1
|
Ake B, Yang H, Yang H, Liu H, Gui X, Liu T, Chen J, Liu J, Zhou W, Qu B, Zeng Z, Zhou C. Ultrasound-responsive smart biomaterials for bone tissue engineering. J Mater Chem B 2025; 13:4527-4543. [PMID: 40111085 DOI: 10.1039/d5tb00109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Bone defects resulting from trauma, tumors, or other injuries significantly impact human health and quality of life. However, current treatments for bone defects are constrained by donor shortages and immune rejection. Bone tissue engineering has partially alleviated the limitations of traditional bone repair methods. The development of smart biomaterials that can respond to external stimuli to modulate the biofunctions has become a prominent area of research. Ultrasound technology is regarded as an optimal "remote controller" and "trigger" for bone repair biomaterials. This review reports the comprehensive and systematic overview of ultrasound-responsive bone repair smart biomaterials. It presents the fundamental theories of bone repair, the definition of ultrasound, and its applications. Furthermore, the review summarizes the ultrasound effect mechanisms of biomaterials and their roles in bone repair, including detailed studies on anti-inflammation, immunomodulation, and cell therapy. Finally, the advantages of ultrasound-responsive smart biomaterials and their future prospects in this field are discussed.
Collapse
Affiliation(s)
- Bicheng Ake
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hongsheng Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hao Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hao Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| | - Taoyu Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| | - Jie Chen
- Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jia Liu
- The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Wenzheng Zhou
- The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Bo Qu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Zhimou Zeng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
2
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
3
|
Huang P, Li W, Guan J, Jia Y, Wang D, Chen Y, Xiao N, Ou S, Wang Y, Yang B. Synthetic Vesicle-Based Drug Delivery Systems for Oral Disease Therapy: Current Applications and Future Directions. J Funct Biomater 2025; 16:25. [PMID: 39852581 PMCID: PMC11766321 DOI: 10.3390/jfb16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Oral diseases such as dental caries, periodontitis, and oral cancer are prevalent and present significant challenges to global public health. Although these diseases are typically treated through procedures like dental preparation and resin filling, scaling and root planning, or surgical excision, these interventions are often not entirely effective, and postoperative drug therapy is usually required. Traditional drug treatments, however, are limited by factors such as poor drug penetration, significant side effects, and the development of drug resistance. As a result, there is a growing need for novel drug delivery systems that can enhance therapeutic efficacy, reduce side effects, and improve treatment outcomes. In recent years, drug-loaded vesicles, such as liposomes, polymersomes, and extracellular vesicles (EVs), have emerged as promising drug delivery platforms due to their high drug encapsulation efficiency, controlled release properties, and excellent biocompatibility. This review provides an in-depth examination of the characteristics, advantages, and limitations of liposomes, polymersomes, and extracellular vesicles in the context of oral disease treatment. It further explores the reasons for their advantages and limitations and discusses the specific applications, development prospects, and strategies for optimizing these vesicle-based systems for improved clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| |
Collapse
|
4
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
5
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Xu H, Cui Y, Tian Y, Dou M, Sun S, Wang J, Wu D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1302-1322. [PMID: 38346448 DOI: 10.1021/acsbiomaterials.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.
