vessel formation such as tumors or retinopathies. In most cases, a site-specific local effect on vessel growth is required, while the current focus on systemic distribution of angiogenesis inhibitors may cause severe unwanted side-effects. Therefore, in the current study we have developed an approach for the local inhibition of vascularization, using complexes of lentivirus and magnetic nanoparticles in combination with magnetic fields. Using this strategy in the murine embryonic stem cell (ESC) system, we were able to site-specifically downregulate the protein tyrosine phosphatase SHP2 by RNAi technology in areas with active vessel formation. This resulted in a reduction of vessel development, as shown by reduced vascular tube length, branching points and vascular loops. The anti-angiogenic effect could also be recapitulated in the dorsal skinfold chamber of mice in vivo. Here, site-specific downregulation of SHP2 reduced re-vascularization after wound induction. Thus, we have developed a magnet-assisted, RNAi-based strategy for the efficient local inhibition of angiogenesis in ESCs in vitro and also in vivo.
Collapse
|
21
|
A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Winkler F, Herz K, Rieck S, Kimura K, Hu T, Röll W, Hesse M, Fleischmann BK, Wenzel D. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Sci Rep 2018; 8:17582. [PMID: 30514882 PMCID: PMC6279819 DOI: 10.1038/s41598-018-36039-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
For the monitoring of vascular growth as well as adaptive or therapeutic (re)vascularization endothelial-specific reporter mouse models are valuable tools. However, currently available mouse models have limitations, because not all endothelial cells express the reporter in all developmental stages. We have generated PECAM/eGFP embryonic stem (ES) cell and mouse lines where the reporter gene labels PECAM+ endothelial cells and vessels with high specificity. Native eGFP expression and PECAM staining were highly co-localized in vessels of various organs at embryonic stages E9.5, E15.5 and in adult mice. Expression was found in large and small arteries, capillaries and in veins but not in lymphatic vessels. Also in the bone marrow arteries and sinusoidal vessel were labeled, moreover, we could detect eGFP in some CD45+ hematopoietic cells. We also demonstrate that this labeling is very useful to monitor sprouting in an aortic ring assay as well as vascular remodeling in a murine injury model of myocardial infarction. Thus, PECAM/eGFP transgenic ES cells and mice greatly facilitate the monitoring and quantification of endothelial cells ex vivo and in vivo during development and injury.
Collapse
Affiliation(s)
- Florian Winkler
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Katia Herz
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenichi Kimura
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tianyuan Hu
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wilhelm Röll
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Neumann V, Knies R, Seidinger A, Simon A, Lorenz K, Matthey M, Breuer J, Wenzel D. The β
2
agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via a adrenoceptor antagonism. FASEB J 2018; 32:2519-2530. [DOI: 10.1096/fj.201700684rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vanessa Neumann
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Ralf Knies
- Department of Pediatric Cardiology Pediatric Heart Center University Clinic Bonn Bonn Germany
| | - Alexander Seidinger
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Annika Simon
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Kristina Lorenz
- Leibniz‐Institut für Analytische Wissenschaften (ISAS) Dortmund Germany
| | - Michaela Matthey
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Johannes Breuer
- Department of Pediatric Cardiology Pediatric Heart Center University Clinic Bonn Bonn Germany
| | - Daniela Wenzel
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| |
Collapse
|
24
|
Jansen F, Li Q, Pfeifer A, Werner N. Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation of Cardiovascular Health and Disease. JACC Basic Transl Sci 2017; 2:790-807. [PMID: 30062186 PMCID: PMC6059011 DOI: 10.1016/j.jacbts.2017.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 02/08/2023]
Abstract
Intercellular signaling by extracellular vesicles (EVs) is a route of cell-cell crosstalk that allows cells to deliver biological messages to specific recipient cells. EVs convey these messages through their distinct cargoes consisting of cytokines, proteins, nucleic acids, and lipids, which they transport from the donor cell to the recipient cell. In cardiovascular disease (CVD), endothelial- and immune cell-derived EVs are emerging as key players in different stages of disease development. EVs can contribute to atherosclerosis development and progression by promoting endothelial dysfunction, intravascular calcification, unstable plaque progression, and thrombus formation after rupture. In contrast, an increasing body of evidence highlights the beneficial effects of certain EVs on vascular function and endothelial regeneration. However, the effects of EVs in CVD are extremely complex and depend on the cellular origin, the functional state of the releasing cells, the biological content, and the diverse recipient cells. This paper summarizes recent progress in our understanding of EV signaling in cardiovascular health and disease and its emerging potential as a therapeutic agent.
Collapse
Key Words
- CVD, cardiovascular disease
- EC, endothelial cell
- EMV, endothelial cell-derived microvesicles
- ESCRT, endosomal sorting complex required for transport
- IL, interleukin
- MV, microvesicles
- NO, nitric oxide
- PEG, polyethylene glycol
- TGF, transforming growth factor
- cardiovascular disease
- extracellular vesicles
- miRNA, microRNA
- microvesicles
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Qian Li
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany.,Department of Cardiology, Second Hospital of Jilin University, Nanguan District, Changchun, China
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
25
|
Borroni E, Miola M, Ferraris S, Ricci G, Žužek Rožman K, Kostevšek N, Catizone A, Rimondini L, Prat M, Verné E, Follenzi A. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater 2017; 59:303-316. [PMID: 28688987 DOI: 10.1016/j.actbio.2017.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023]
Abstract
Nanomaterials conjugated or complexed with biological moieties such as antibodies, polymers or peptides appear to be suitable not only for drug delivery but also for specific cancer treatment. Here, biocompatible iron oxide magnetic nanoparticles (MNPs) with or without a silica shell coupled with lentiviral vectors (LVs) are proposed as a combined therapeutic approach to specifically target gene expression in a cancer mouse model. Initially, four different MNPs were synthesized and their physical properties were characterized to establish and discriminate their behaviors. MNPs and LVs strictly interacted and transduced cells in vitro as well as in vivo, with no toxicity or inflammatory responses. By injecting LV-MNPs complexes intravenously, green fluorescent protein (GFP) resulted in a sustained long-term expression. Furthermore, by applying a magnetic field on the abdomen of intravenous injected mice, GFP positive cells increased in livers and spleens. In liver, LV-MNPs were able to target both hepatocytes and non-parenchymal cells, while in a mouse model with a grafted tumor, intra-tumor LV-MNPs injection and magnetic plaque application next to the tumor demonstrated the efficient uptake of LV-MNPs complexes with high number of transduced cells and iron accumulation in the tumor site. More important, LV-MNPs with the application of the magnetic plaque spread in all the tumor parenchyma and dissemination through the body was prevented confirming the efficient uptake of LV-MNPs complexes in the tumor. Thus, these LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes. STATEMENT OF SIGNIFICANCE Our study describes a novel approach of combining magnetic properties of nanomaterials with gene therapy. Magnetic nanoparticles (MNPs) coated with or without a silica shell coupled with lentiviral vectors (LVs) were used as vehicle to target biological active molecules in a mouse cancer model. After in situ injection, the presence of MNP under the magnetic field improve the vector distribution in the tumor mass and after systemic administration, the application of the magnetic field favor targeting of specific organs for LV transduction and specifically can direct LV in specific cells (or avoiding them). Thus, our findings suggest that LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes.
Collapse
|