1
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
2
|
Hatakawa Y, Nakamura R, Akizawa T, Konishi M, Matsuda A, Oe T, Saito M, Ito F. SKGQA, a Peptide Derived from the ANA/BTG3 Protein, Cleaves Amyloid-β with Proteolytic Activity. Biomolecules 2024; 14:586. [PMID: 38785993 PMCID: PMC11118129 DOI: 10.3390/biom14050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Despite the extensive research conducted on Alzheimer's disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-β (Aβ) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aβ42 (a-Aβ42) and solid insoluble form s-Aβ42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aβ42 for AD treatment.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan; (Y.H.); (T.O.)
| | - Rina Nakamura
- O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun 789-1931, Kochi, Japan or (R.N.); or (T.A.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Kochi, Japan;
| | - Toshifumi Akizawa
- O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun 789-1931, Kochi, Japan or (R.N.); or (T.A.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Kochi, Japan;
| | - Motomi Konishi
- Department of Integrative Pharmacy, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata 573-0101, Osaka, Japan;
| | - Akira Matsuda
- Laboratory of Medicinal and Biochemical Analysis, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure 737-0112, Hiroshima, Japan;
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan; (Y.H.); (T.O.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Kochi, Japan;
| | - Fumiaki Ito
- O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun 789-1931, Kochi, Japan or (R.N.); or (T.A.)
- The Institute of Prophylactic Pharmacology, 1-58, Rinku-oraikita, Izumisano 598-8531, Osaka, Japan
| |
Collapse
|
3
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
4
|
AbdEl-haq M, Kumar A, Ait Mohand FE, Kravchenko-Balasha N, Rottenberg Y, Domb AJ. Paclitaxel Delivery to the Brain for Glioblastoma Treatment. Int J Mol Sci 2023; 24:11722. [PMID: 37511480 PMCID: PMC10380674 DOI: 10.3390/ijms241411722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The development of paclitaxel-loaded polymeric nanoparticles for the treatment of brain tumors was investigated. Poly(lactide-glycolide) (PLGA) nanoparticles containing 10% w/w paclitaxel with a particle size of 216 nm were administered through intranasal and intravenous routes to male Sprague-Dawley rats at a dose of 5 mg/kg. Both routes of administration showed appreciable accumulation of paclitaxel in brain tissue, liver, and kidney without any sign of toxicity. The anti-proliferative effect of the nanoparticles on glioblastoma tumor cells was comparable to that of free paclitaxel.
Collapse
Affiliation(s)
- Muhammad AbdEl-haq
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Fatima-ezzahra Ait Mohand
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (N.K.-B.)
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (N.K.-B.)
| | - Yakir Rottenberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Abraham J. Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Alvarez-Salas E, García-Luna C, de Gortari P. New Efforts to Demonstrate the Successful Use of TRH as a Therapeutic Agent. Int J Mol Sci 2023; 24:11047. [PMID: 37446225 DOI: 10.3390/ijms241311047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is a tripeptide that regulates the neuroendocrine thyroid axis. Moreover, its widespread brain distribution has indicated that it is a relevant neuromodulator of behaviors such as feeding, arousal, anxiety, and locomotion. Importantly, it is also a neurotrophic peptide, and thus may halt the development of neurodegenerative diseases and improve mood-related disorders. Its neuroprotective actions on those pathologies and behaviors have been limited due to its poor intestinal and blood-brain barrier permeability, and because it is rapidly degraded by a serum enzyme. As new strategies such as TRH intranasal delivery emerge, a renewed interest in the peptide has arisen. TRH analogs have proven to be safe in animals and humans, while not inducing alterations in thyroid hormones' levels. In this review, we integrate research from different approaches, aiming to demonstrate the therapeutic effects of TRH, and to summarize new efforts to prolong and facilitate the peptide's actions to improve symptoms and the progression of several pathologies.