Collapse
Affiliation(s)
- Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Minghan Dou
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
7
|
Das R, Le D, Kan HM, Le TT, Park J, Nguyen TD, Lo KWH. Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds. PLoS One 2024; 19:e0299579. [PMID: 38412168 PMCID: PMC10898771 DOI: 10.1371/journal.pone.0299579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, MD, United States of America
| | - Duong Le
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health System, Hanoi, Vietnam, United States of America
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Institute of Materials Science (IMS), University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Kevin W.-H. Lo
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT, United States of America
- Institute of Materials Science (IMS), University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
8
|
Sotoudeh Bagha P, Kolanthai E, Wei F, Neal CJ, Kumar U, Braun G, Coathup M, Seal S, Razavi M. Ultrasound-Responsive Nanobubbles for Combined siRNA-Cerium Oxide Nanoparticle Delivery to Bone Cells. Pharmaceutics 2023; 15:2393. [PMID: 37896153 PMCID: PMC10609961 DOI: 10.3390/pharmaceutics15102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to present an ultrasound-mediated nanobubble (NB)-based gene delivery system that could potentially be applied in the future to treat bone disorders such as osteoporosis. NBs are sensitive to ultrasound (US) and serve as a controlled-released carrier to deliver a mixture of Cathepsin K (CTSK) siRNA and cerium oxide nanoparticles (CeNPs). This platform aimed to reduce bone resorption via downregulating CTSK expression in osteoclasts and enhance bone formation via the antioxidant and osteogenic properties of CeNPs. CeNPs were synthesized and characterized using transmission electron microscopy and X-ray photoelectron spectroscopy. The mixture of CTSK siRNA and CeNPs was adsorbed to the surface of NBs using a sonication method. The release profiles of CTSK siRNA and CeNPs labeled with a fluorescent tag molecule were measured after low-intensity pulsed ultrasound (LIPUS) stimulation using fluorescent spectroscopy. The maximum release of CTSK siRNA and the CeNPs for 1 mg/mL of NB-(CTSK siRNA + CeNPs) was obtained at 2.5 nM and 1 µg/mL, respectively, 3 days after LIPUS stimulation. Then, Alizarin Red Staining (ARS) was applied to human bone marrow-derived mesenchymal stem cells (hMSC) and tartrate-resistant acid phosphatase (TRAP) staining was applied to human osteoclast precursors (OCP) to evaluate osteogenic promotion and osteoclastogenic inhibition effects. A higher mineralization and a lower number of osteoclasts were quantified for NB-(CTSK siRNA + CeNPs) versus control +RANKL with ARS (p < 0.001) and TRAP-positive staining (p < 0.01). This study provides a method for the delivery of gene silencing siRNA and CeNPs using a US-sensitive NB system that could potentially be used in vivo and in the treatment of bone fractures and disorders such as osteoporosis.
Collapse
Affiliation(s)
- Pedram Sotoudeh Bagha
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Fei Wei
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Gillian Braun
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Melanie Coathup
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Mehdi Razavi
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
9
|
Ma Y, Brocchini S, Williams GR. Extracellular vesicle-embedded materials. J Control Release 2023; 361:280-296. [PMID: 37536545 DOI: 10.1016/j.jconrel.2023.07.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles released by cells. EVs are emerging as a promising class of therapeutic entity that could be adapted in formulation due to their lack of immunogenicity and targeting capabilities. EVs have been shown to have similar regenerative and therapeutic effects to their parental cells and also have potential in disease diagnosis. To improve the therapeutic potential of EVs, researchers have developed various strategies for modifying them, including genetic engineering and chemical modifications which have been examined to confer target specificity and prevent rapid clearance after systematic injection. Formulation efforts have focused on utilising hydrogel and nano-formulation strategies to increase the persistence of EV localisation in a specific tissue or organ. Researchers have also used biomaterials or bioscaffolds to deliver EVs directly to disease sites and prolong EV release and exposure. This review provides an in-depth examination of the material design of EV delivery systems, highlighting the impact of the material properties on the molecular interactions and the maintenance of EV stability and function. The various characteristics of materials designed to regulate the stability, release rate and biodistribution of EVs are described. Other aspects of material design, including modification methods to improve the targeting of EVs, are also discussed. This review aims to offer an understanding of the strategies for designing EV delivery systems, and how they can be formulated to make the transition from laboratory research to clinical use.
