1
|
Vimalraj S, Hariprabu KNG, Rahaman M, Govindasami P, Perumal K, Sekaran S, Ganapathy D. Vascular endothelial growth factor-C and its receptor-3 signaling in tumorigenesis. 3 Biotech 2023; 13:326. [PMID: 37663750 PMCID: PMC10474002 DOI: 10.1007/s13205-023-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
The cancer-promoting ligand vascular endothelial growth factor-C (VEGF-C) activates VEGF receptor-3 (VEGFR-3). The VEGF-C/VEGFR-3 axis is expressed by a range of human tumor cells in addition to lymphatic endothelial cells. Activating the VEGF-C/VEGFR-3 signaling enhances metastasis by promoting lymphangiogenesis and angiogenesis inside and around tumors. Stimulation of VEGF-C/VEGFR-3 signaling promotes tumor metastasis in tumors, such as ovarian, renal, pancreatic, prostate, lung, skin, gastric, colorectal, cervical, leukemia, mesothelioma, Kaposi sarcoma, and endometrial carcinoma. We discuss and update the role of VEGF-C/VEGFR-3 signaling in tumor development and the research is still needed to completely comprehend this multifunctional receptor.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Periyasami Govindasami
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210 USA
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| |
Collapse
|
2
|
Hao J, Zhou C, Wang Z, Ma Z, Wu Z, Lv Y, Wu R. An amino acid metabolism-based seventeen-gene signature correlates with the clinical outcome and immune features in pancreatic cancer. Front Genet 2023; 14:1084275. [PMID: 37333498 PMCID: PMC10272610 DOI: 10.3389/fgene.2023.1084275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Pancreatic cancer is an aggressive tumor with a low 5-year survival rate and primary resistance to most therapy. Amino acid (AA) metabolism is highly correlated with tumor growth, crucial to the aggressive biological behavior of pancreatic cancer; nevertheless, the comprehensive predictive significance of genes that regulate AA metabolism in pancreatic cancer remains unknown. Methods: The mRNA expression data downloaded from The Cancer Genome Atlas (TCGA) were derived as the training cohort, and the GSE57495 cohort from Gene Expression Omnibus (GEO) database was applied as the validation cohort. Random survival forest (RSF) and the least absolute shrinkage and selection operator (LASSO) regression analysis were employed to screen genes and construct an AA metabolism-related risk signature (AMRS). Kaplan-Meier analysis and receiver operating characteristic (ROC) curve were performed to assess the prognostic value of AMRS. We performed genomic alteration analysis and explored the difference in tumor microenvironment (TME) landscape associated with KRAS and TP53 mutation in both high- and low-AMRS groups. Subsequently, the relationships between AMRS and immunotherapy and chemotherapy sensitivity were evaluated. Results: A 17-gene AA metabolism-related risk model in the TCGA cohort was constructed according to RSF and LASSO. After stratifying patients into high- and low-AMRS groups based on the optimal cut-off value, we found that high-AMRS patients had worse overall survival (OS) in the training cohort (a median OS: 13.1 months vs. 50.1 months, p < 0.0001) and validation cohort (a median OS: 16.2 vs. 30.5 months, p = 1e-04). Genetic mutation analysis revealed that KRAS and TP53 were significantly more mutated in high-AMRS group, and patients with KRAS and TP53 alterations had significantly higher risk scores than those without. Based on the analysis of TME, low-AMRS group displayed significantly higher immune score and more enrichment of T Cell CD8+ cells. In addition, high-AMRS-group exhibited higher TMB and significantly lower tumor immune dysfunction and exclusion (TIDE) score and T Cells dysfunction score, which suggested a higher sensitive to immunotherapy. Moreover, high-AMRS group was also more sensitive to paclitaxel, cisplatin, and docetaxel. Conclusion: Overall, we constructed an AA-metabolism prognostic model, which provided a powerful prognostic predictor for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jie Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Bang C, Park MG, Cho IK, Lee DE, Kim GL, Jang EH, Shim MK, Yoon HY, Lee S, Kim JH. Liposomes targeting the cancer cell-exposed receptor, claudin-4, for pancreatic cancer chemotherapy. Biomater Res 2023; 27:53. [PMID: 37237291 DOI: 10.1186/s40824-023-00394-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Claudin-4 (CLDN4), a tight junction protein, is overexpressed in several types of cancer, and is considered a biomarker for cancer-targeted treatment. CLDN4 is not exposed in normal cells, but becomes accessible in cancer cells, in which tight junctions are weakened. Notably, surface-exposed CLDN4 has recently been found to act as a receptor for Clostridium perfringens enterotoxin (CPE) and fragment of CPE (CPE17) that binds to the second domain of CLDN4. METHODS Here, we sought to develop a CPE17-containing liposome that targets pancreatic cancers through binding to exposed CLDN4. RESULTS Doxorubicin (Dox)-loaded, CPE17-conjugated liposomes (D@C-LPs) preferentially targeted CLDN4-expressing cell lines, as evidenced by greater uptake and cytotoxicity compared with CLDN4-negative cell lines, whereas uptake and cytotoxicity of Dox-loaded liposomes lacking CPE17 (D@LPs) was similar for both CLDN4-positive and negative cell lines. Notably, D@C-LPs showed greater accumulation in targeted pancreatic tumor tissues compared with normal pancreas tissue; in contrast, Dox-loaded liposomes lacking CPE17 (D@LPs) showed little accumulation in pancreatic tumor tissues. Consistent with this, D@C-LPs showed greater anticancer efficacy compared with other liposome formulations and significantly extended survival. CONCLUSIONS We expect our findings will aid in the prevention and treatment of pancreatic cancer and provide a framework for identifying cancer-specific strategies that target exposed receptors.