Collapse
Affiliation(s)
- Elena Alvarez-Salas
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Mexico City CP 14370, Mexico
| | - Cinthia García-Luna
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Mexico City CP 14370, Mexico
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Mexico City CP 14370, Mexico
| |
Collapse
|
6
|
Shrewsbury SB. The Upper Nasal Space: Option for Systemic Drug Delivery, Mucosal Vaccines and "Nose-to-Brain". Pharmaceutics 2023; 15:1720. [PMID: 37376168 PMCID: PMC10303426 DOI: 10.3390/pharmaceutics15061720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Sino-nasal disease is appropriately treated with topical treatment, where the nasal mucosa acts as a barrier to systemic absorption. Non-invasive nasal delivery of drugs has produced some small molecule products with good bioavailability. With the recent COVID pandemic and the need for nasal mucosal immunity becoming more appreciated, more interest has become focused on the nasal cavity for vaccine delivery. In parallel, it has been recognized that drug delivery to different parts of the nose can have different results and for "nose-to-brain" delivery, deposition on the olfactory epithelium of the upper nasal space is desirable. Here the non-motile cilia and reduced mucociliary clearance lead to longer residence time that permits enhanced absorption, either into the systemic circulation or directly into the CNS. Many of the developments in nasal delivery have been to add bioadhesives and absorption/permeation enhancers, creating more complicated formulations and development pathways, but other projects have shown that the delivery device itself may allow more differential targeting of the upper nasal space without these additions and that could allow faster and more efficient programs to bring a wider range of drugs-and vaccines-to market.
Collapse
|
7
|
Ramot Y, Rottenberg Y, Domb AJ, Kubek MJ, Williams KD, Nyska A. Preclinical In-Vivo Safety of a Novel Thyrotropin-Releasing Hormone-Loaded Biodegradable Nanoparticles After Intranasal Administration in Rats and Primates. Int J Toxicol 2023:10915818231152613. [PMID: 36634266 DOI: 10.1177/10915818231152613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thyrotropin-releasing hormone (TRH) and TRH-like peptides carry a therapeutic potential for neurological conditions. Nanoparticles (NP) made of the biodegradable polymer, Poly(Sebacic Anhydride) (PSA), have been developed to carry TRH, intended for intranasal administration to patients. There is limited information on the safety of biodegradable polymers when given intranasally, and therefore, we have performed two preclinical safety and toxicity studies in cynomolgus monkeys and rats using TRH-PSA nanoparticles. The rats and monkeys were dosed intranasally for 42 days or 28 days, respectively, and several animals were followed for additional 14 days. Animals received either placebo, vehicle (PSA), or different concentrations of TRH-PSA. No systemic adverse effects were seen. Changes in T3 or T4 concentrations were observed in some TRH-PSA-treated animals, which did not have clinical or microscopic correlates. No effect was seen on TSH or prolactin concentrations. In the monkey study, microscopic changes in the nasal turbinates were observed, which were attributed to incidental mechanical trauma caused during administration. Taken together, the TRH-loaded PSA NPs have proven to be safe, with no local or systemic adverse effects attributed to the drug loaded nanoparticles. These findings provide additional support to the growing evidence of the safety of peptide-loaded NPs for intranasal delivery and pave the way for future clinical trials in humans.
Collapse
Affiliation(s)
- Yuval Ramot
- Faculty of Medicine, 54621Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Dermatology, 58884Hadassah Medical Center, Jerusalem, Israel
| | - Yakir Rottenberg
- Faculty of Medicine, 54621Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Oncology, Hadassah Medical Organization, Jerusalem, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, 54621The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael J Kubek
- 12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin D Williams
- Consultant in Toxicology, WKM Consulting, LLC, Waunakee, WI, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, 26745Tel Aviv and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Curr Neuropharmacol 2023; 21:493-516. [PMID: 35524671 PMCID: PMC10207920 DOI: 10.2174/1570159x20666220507022701] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.