Collapse
Affiliation(s)
- Yingchang Ma
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
10
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
11
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
A Tissue Engineering Acoustophoretic (TEA) Set-up for the Enhanced Osteogenic Differentiation of Murine Mesenchymal Stromal Cells (mMSCs). Int J Mol Sci 2022; 23:ijms231911473. [PMID: 36232775 PMCID: PMC9570200 DOI: 10.3390/ijms231911473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Quickly developing precision medicine and patient-oriented treatment strategies urgently require novel technological solutions. The randomly cell-populated scaffolds usually used for tissue engineering often fail to mimic the highly anisotropic characteristics of native tissue. In this work, an ultrasound standing-wave-based tissue engineering acoustophoretic (TEA) set-up was developed to organize murine mesenchymal stromal cells (mMSCs) in an in situ polymerizing 3-D fibrin hydrogel. The resultant constructs, consisting of 17 cell layers spaced at 300 µm, were obtained by continuous wave ultrasound applied at a 2.5 MHz frequency. The patterned mMSCs preserved the structured behavior within 10 days of culturing in osteogenic conditions. Cell viability was moderately increased 1 day after the patterning; it subdued and evened out, with the cells randomly encapsulated in hydrogels, within 21 days of culturing. Cells in the structured hydrogels exhibited enhanced expression of certain osteogenic markers, i.e., Runt-related transcription factor 2 (RUNX2), osterix (Osx) transcription factor, collagen-1 alpha1 (COL1A1), osteopontin (OPN), osteocalcin (OCN), and osteonectin (ON), as well as of certain cell-cycle-progression-associated genes, i.e., Cyclin D1, cysteine-rich angiogenic inducer 61 (CYR61), and anillin (ANLN), when cultured with osteogenic supplements and, for ANLN, also in the expansion media. Additionally, OPN expression was also augmented on day 5 in the patterned gels cultured without the osteoinductive media, suggesting the pro-osteogenic influence of the patterned cell organization. The TEA set-up proposes a novel method for non-invasively organizing cells in a 3-D environment, potentially enhancing the regenerative properties of the designed anisotropic constructs for bone healing.
Collapse
|
13
|
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10:17. [PMID: 35197462 PMCID: PMC8866424 DOI: 10.1038/s41413-021-00180-y] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem, researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific pH reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration. Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified.
Collapse
|
14
|
Kang M, Lee CS, Lee M. Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration. Bioengineering (Basel) 2021; 8:bioengineering8100137. [PMID: 34677210 PMCID: PMC8533541 DOI: 10.3390/bioengineering8100137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
With population aging and increased life expectancy, an increasing number of people are facing musculoskeletal health problems that necessitate therapeutic intervention at defect sites. Bone tissue engineering (BTE) has become a promising approach for bone graft substitutes as traditional treatments using autografts or allografts involve clinical complications. Significant advancements have been made in developing ideal BTE scaffolds that can integrate bioactive molecules promoting robust bone repair. Herein, we review bioactive scaffolds tuned for local bone regenerative therapy, particularly through integrating synthetic liposomal vesicles or extracellular vesicles to the scaffolds. Liposomes offer an excellent drug delivery system providing sustained release of the loaded bioactive molecules. Extracellular vesicles, with their inherent capacity to carry bioactive molecules, are emerging as an advanced substitute of synthetic nanoparticles and a novel cell-free therapy for bone regeneration. We discuss the recent advance in the use of synthetic liposomes and extracellular vesicles as bioactive materials combined with scaffolds, highlighting major challenges and opportunities for their applications in bone regeneration. We put a particular focus on strategies to integrate vesicles to various biomaterial scaffolds and introduce the latest advances in achieving sustained release of bioactive molecules from the vesicle-loaded scaffolds at the bone defect site.
Collapse
Affiliation(s)
- Minjee Kang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA;
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea;
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA;
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
15
|
Abstract
ABSTRACT Deformity and tissue loss involving the craniomaxillofacial region occurs frequently as a result of trauma, oncologic resection, or a congenital malformation. In order to maximize the patient's quality of life, reconstruction of the craniomaxillofacial skeleton must seek to restore aesthetics as well as function. Advances in diagnostic technology, surgical technique, instrumentation, and innovative biomaterials used have transformed the way reconstructive surgeons approach their patients' needs. From the advent of alloplastic reconstruction, surgeons have sought the ideal material for use in craniomaxillofacial surgery. Substances such as metals, ceramics, glasses, and more recently resorbable polymers and bioactive materials have all been utilized.While autologous bone has remained widely-favored and the gold standard, synthetic alternatives remain a necessity when autologous reconstruction is not readily available. Today, alloplastic material, autografting via microvascular tissue transfer, hormone and growth factor-induced bone formation, and computer-aided design and manufacturing of biocompatible implants represent only a fraction of a wide range of options used in the reconstruction of the craniomaxillofacial skeleton. We present a brief review of the materials used in the repair of deformities of the craniomaxillofacial skeleton as well as a look into the potential future direction of the field.