Collapse
Affiliation(s)
- Chaeeun Bang
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min Gyu Park
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Kyung Cho
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
| | - Da-Eun Lee
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gye Lim Kim
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun Hyang Jang
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Man Kyu Shim
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
| | - Hong Yeol Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
| | - Sangmin Lee
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Regulatory Science, Graduated School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong-Ho Kim
- College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Regulatory Science, Graduated School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Ling Y, Liu J, Qian J, Meng C, Guo J, Gao W, Xiong B, Ling C, Zhang Y. Recent Advances in Multi-target Drugs Targeting Protein Kinases and Histone Deacetylases in Cancer Therapy. Curr Med Chem 2021; 27:7264-7288. [PMID: 31894740 DOI: 10.2174/0929867327666200102115720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/12/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Protein Kinase Inhibitors (PKIs) and Histone Deacetylase Inhibitors (HDACIs) are two important classes of anticancer agents and have provided a variety of small molecule drugs for the treatment of various types of human cancers. However, malignant tumors are of a multifactorial nature that can hardly be "cured" by targeting a single target, and treatment of cancers hence requires modulation of multiple biological targets to restore the physiological balance and generate sufficient therapeutic efficacy. Multi-target drugs have attracted great interest because of their advantages in the treatment of complex cancers by simultaneously targeting multiple signaling pathways and possibly leading to synergistic effects. Synergistic effects have been observed in the combination of kinase inhibitors, such as imatinib, dasatinib, or sorafenib, with an array of HDACIs including vorinostat, romidepsin, or panobinostat. A considerable number of multi-target agents based on PKIs and HDACIs have been developed. In this review, we summarize the recent literature on the development of multi-target kinase-HDAC inhibitors and provide our view on the challenges and future directions on this topic.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Weijie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Changchun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1640. [PMID: 33386705 DOI: 10.1002/wrna.1640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) technology has been used for almost two decades to study gene functions and in therapeutic approaches. It uses cellular machinery and small, designed RNAs in the form of synthetic small interfering RNAs (siRNAs) or vector-based short hairpin RNAs (shRNAs), and artificial miRNAs (amiRNAs) to inhibit a gene of interest. Artificial miRNAs, known also as miRNA mimics, shRNA-miRs, or pri-miRNA-like shRNAs have the most complex structures and undergo two-step processing in cells to form mature siRNAs, which are RNAi effectors. AmiRNAs are composed of a target-specific siRNA insert and scaffold based on a natural primary miRNA (pri-miRNA). siRNAs serve as a guide to search for complementary sequences in transcripts, whereas pri-miRNA scaffolds ensure proper processing and transport. The dynamics of siRNA maturation and siRNA levels in the cell resemble those of endogenous miRNAs; therefore amiRNAs are safer than other RNAi triggers. Delivered as viral vectors and expressed under tissue-specific polymerase II (Pol II) promoters, amiRNAs provide long-lasting silencing and expression in selected tissues. Therefore, amiRNAs are useful therapeutic tools for a broad spectrum of human diseases, including neurodegenerative diseases, cancers and viral infections. Recent reports on the role of sequence and structure in pri-miRNA processing may contribute to the improvement of the amiRNA tools. In addition, the success of a recently initiated clinical trial for Huntington's disease could pave the way for other amiRNA-based therapies, if proven effective and safe. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anna Kotowska-Zimmer
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marianna Pewinska
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| |
Collapse
|
6
|
Wang Y, Shi M, Yang N, Zhou X, Xu L. GPR115 Contributes to Lung Adenocarcinoma Metastasis Associated With LAMC2 and Predicts a Poor Prognosis. Front Oncol 2020; 10:577530. [PMID: 33330053 PMCID: PMC7715024 DOI: 10.3389/fonc.2020.577530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
GPR115, a member of the adhesion G protein-coupled receptor family, is dysregulated in many cancers. However, the expression and function of GRP115 in non-small cell lung cancer (NSCLC) is not clear. Here, we examined the expression pattern, clinical significance, and function of GPR115 in NSCLC by analysis of clinical specimens and human cell lines and bioinformatics analysis. Immunohistochemical analysis of clinical samples showed that GPR115 was significantly upregulated in NSCLC tissues compares with normal lung epithelial tissue (P < 0.05). And GPR115 overexpression is an independent prognostic factor for 5-year overall survival of NSCLC patients [hazard ratio (HR)=1.625, P = 0.008]. Interestingly, higher expression of GPR115 was strongly correlation with differentiation level (P = 0.027), tumor size (P = 0.010), lymph node metastasis (P = 0.022), tumor-node-metastasis stage (P = 0.008), and poor prognosis of lung adenocarcinoma (LUAD, all P = 0.039), but not lung squamous cell carcinoma (LUSC, P > 0.05). Moreover, downregulation of GPR115 by RNA interference in human lung cancer lines inhibited cell proliferation, migration, and invasion. Preliminary bioinformatic analysis confirmed that GPR115 was closely associated with LAMC2 (Spearman correlation coefficient=0.67, P < 0.05), which was accumulated in ECM-receptor interaction and focal adhesion. Consistent with these findings, deceased of GPR115 was associated with E-cadherin, N-cadherin and Vimentin confirmed by western blot. In conclusion, these data suggest that GPR115 may play a role in the tumor growth and metastasis and may have utility as a diagnostic and prognostic marker for LUAD, but not LUSC.