Collapse
|
16
|
Levingstone T, Ali B, Kearney C, Dunne N. Hydroxyapatite sonosensitization of ultrasound-triggered, thermally responsive hydrogels: An on-demand delivery system for bone repair applications. J Biomed Mater Res B Appl Biomater 2021; 109:1622-1633. [PMID: 33600064 DOI: 10.1002/jbm.b.34820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
While bones have the innate capability to physiologically regenerate, in certain cases regeneration is suboptimal, too slow, or does not occur. Biomaterials-based growth factor delivery systems have shown potential for the treatment of challenging bone defects, however, achieving controlled growth factor release remains a challenge. The objective of this study was to develop a thermally responsive hydrogel for bone regeneration capable of ultrasound-triggered on-demand delivery of therapeutic agents. Furthermore, it was hypothesized that incorporation of hydroxyapatite (HA) into the hydrogel could increase sonosensitization, augmenting ultrasound sensitivity to enable controlled therapeutic release to the target tissue. Alginate thermally responsive P(Alg-g-NIPAAm) hydrogels were fabricated and varying quantities of HA (1, 3, 5, and 7% wt./vol.) incorporated. All hydrogels were highly injectable (maximum injection force below 6.5 N) and rheological characterization demonstrated their ability to gel at body temperature. The study demonstrated the ultrasound-triggered release of sodium fluorescein (NaF), bovine serum albumin (BSA), and bone morphogenetic protein 2 (BMP-2) from the hydrogels. Release rates of BSA and BMP-2 were significantly enhanced in the HA containing hydrogels, confirming for the first time the role of HA as a son sensitizer. Together these results demonstrate the potential of these ultrasound-triggered thermally responsive hydrogels for on-demand delivery of therapeutic agents for bone regeneration.
Collapse
Affiliation(s)
- Tanya Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Badriah Ali
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Eawsakul K, Tancharoen S, Nasongkla N. Combination of dip coating of BMP-2 and spray coating of PLGA on dental implants for osseointegration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Akbarzadeh A, Sasanpour P, Moghimi HR. LED Photo-polymerization, a Novel Strategy for Triggered Release Liposomes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:260-270. [PMID: 32922485 PMCID: PMC7462490 DOI: 10.22037/ijpr.2019.112366.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LED light is used for many medical and cosmetic applications such as phototherapy and skin rejuvenation. Such physical methods can be combined with drug therapy, such as LED-responsive drug delivery system, the subject of present investigation. To perform this investigation, a nanoliposome composed of DPPC, DSPE-PEG2000, and DC8,9PC, was prepared as LED-sensitive systems. Calcein was loaded in the liposomes as a fluorescent probe for drug release studies. Different LED wavelengths (blue, green and red) were used for triggering release of calcein from nanoliposome. Indoor daylight, darkness, and sunlight were applied as controls. Results showed that liposomes do not release their cargo in darkness, but they released it in response to indoor daylight, sunlight and LEDs, with the blue light showing the highest effect. Results also showed that release of calcein was sensitive to wavelength. Our results reveal potential of LED-sensitive liposomes for medical and cosmetic applications and that such system can be combined with phototherapy. Such concomitant therapies can increase medical/cosmetic effects and decrease adverse reactions to phototherapy.
Collapse
Affiliation(s)
- Afsoon Akbarzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Chandan R, Mehta S, Banerjee R. Ultrasound-Responsive Carriers for Therapeutic Applications. ACS Biomater Sci Eng 2020; 6:4731-4747. [PMID: 33455210 DOI: 10.1021/acsbiomaterials.9b01979] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasound (US)-responsive carriers have emerged as promising theranostic candidates because of their ability to enhance US-contrast, promote image-guided drug delivery, cause on-demand pulsatile release of drugs in response to ultrasound stimuli, as well as to enhance the permeability of physiological barriers such as the stratum corneum, the vascular endothelium, and the blood-brain barrier (BBB). US-responsive carriers include microbubbles MBs, liposomes, droplets, hydrogels, and nanobubble-nanoparticle complexes and have been explored for cavitation-mediated US-responsive drug delivery. Recently, a transient increase in the permeability of the BBB by microbubble (MB)-assisted low-frequency US has shown promise in enhancing the delivery of therapeutic agents in the case of neurological disorders. Further, the periodic mechanical stimulus generated by US-responsive MBs have also been explored in tissue engineering and has directly influenced the differentiation of mesenchymal stem cells into cartilage. This Review discusses the various types of US-responsive carriers and explores their emerging roles in therapeutics ranging from drug delivery to tissue engineering.