Collapse
Affiliation(s)
- Yingjing Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Muqi Shi
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Nan Yang
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Xiaoyu Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Lin Z, Lu S, Xie X, Yi X, Huang H. Noncoding RNAs in drug-resistant pancreatic cancer: A review. Biomed Pharmacother 2020; 131:110768. [PMID: 33152930 DOI: 10.1016/j.biopha.2020.110768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths and is expected to be the second-leading cause of cancer-related deaths in Europe and the United States by 2030. The high fatality rate of pancreatic cancer is ascribed to untimely diagnosis, early metastasis and limited responses to both chemotherapy and radiotherapy. Although gemcitabine, 5-fluorouracil and some other drugs can profoundly improve patient prognosis, most pancreatic cancer patients eventually develop drug resistance, leading to poor clinical outcomes. The underlying mechanisms of pancreatic cancer drug resistance are complicated and inconclusive. Interestingly, accumulating evidence has demonstrated that different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play a crucial role in pancreatic cancer resistance to chemotherapy reagents. In this paper, we systematically summarize the molecular mechanism underlying the influence of ncRNAs on the generation and development of drug resistance in pancreatic cancer and discuss the potential role of ncRNAs as prognostic markers and new therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xuyang Yi
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/ Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
8
|
Meng C, Qian J, Xu Z, Liu J, Shan W, Zhu P, Zhu W, Miao J, Ling CC, Ling Y. Efficacy of novel methylenecyclohexenone derivatives as TrxR inhibitors in suppressing the proliferation and metastasis of human cancer cells. Bioorg Chem 2020; 105:104360. [PMID: 33074118 DOI: 10.1016/j.bioorg.2020.104360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
A series of mono- and di-methylenecyclohexenone derivatives, 3a-f and 4a-f, respectively, were designed and synthesized from piperlongumine (PL) and their in vitro and in vivo pharmacological properties were evaluated. A majority of the compounds exhibited a potent antiproliferative effect on five human cancer cell lines, especially those causing breast cancer. Compound 4f showed the highest antiproliferative potency among all of the compounds, almost a 10-fold higher inhibitory potency against thioredoxin reductase (TrxR) compared with PL in cells causing breast cancer. In addition, 4f was found to increase the levels of reactive oxygen species (ROS), thus leading to more potent antiproliferative effects. More importantly, the suppression assays of migration and invasion revealed that compound 4f could reverse the epithelial-mesenchymal transition induced by the transforming growth factor β1, and exhibit prominent anti-metastasis effects. Compound 4f also showed strong inhibition potency toward solid tumors of breast cancer in vivo. Our findings show that compound 4f is a promising therapeutic candidate in the treatment of breast cancer, which, however, needs further research to be proved.
Collapse
Affiliation(s)
- Chi Meng
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Jianqiang Qian
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Weizhong Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Jiefei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China
| | - Chang-Chun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China.
| | - Yong Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, People's Republic of China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
9
|
Majc B, Sever T, Zarić M, Breznik B, Turk B, Lah TT. Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118782. [PMID: 32554164 DOI: 10.1016/j.bbamcr.2020.118782] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process that is part of normal embryogenesis and wound healing, and also has a ubiquitous role in various types of carcinoma and glioblastoma. EMT is activated and regulated by specific microenvironmental endogenous triggers and a complex network of signalling pathways. These mostly include epigenetic events that affect protein translation-controlling factors and proteases, altogether orchestrated by the switching on and off of oncogenes and tumour-suppressor genes in cancer cells. The hallmark of cancer-linked EMT is that the process is incomplete, as it is opposed by the reverse process of mesenchymal-to-epithelial transition, which results in a hybrid epithelial/mesenchymal phenotype that shows notable cell plasticity. This is a characteristic of cancer stem cells (CSCs), and it is of the utmost importance in their niche microenvironment, where it governs CSC migratory and invasive properties, thereby creating metastatic CSCs. These cells have high resistance to therapeutic treatments, in particular in glioblastoma.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Tilen Sever
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Miki Zarić
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia; Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Ulitsa, 19с1, Moscow 119146, Russia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Wang W, Chen H, Gao W, Wang S, Wu K, Lu C, Luo X, Li L, Yu C. Girdin interaction with vimentin induces EMT and promotes the growth and metastasis of pancreatic ductal adenocarcinoma. Oncol Rep 2020; 44:637-649. [PMID: 32467989 PMCID: PMC7336503 DOI: 10.3892/or.2020.7615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer of the digestive tract that has a high potential for metastasis and a poor prognosis. Girdin was first reported in 2005 as an actin-binding protein and was designated as Akt-phosphorylation enhancer (APE); thus, Girdin has been revealed to have an important role in regulating cancer development. There is additional evidence indicating that Girdin is associated with cell proliferation, migration, invasion and survival in certain cancers. However, the potential mechanisms involving Girdin and mobility in pancreatic cancer have not been elucidated. In the present study, it was revealed that Girdin was highly expressed in pancreatic cancer tissue and was associated with tumor grade. The present study, to the best of our knowledge, is the first aimed at investigating the unknown role of Girdin in PDAC metastasis. A short hairpin RNA for Girdin (sh-Girdin) was successfully constructed with recombinant adenoviral vectors to suppress the expression of Girdin in pancreatic cancer cell lines (PANC-1 and BXPC-3). The silencing efficiency of the Girdin shRNA was determined by RT-qPCR and western blot analysis, and decreased Girdin expression in the cytoplasm was revealed by immunofluorescence detection. Then, sulforhodamine B (SRB) and colony formation assays were used to confirm that the knockdown of Girdin inhibited proliferation in vitro, and Transwell assays were used to examine the influence of Girdin knockdown on cellular mobility. Animal experiments also confirmed that silencing the expression of Girdin in pancreatic cancer cells inhibited the growth and metastasis of pancreatic cancer in vivo. Transforming growth factor-β (TGF-β) is a common inducer of epithelial-mesenchymal transition (EMT) and can effectively induce EMT in PDAC. Notably, TGF-β-treated cells exhibited changes in the classic biological markers of EMT. The expression of E-cadherin, a marker of the epithelial phenotype, increased, and the expression of N-cadherin and vimentin, markers of the interstitial phenotype, decreased in response to sh-Girdin. According to these experiments, Girdin may affect pancreatic cancer progression and development by interacting with vimentin. Therefore, there is evidence indicating that Girdin could be designated as a prognostic biological indicator and a candidate therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Wulin Wang
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Hao Chen
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Wenjie Gao
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Sheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Kai Wu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Chen Lu
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiagang Luo
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Lianhong Li
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Chunzhao Yu
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
11
|
Mei B, Chen J, Yang N, Peng Y. The regulatory mechanism and biological significance of the Snail-miR590-VEGFR-NRP1 axis in the angiogenesis, growth and metastasis of gastric cancer. Cell Death Dis 2020; 11:241. [PMID: 32303680 PMCID: PMC7165172 DOI: 10.1038/s41419-020-2428-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor receptor (VEGFR) and neuropilins (NRPs), a co-receptor of VEGF, play a key role in the formation and development of blood vessels and in tumour growth and metastasis. However, whether VEGFR1/2 and NRP1 are regulated by the same upstream mechanism is unclear, especially in gastric cancer. We used prediction tools to detect miRNAs that may simultaneously regulate VEGFR1/2 and NRP1, and we finally determined that miR-590 can simultaneously regulate VEGFR1/2 and NRP1 in gastric cancer. We discovered that miR-590 was downregulated in gastric cancer tissues and cell lines, and this was related to the dysregulation of the transcription factor SNAIL. In addition, the overexpression of miR-590 inhibits the migration, invasion, proliferation and D-MVA levels of gastric cancer cells in vivo and in vitro by targeting VEGFR1/2 and NRP1. We also demonstrated that miR-590 may be a useful marker for the prognosis of gastric cancer with Kaplan–Meier survival analysis. Since the epithelial-to-mesenchymal transition (EMT) is an important mechanism of tumour invasion and metastasis and VEGFR1/2 and NRP1 can promote the occurrence of EMT, we speculated that miR-590 can regulate the occurrence of EMT. Immunoblot and immunofluorescence analyses confirmed that the overexpression of miR-590 can inhibit the EMT in gastric cancer cells. Since SNAIL is also a mesenchymal marker, our results revealed a new, positive feedback loop. As a transcription factor, SNAIL inhibits the expression of miR-590, thereby upregulating the expression levels of NRP1 and VEGFR1/2; this leads to the development of EMT in gastric cancer and the upregulation of SNAIL.
Collapse
Affiliation(s)
- Bin Mei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ni Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
12
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 Signaling and its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models. Int J Mol Sci 2020; 21:E1388. [PMID: 32085654 PMCID: PMC7073125 DOI: 10.3390/ijms21041388] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family members, VEGF-A, placenta growth factor (PlGF), and to a lesser extent VEGF-B, play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation. Although VEGF-A can activate both VEGFR-1 and VEGFR-2 membrane receptors, PlGF and VEGF-B exclusively interact with VEGFR-1. Differently from VEGFR-2, which is involved both in physiological and pathological angiogenesis, in the adult VEGFR-1 is required only for pathological angiogenesis. Besides this role in tumor endothelium, ligand-mediated stimulation of VEGFR-1 expressed in tumor cells may directly induce cell chemotaxis and extracellular matrix invasion. Furthermore, VEGFR-1 activation in myeloid progenitors and tumor-associated macrophages favors cancer immune escape through the release of immunosuppressive cytokines. These properties have prompted a number of preclinical and clinical studies to analyze VEGFR-1 involvement in the metastatic process. The aim of the present review is to highlight the contribution of VEGFs/VEGFR-1 signaling in the progression of different tumor types and to provide an overview of the therapeutic approaches targeting VEGFR-1 currently under investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, “Istituto Dermopatico dell’Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico”, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| |