Collapse
Affiliation(s)
- Rajeet Chandan
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sourabh Mehta
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,IIT Bombay-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
21
|
Qu M, Jiang X, Zhou X, Wang C, Wu Q, Ren L, Zhu J, Zhu S, Tebon P, Sun W, Khademhosseini A. Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering. Adv Healthc Mater 2020; 9:e1901714. [PMID: 32125786 PMCID: PMC7189772 DOI: 10.1002/adhm.201901714] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Indexed: 02/05/2023]
Abstract
Growth factors (GFs) play a crucial role in directing stem cell behavior and transmitting information between different cell populations for tissue regeneration. However, their utility as therapeutics is limited by their short half-life within the physiological microenvironment and significant side effects caused by off-target effects or improper dosage. "Smart" materials that can not only sustain therapeutic delivery over a treatment period but also facilitate on-demand release upon activation are attracting significant interest in the field of GF delivery for tissue engineering. Three properties are essential in engineering these "smart" materials: 1) the cargo vehicle protects the encapsulated therapeutic; 2) release is targeted to the site of injury; 3) cargo release can be modulated by disease-specific stimuli. The aim of this review is to summarize the current research on stimuli-responsive materials as intelligent vehicles for controlled GF delivery; Five main subfields of tissue engineering are discussed: skin, bone and cartilage, muscle, blood vessel, and nerve. Challenges in achieving such "smart" materials and perspectives on future applications of stimuli-responsive GF delivery for tissue regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingzhi Wu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Li Ren
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jixiang Zhu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peyton Tebon
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Zhang X, Fan J, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Apatite-binding nanoparticulate agonist of hedgehog signaling for bone repair. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909218. [PMID: 32952492 PMCID: PMC7494204 DOI: 10.1002/adfm.201909218] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 05/11/2023]
Abstract
The hedgehog signaling pathway plays a critical role in bone development and regeneration. Applications of hedgehog morphogens or small molecular agonists are of interest in bone repair but constrained by low stability, high dose requirement, and nonspecific targeting in vivo. Herein, a nanoparticulate agonist as a new type of hedgehog signaling activator is developed for efficacious bone healing. The shell of nanoparticulate agonist consists of palmitic acid and oxysterol, which could modify hedgehog function and bind with the smoothened receptor to positively modulate hedgehog signaling. Meanwhile, the core is assembled with sonic hedgehog gene/polyethyleneimine complex, which could synergistically enhance hedgehog signaling with oxysterol constituents. Moreover, alendronate is introduced into nanoparticulate agonist to bind with hydroxyapatite for potential bone tissue targeting. Lastly, the nanoparticulate agonist surface is decorated with the guanidine group to overcome cell membrane barriers. The created multifunctional nanoparticulate agonist is successfully integrated onto apatite-coated three-dimensional scaffolds and demonstrates greatly improved osteogenesis in vitro and calvarial bone healing. This work suggests a novel biomaterial design to specifically promote hedgehog signaling for the treatment of bone defects.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States; Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Huang Z, Yang L, Hu X, Huang Y, Cai Q, Ao Y, Yang X. Molecular Mechanism Study on Effect of Biodegradable Amino Acid Ester–Substituted Polyphosphazenes in Stimulating Osteogenic Differentiation. Macromol Biosci 2019; 19:e1800464. [DOI: 10.1002/mabi.201800464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaohui Huang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lika Yang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiaoqing Hu
- Institute of Sports MedicineBeijing Key Laboratory of Sports InjuryPeking University Third Hospital Beijing 100191 P. R. China
| | - Yiqian Huang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yingfang Ao
- Institute of Sports MedicineBeijing Key Laboratory of Sports InjuryPeking University Third Hospital Beijing 100191 P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic CompositesBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
24
|
Lavrador P, Gaspar VM, Mano JF. Stimuli-responsive nanocarriers for delivery of bone therapeutics - Barriers and progresses. J Control Release 2018; 273:51-67. [PMID: 29407678 PMCID: PMC7617006 DOI: 10.1016/j.jconrel.2018.01.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
The development of stimuli-responsive nanomedicines with tunable cargo release is gathering an increased applicability in bone regeneration and precision biomedicine. Yet, the formulation of nanocarriers that explore skeletal-specific stimuli remains remarkably challenging to materialize due to several endogenous and disease-specific barriers that must be considered during particle design stages. Such anatomo-physiological constrains ultimately hinder nanocarriers bioavailability in target bone tissues and impact the overall therapeutic outcome. This review aims to showcase and critically discuss the hurdles encountered upon responsive nanocarriers delivery in the context of skeletal diseases or tissue regeneration scenarios. Such focus is complemented with an in-depth and up-to-date analysis of advances in the development of stimuli-responsive, bone-focused delivery systems. In a holistic perspective, a deeper knowledge of human osteology combined with advances in materials functionalization via simple precision-chemistry is envisioned to incite the manufacture of stimuli-triggered nanomedicines with more realistic potential for clinical translation.