Collapse
|
13
|
Yin W, Ke W, Lu N, Wang Y, Japir AAWMM, Mohammed F, Wang Y, Pan Y, Ge Z. Glutathione and Reactive Oxygen Species Dual-Responsive Block Copolymer Prodrugs for Boosting Tumor Site-Specific Drug Release and Enhanced Antitumor Efficacy. Biomacromolecules 2020; 21:921-929. [PMID: 31961134 DOI: 10.1021/acs.biomac.9b01578] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A remarkable hallmark of cancer cells is the heterogeneous coexistence of overproduced intracellular glutathione (GSH) and a high level of reactive oxygen species (ROS) compared with those in normal cells, which have been frequently used as the stimuli to trigger drug release from the nanocarriers. Most of the stimuli-responsive delivery vehicles have been designed to respond to only one redox stimulus (e.g., GSH or ROS). Herein, we develop a GSH and ROS dual-responsive amphiphilic diblock copolymer prodrug (BCP) (GR-BCP) consisting of poly(ethylene glycol) (PEG)- and camptothecin (CPT)-conjugated poly(methacrylate) in the side chains via thioether bonds. In comparison, GSH or ROS single-responsive BCPs (G-BCPs or R-BCPs) were prepared, where CPT drugs were linked by disulfide or thioketal bonds, respectively. The three BCPs can form well-defined spherical micellar nanoparticles in an aqueous solution with a diameter of ∼50 nm. Compared with G-BCP and R-BCP, GR-BCP realized the highest cytotoxicity against HeLa cells with the half-inhibitory concentration (IC50) of 6.3 μM, which is much lower than 17.8 μM for G-BCP and 28.9 μM for R-BCP. Moreover, for in vivo antitumor performance, G-BCP, R-BCP, and GR-BCP showed similar efficiencies in blood circulation and tumor accumulation after intravenous injection. However, GR-BCP realized the most efficient tumor suppression with few side effects. Our findings demonstrate that intracellular GSH and ROS dual-responsive BCPs show a more efficient responsive drug release inside tumor cells for boosting the antitumor efficacy as compared with GSH or ROS single-responsive BCPs, which provides novel strategies for designing redox-responsive BCPs.
Collapse
Affiliation(s)
- Wei Yin
- Department of Pharmacology , Xin Hua University of Anhui , Hefei 230088 , Anhui , China.,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230001 , Anhui , China.,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Abd Al-Wali Mohammed M Japir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Yi Wang
- Bristol-Myers Squibb , Lawrenceville , New Jersey 08648 , United States
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230001 , Anhui , China
| | - Zhishen Ge
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230001 , Anhui , China.,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| |
Collapse
|
14
|
Chen P, Liu C, Li P, Wang Q, Gao X, Wu H, Huang J. High RhCG expression predicts poor survival and promotes migration and proliferation of gastric cancer via keeping intracellular alkaline. Exp Cell Res 2020; 386:111740. [PMID: 31756312 DOI: 10.1016/j.yexcr.2019.111740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022]
Abstract
Advanced gastric cancer (GC) is aggressive with a high mortality rate. Rhesus family, C glycoprotein (RhCG) participates in tumor progression in many cancers, however its function in GC is still unknown. Here, we showed that RhCG was overexpressed in GC tissues at mRNA (P = 0.036) and protein levels (P < 0.05) compared with normal tissues. High RhCG level was correlated with poor differentiation (P = 0.037), TNM stage (P < 0.001), high HER-2 level (P = 0.018) and worse prognosis (P < 0.001). Cox proportional hazard model indicated that RhCG level was an independent prognostic biomarker. RhCG knockdown significantly decreased pHi and impeded tumor cellular proliferation, migration and invasion and repressed β-catenin and c-myc expression in GC cells. Moreover, GC cells with high RhCG level had reduced oxaliplatin efficacy suggesting a role for RhCG as a therapeutic target for GC. Our findings revealed a function of RhCG in cancer pathogenesis, invasion and metastasis in human GC. We suggest that RhCG act may as a novel prognostic indicator and a therapeutic target for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Pei Chen
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Can Liu
- Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Xiaodong Gao
- Department of General Surgery, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - JianFei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China; Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Ling Y, Li Y, Zhu R, Qian J, Liu J, Gao W, Meng C, Miao J, Xiong B, Qiu X, Ling C, Dai H, Zhang Y. Hydroxamic Acid Derivatives of β-Carboline/Hydroxycinnamic Acid Hybrids Inducing Apoptosis and Autophagy through the PI3K/Akt/mTOR Pathways. JOURNAL OF NATURAL PRODUCTS 2019; 82:1442-1450. [PMID: 31120744 DOI: 10.1021/acs.jnatprod.8b00843] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Naturally occurring β-carbolines are known to have antitumor activities but with limited effectiveness. In order to improve their efficacy, a series of new hydroxamic-acid-containing β-carbolines connected via a hydroxycinnamic acid moitey (12a-f) were developed to incorporate histone deacetylase (HDAC) inhibition for possible synergistic effects. When evaluated in in vitro assays, most of the analogues showed significant antitumor activities against four human cancer cells. In particular, 12b showed the highest cytotoxic potency of the series, including drug-resistant Bel7402 cells, but had minimal effect on normal hepatic LO2 cells. These compounds also showed excellent inhibitory effects against HDAC1/6, which appear to contribute greatly to their antiproliferative properties. Compound 12b enhanced the acetylation levels of histone H3 and α-tubulin and induced greater cancer cell apoptosis than the FDA-approved HDAC inhibitor SAHA by regulating expression of apoptotic proteins Bax, Bcl-2, and caspase 3. Importantly, 12b also induced a significant amount of autophagic flux activity in Bel7402 cells by increasing the expression of Beclin-1 and LC3-II proteins and decreasing that of LC3-I and p62. Finally, 12b significantly inhibited PI3K/Akt/mTOR signaling, an important cell-growth-promoting pathway aberrantly activated in many cancers. Together, the results suggest that these hydroxamic-acid-containing β-carboline derivatives may be new leads for the discovery of agents for the treatment of human carcinoma cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