Collapse
Affiliation(s)
- Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Shi J, Liu W, Fu Y, Yin N, Zhang H, Chang J, Zhang Z. “US-detonated nano bombs” facilitate targeting treatment of resistant breast cancer. J Control Release 2018; 274:9-23. [DOI: 10.1016/j.jconrel.2018.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
|
26
|
Ji T, Lang J, Wang J, Cai R, Zhang Y, Qi F, Zhang L, Zhao X, Wu W, Hao J, Qin Z, Zhao Y, Nie G. Designing Liposomes To Suppress Extracellular Matrix Expression To Enhance Drug Penetration and Pancreatic Tumor Therapy. ACS NANO 2017; 11:8668-8678. [PMID: 28806504 DOI: 10.1021/acsnano.7b01026] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During pancreatic tumor development, pancreatic stellate cells (PSCs) proliferate exuberantly to secrete extracellular matrix (ECM) in the tumor stroma, which presents major barriers for drug delivery and penetration in tumor tissue. Thus, down-regulating ECM levels via regulation of the PSCs may allow enhanced penetration of therapeutic drugs and thereby enhancing their therapeutic efficacy. To regulate the PSCs, a matrix metalloproteinase-2 (MMP-2) responsive peptide-hybrid liposome (MRPL) was constructed via coassembly of a tailor-designed MMP-2 responsive amphiphilic peptide and phospholipids. By utilizing the MMP-2-rich pathological environment, the pirfenidone (PFD) loaded MRPL (MRPL-PFD) can specifically release PFD at the pancreatic tumor site and down-regulate the multiple components of ECM expressed by the PSCs. This resulted in a significant increase in the penetration of gemcitabine into the tumor tissue and enhanced the efficacy of gemcitabine for pancreatic tumor. Our design tailored for antifibrosis of pancreatic cancer may provide a practical approach to build functional liposomes through supramolecular assembly, and regulation of ECM may be a promising adjuvant therapeutic strategy for pancreatic and other ECM-rich tumors.
Collapse
Affiliation(s)
- Tianjiao Ji
- The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College of UCAS , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Feifei Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lijing Zhang
- The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenjing Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jihui Hao
- Department of Pancreatic Carcinoma Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy , Tianjin 300060, China
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
27
|
Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:363-371. [PMID: 29025670 DOI: 10.1016/j.msec.2017.04.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022]
Abstract
Bone is a mineralized conjunctive tissue, with a unique trauma healing capability. However, the replacement or regeneration of lost bone is not always successful and becomes more difficult the wider the bone defect. A significant growth in the demand for orthopedic and maxillofacial surgical procedures as a result of population aging and increase in chronic diseases as diabetes is a fact and successful approaches for bone regeneration are still needed. Until today, autogenous bone graft continues to be the best solution even with important limitations, as quantity and the requirement of a donator area. Alternatively, local delivery systems combining an osteoconductive biomaterial with osteoinductive compounds as hormones, growth factors or drugs is a popular approach aiming to replace the need for autogenous bone grafts. Nevertheless, in spite of the intense research in the area, presently there is no system that can mimic all the biological functions of the autogenous bone grafts. In this context, the present work provides an overview of the most recent advances in the field of synthetic bone grafts. The opportunities and limitations are detailed along with the remaining gaps in the research that are still preventing the successful translation of more products into the market able to be a valuable option in comparison to the autogenous bone grafts.
Collapse
Affiliation(s)
- Victor Martin
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|