- The Affiliated Hospital of Nantong University , Nantong University , Nantong 226001 , People's Republic of China
| | - Yangyang Li
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
- The Affiliated Hospital of Nantong University , Nantong University , Nantong 226001 , People's Republic of China
| | - Rui Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
- The Affiliated Hospital of Nantong University , Nantong University , Nantong 226001 , People's Republic of China
| | - Weijie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| | - Jiefei Miao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
- The Affiliated Hospital of Nantong University , Nantong University , Nantong 226001 , People's Republic of China
| | - Biao Xiong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| | - Xiaodong Qiu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| | - Changchun Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
- The Affiliated Hospital of Nantong University , Nantong University , Nantong 226001 , People's Republic of China
| | - Hong Dai
- College of Chemistry and Chemical Engineering , Nantong University , Nantong 226019 , People's Republic of China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong University , Nantong 226001 , People's Republic of China
| |
Collapse
|
16
|
Xu M, Hua Y, Qi Y, Meng G, Yang S. Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol 2019; 28:776-785. [PMID: 30927279 DOI: 10.1111/exd.13930] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
Hydrogen sulphide (H2 S) is an important gasotransmitter with several physiological functions. However, the roles and the detailed mechanisms of H2 S on skin wound healing are not known well. In the present study, 129S1/SvImJ mice were intraperitoneally injected with NaHS (50 μmol/kg/d) for 2 weeks. Then, a round wound of 6 mm diameter with depth into the dermis was made. The skin wound area, blood perfusion, superoxide production, malondialdehyde (MDA) levels, total antioxidant capacity (T-AOC), expression of vascular endothelial growth factor (VEGF), dynamin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) were measured. After NaHS (50 μmol/L) pre-administration for 4 hours, cell migration rate, DRP1, OPA1 and α-smooth muscle actin (α-SMA) expression, superoxide production and mitochondrial membrane potential in primary skin fibroblasts were measured. Tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in human keratinocytes were also measured. The results showed that NaHS pretreatment significantly accelerated wound healing and improved blood flow in the wound after operation. NaHS increased VEGF expression in the wound and promoted tube formation in HUVECs. Meanwhile, NaHS attenuated reactive oxygen species (ROS) production, suppressed MDA level but restored T-AOC in the wound. NaHS also promoted skin fibroblasts migration and α-SMA expression after scratch. Moreover, NaHS alleviated ROS, increased mitochondrial membrane potential, decreased DRP1 but enhanced OPA1 expression in skin fibroblasts after scratch. NaHS also accelerated human keratinocytes migration after scratch. Taken together, exogenous H2 S supplementary accelerated the skin wound healing, which might be related to oxidative stress inhibition and VEGF enhancement.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yan Qi
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Wang Y, Zhou N, Li P, Wu H, Wang Q, Gao X, Wang X, Huang J. EphA8 acts as an oncogene and contributes to poor prognosis in gastric cancer via regulation of ADAM10. J Cell Physiol 2019; 234:20408-20419. [PMID: 31026069 DOI: 10.1002/jcp.28642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
EphA8 is a member of the erythropoietin-producing hepatocellular receptor (Eph) family of receptor tyrosine kinases. Ephs and their ephrins ligands play crucial roles in many cellular processed by mediating intracellular signaling resulting from cell-cell interactions. But the underlying mechanisms of EphA8 in gastric cancer (GC) remains unclearly. 298 clinical specimens in tissues microarray, and was found to be significantly higher in GC tissues compared with nontumor tissues (p < 0.001). EphA8 expression was also strongly associated with differentiation level (p = 0.025), tumor-node-metastasis stage (p = 0.019), and poor 5 years survival (p < 0.001). A panel of GC cell lines showed reduced proliferation, invasion, and migration capacities after RNA-mediated knockdown of EphA8, concomitant with downregulation of the proliferation-related proteins (cyclin A, cyclin D1, and cyclin-dependent kinase 4) and the metastasis-related (matrix metalloproteinases MMP2, and MMP9). EphA8 knockdown also decreased expression of the protease ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM10-related protein AKT, suggesting an interaction between EphA8 and ADAM10. In conclusion, we found that EphA8, which is highly expressed in GC tissues, stimulates proliferation, invasion, and migration of cancer cells, and is an independent risk factor for poor prognosis of GC. These dates suggest that EphA8 could be new diagnostic and/or therapeutic targets for GC.
Collapse
Affiliation(s)
- Yingjing Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nan Zhou
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaodong Gao
- Department of General Surgery, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant hepatocellular carcinoma. Eur J Med Chem 2019; 168:515-526. [DOI: 10.1016/j.ejmech.2019.02.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
|
19
|
High Expression of RAR β Is a Favorable Factor in Colorectal Cancer. DISEASE MARKERS 2019; 2019:7138754. [PMID: 30944670 PMCID: PMC6421793 DOI: 10.1155/2019/7138754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
RARβ plays a critical role in cancer progression and is associated with several types of human cancer. It remains unclear, however, whether it is linked to the clinicopathological parameters of colorectal cancer (CRC). We therefore determined the expression of RARβ protein in patients with primary CRC and examined its relationship with clinical outcomes. RARβ expression in 234 samples of CRC patients and matched benign noncancerous tumors was detected by immunohistochemistry. RARβ mRNA expression was confirmed using the TCGA and Oncomine databases. COX regression analysis and Kaplan–Meier survival analysis were performed to determine the relationship between RARβ expression and CRC prognosis. Our results show that high expression of RARβ correlated with better prognosis in CRC patients. RARβ expression in CRC specimens was clearly lower than in peritumoral specimens (30.8% vs 58.8%, p < 0.001) and significantly correlated with gender (χ2 = 3.926, p = 0.048), tumor differentiation (χ2 = 5.978, p = 0.014), and tumor stage (χ2 = 6.642, p = 0.036). Multivariate analyses further revealed that low RARβ expression (p = 0.001), distant metastasis (p = 0.001), tissue differentiation (p = 0.006), and tumor stage (p = 0.002) were associated with overall survival in CRC patients. In addition, Kaplan–Meier analysis indicated that increased RARβ expression in cytoplasm (p = 0.001) and early tumor TNM stage (p = 0.030) was associated with a more favorable outcome in patients with CRC. In conclusion, RARβ expression was strongly correlated with several clinicopathological factors of CRC and may represent a favorable prognostic marker in patients with CRC.
Collapse
|
20
|
The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol 2019; 125:544-556. [DOI: 10.1016/j.ijbiomac.2018.12.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023]
|
21
|
Dai H, Huang M, Qian J, Liu J, Meng C, Li Y, Ming G, Zhang T, Wang S, Shi Y, Yao Y, Ge S, Zhang Y, Ling Y. Excellent antitumor and antimetastatic activities based on novel coumarin/pyrazole oxime hybrids. Eur J Med Chem 2019; 166:470-479. [PMID: 30739827 DOI: 10.1016/j.ejmech.2019.01.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
A series of hybrids 10a-v based on coumarin/pyrazole oxime have been synthesized, and exhibit good to excellent antitumor activities. Compound 10n has shown remarkable anticancer effect on SMMC-7721 cells (IC50 = 2.08 μM), which is considerably lower than 5-FU (IC50 = 37.8 μM) and similar to ADM (IC50 = 2.67 μM), with little effect on normal hepatic cells LO2. Notably, the suppression experiments of metastatic activities reveal that 10n also displays significant anti-metastasis effects through inhibiting cell migration and invasion in highly metastatic SMMC-7721 cell line, and dose-dependently reverses TGF-β1-induced epithelial-mesenchymal transition (EMT) procedure better than ADM. Finally, 10n also possesses low acute toxicity and potent tumor growth inhibitory property against SMMC-7721 cell lines in vivo. Our findings suggest that novel coumarin/pyrazole oxime hybrids are promising therapeutic agent candidates for further research.
Collapse
Affiliation(s)
- Hong Dai
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China; School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Meiling Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China; School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Jianqiang Qian
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Ji Liu
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Yangyang Li
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Guxu Ming
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Ting Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Senling Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Yujun Shi
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Shushan Ge
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China; School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China.
| | - Yong Ling
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China; School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
22
|
KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl) 2018; 97:127-140. [PMID: 30478628 DOI: 10.1007/s00109-018-1721-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
KIAA1199 is often upregulated in cancer cells, including non-small-cell lung cancer (NSCLC). Although KIAA1199 is associated with aggressive tumor phenotype and poor survival in NSCLC, little is known about its functional role in NSCLC progression. Using archived clinical samples, we evaluated KIAA1199 messenger RNA (mRNA) and protein expression in NSCLC tissues and correlated with NSCLC clinicopathological characteristics as well as overall survival. Using NSCLC cell lines, KIAA1199 was either silenced using gene-specific shRNA or overexpressed to assess the impact on EMT signaling pathways. Finally, in a mouse xenograft NSCLC model, we determine the therapeutic potential of KIAA1199 repression. Our data showed that KIAA1199 was significantly upregulated in NSCLC tissues compared to adjacent normal tissues both at the mRNA (P < 0.001) and protein levels (P < 0.05). KIAA1199 overexpression is an independent prognostic marker for overall survival (HR = 1.833). In NSCLC cell lines, KIAA1199 expression directly influences the expression of EMT markers, EMT-inducing transcription factors (EMT-TFs), and EMT signaling molecules. Knocking down of KIAA1199 expression in the mouse NSCLC xenograft model significantly suppressed tumor growth and augmented the efficacy of chemotherapy (n = 5; P < 0.05). We conclude that KIAA1199 is not only a prognostic marker but a novel therapeutic target in NSCLC through regulating EMT signaling pathway. KEY MESSAGES: KIAA1199 overexpression is an independent prognostic marker in NSCLC. KIAA1199 expression directly influences the expression of EMT markers. KIAA1199 promotes invasion and migration in NSCLC via PI3K-Akt mediated EMT.
Collapse
|
23
|
Song L, Wang H, Wang YJ, Wang JL, Zhu Q, Wu F, Zhang W, Jiang B. Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice. Br J Pharmacol 2018; 175:2968-2987. [PMID: 29722018 DOI: 10.1111/bph.14346] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Developing novel pharmacological targets beyond the monoaminergic system is now a popular strategy for treating depression. PPARα is a nuclear receptor protein that functions as a transcription factor,-regulating gene expression. We have previously reported that both WY14643 and fenofibrate, two pharmacological agonists of PPARα, have antidepressant-like effects in mice, implying that PPARα is a potential antidepressant target. EXPERIMENTAL APPROACH We first used various biotechnological methods to evaluate the effects of chronic stress and fluoxetine on hippocampal PPARα. The viral-mediated genetic approach was then employed to explore whether hippocampal PPARα was an antidepressant target. PPARα inhibitors, PPARα-knockout (KO) mice and PPARα-knockdown (KD) mice were further used to determine the role of PPARα in the antidepressant effects of fluoxetine. KEY RESULTS Chronic stress significantly decreased mRNA and protein levels of PPARα in the hippocampus, but not other regions, and also fully reduced the recruitment of hippocampal PPARα to the cAMP response element-binding (CREB) promoter. Genetic overexpression of hippocampal PPARα induced significant antidepressant-like actions in mice by promoting CREB-mediated biosynthesis of brain-derived neurotrophic factor. Moreover, fluoxetine notably restored the stress-induced negative effects on hippocampal PPARα. Using PPARα antagonists fully blocked the antidepressant effects of fluoxetine in mice, and similarly, both PPARα-KO and PPARα-KD abolished the effects of fluoxetine. Besides, PPARα-KO and PPARα-KD aggravated depression in mice. CONCLUSIONS AND IMPLICATIONS Hippocampal PPARα is a potential novel antidepressant target that mediates the antidepressant actions of fluoxetine in mice.
Collapse
Affiliation(s)
- Lu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Hao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Qing Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| |
Collapse
|
24
|
Downregulated SASH1 expression indicates poor clinical prognosis in gastric cancer. Hum Pathol 2018; 74:83-91. [DOI: 10.1016/j.humpath.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
|
25
|
Zhang X, Wang W, Li P, Wang X, Ni K. High TREM2 expression correlates with poor prognosis in gastric cancer. Hum Pathol 2018; 72:91-99. [DOI: 10.1016/j.humpath.2017.10.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
|
26
|
Jin Q, Huang F, Wang X, Zhu H, Xian Y, Li J, Zhang S, Ni Q. High Eg5 expression predicts poor prognosis in breast cancer. Oncotarget 2017; 8:62208-62216. [PMID: 28977938 PMCID: PMC5617498 DOI: 10.18632/oncotarget.19215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Eg5 is a motor protein belonging to the kinesin-5 family and has been suggested to exert important function in tumors. In this study, we determined the mRNA and protein expression levels of Eg5 in cancerous and non-cancerous breast tissue by quantitative real-time polymerase chain reaction (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. The results of 20 fresh-frozen BC samples demonstrated that Eg5 mRNA levels were significantly higher in BC tissues compared with corresponding non-cancerous tissue (p = 0.0009). TMA-IHC analysis in 127 BC tissues revealed that Eg5 expression obviously correlated with clinicopathologial parameters, including tumor grade (p = 0.004), ER status (p = 0.030), Ki67 status (p = 0.005), molecular classification (p = 0.026), N stage (p = 0.015), and TNM stage (p = 0.001). Kaplan-Meier survival curve indicated that high Eg5 expression (p = 0.012), Ki67 status (p = 0.014) and TNM stage (p = 0.026) were independent factors to predict poor prognosis for patients with breast cancer. Our data suggest that Eg5 is not only overexpressed in BC, it may be also served as a potential prognostic marker.
Collapse
Affiliation(s)
- Qin Jin
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Fang Huang
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xudong Wang
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Huijun Zhu
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Xian
- Health Insurance Office, Nantong University, Nantong 226001, Jiangsu, China
| | - Jieying Li
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shu Zhang
- Department of Pathlogy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
27
|
Santamaria PG, Moreno‐Bueno G, Portillo F, Cano A. EMT: Present and future in clinical oncology. Mol Oncol 2017; 11:718-738. [PMID: 28590039 PMCID: PMC5496494 DOI: 10.1002/1878-0261.12091] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial/mesenchymal transition (EMT) has emerged as a key regulator of metastasis by facilitating tumor cell invasion and dissemination to distant organs. Recent evidences support that the reverse mesenchymal/epithelial transition (MET) is required for metastatic outgrowth; moreover, the existence of hybrid epithelial/mesenchymal (E/M) phenotypes is increasingly being reported in different tumor contexts. The accumulated data strongly support that plasticity between epithelial and mesenchymal states underlies the dissemination and metastatic potential of carcinoma cells. However, the translation into the clinics of EMT and epithelial plasticity processes presents enormous challenges and still remains a controversial issue. In this review, we will evaluate current evidences for translational applicability of EMT and depict an overview of the most recent EMT in vivo models, EMT marker analyses in human samples as well as potential EMT therapeutic approaches and ongoing clinical trials. We foresee that standardized analyses of EMT markers in solid and liquid tumor biopsies in addition to innovative tools targeting the E/M states will become promising strategies for future translation to the clinical setting.
Collapse
Affiliation(s)
- Patricia G. Santamaria
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Gema Moreno‐Bueno
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
- Fundación MD Anderson InternationalMadridSpain
| | - Francisco Portillo
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Amparo Cano
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| |
Collapse
|