Collapse
Affiliation(s)
- Dharmendra K. Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Kumari Preeti
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Shivraj Tonape
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Sheoshree Bhattacharjee
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Monica Patel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Pankaj K. Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast-BT9 7BL, UK
| | - Shashi B. Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| |
Collapse
|
9
|
Abstract
Polyanhydrides (PAs) are a class of synthetic biodegradable polymers employed as controlled drug delivery vehicles. They can be synthesized and scaled up from low-cost starting materials. The structure of PAs can be manipulated synthetically to meet desirable characteristics. PAs are biocompatible, biodegradable, and generate nontoxic metabolites upon degradation, which are easily eliminated from the body. The rate of water penetrating into the polyanhydride (PA) matrix is slower than the anhydride bond cleavage. This phenomenon sets PAs as "surface-eroding drug delivery carriers." Consequently, a variety of PA-based drug delivery carriers in the form of solid implants, pasty injectable formulations, microspheres, nanoparticles, etc. have been developed for the sustained release of small molecule drugs, and vaccines, peptide drugs, and nucleic acid-based active agents. The rate of drug delivery is often controlled by the polymer erosion rate, which is influenced by the polymer structure and composition, crystallinity, hydrophobicity, pH of the release medium, device size, configuration, etc. Owing to the above-mentioned interesting physicochemical and mechanical properties of PAs, the present review focuses on the advancements made in the domain of synthetic biodegradable biomedical PAs for therapeutic delivery applications. Various classes of PAs, their structures, their unique characteristics, their physicochemical and mechanical properties, and factors influencing surface erosion are discussed in detail. The review also summarizes various methods involved in the synthesis of PAs and their utility in the biomedical domain as drug, vaccine, and peptide delivery carriers in different formulations are reviewed.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| |
Collapse
|
10
|
Peptide loaded polymeric nanoparticles by non-aqueous nanoprecipitation. J Colloid Interface Sci 2022; 622:904-913. [PMID: 35561610 DOI: 10.1016/j.jcis.2022.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 12/18/2022]
Abstract
It is always a challenge to encapsulate water-soluble peptides in polymer nanoparticle (NP) systems. We establish and validate our newly developed non-aqueous nanoprecipitation method to encapsulate neuro-peptides drugs such as oxytocin and Luteinizing hormone-releasing hormone (LHRH) in poly(sebacic anhydride) (PSA) NPs. NPs were prepared by a solvent-antisolvent process under a strict anhydrous environment to obtain high drug loading and to avoid premature PSA degradation and drug release. Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM) reveal the size for both drug loaded PSA NPs to ∼ 300 nm. The drug loaded NPs were dispersible and spherical in shape with uniform morphology. The in vitro release profile of oxytocin from PSA NPs occurs with the burst release of ∼ 50% within the first hour in the aqueous release medium, whereas LHRH release is comparatively slow. Thus, looking into the fast degrading properties of PSA and drug release behavior, the developed NPs can be used for direct delivery of the neuropeptides to the olfactory epithelium using a refillable nasal atomizer that deposits mist onto the olfactory neuro-epithelium. We also applied our developed method to prepare NPs of poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and poly(ε-caprolactone) (PCL). A Thyrotropin releasing hormone (TRH) was used as the sample neuropeptide drug to validate our non-aqueous method. The results reveal the formation of TRH loaded PLGA, PLA and PCL NPs with 100% drug loading. TEM analysis shows the formation of spherical NPs, having similar release properties as those of PSA NPs. Overall, we report that our developed method is suitable for co-encapsulating hydrophilic drugs in polymer NPs with high drug loading and release properties.
Collapse
|
11
|
Nose-to-Brain Delivery of Therapeutic Peptides as Nasal Aerosols. Pharmaceutics 2022; 14:pharmaceutics14091870. [PMID: 36145618 PMCID: PMC9502087 DOI: 10.3390/pharmaceutics14091870] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Central nervous system (CNS) disorders, such as psychiatric disorders, neurodegeneration, chronic pain, stroke, brain tumor, spinal cord injury, and many other CNS diseases, would hugely benefit from specific and potent peptide pharmaceuticals and their low inherent toxicity. The delivery of peptides to the brain is challenging due to their low metabolic stability, which decreases their duration of action, poor penetration of the blood-brain barrier (BBB), and their incompatibility with oral administration, typically resulting in the need for parenteral administration. These challenges limit peptides’ clinical application and explain the interest in alternative routes of peptide administration, particularly nose-to-brain (N-to-B) delivery, which allows protein and peptide drugs to reach the brain noninvasively. N-to-B delivery can be a convenient method for rapidly targeting the CNS, bypassing the BBB, and minimizing systemic exposure; the olfactory and trigeminal nerves provide a unique pathway to the brain and the external environment. This review highlights the intranasal delivery of drugs, focusing on peptide delivery, illustrating various clinical applications, nasal delivery devices, and the scope and limitations of this approach.
Collapse
|
12
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Arun Y, Ghosh R, Domb AJ. Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides. Biomacromolecules 2022; 23:3417-3428. [PMID: 35881559 PMCID: PMC9516692 DOI: 10.1021/acs.biomac.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The alternating architecture and hydrophobic side chains
hinder
hydrolytic cleavage and anhydride interchange in poly(sebacic acid-ricinoleic
acid) (P(SA-RA)), which provides stable polyanhydrides at room temperature.
In this report, a series of polyanhydrides were designed to investigate
the effect of ester bonds, hydrophobic side chains, phenyl moieties,
and their distance from anhydride bonds on their stability and properties.
Polyanhydrides with alternating architecture are constructed by the
polymerization of ester-diacids prepared from ricinoleic or other
hydroxy acids with anhydrides such as succinic, maleic, and phthalic
anhydrides. The hydrophobic side chains are designed closer to anhydride
bonds to investigate hindrance to hydrolytic cleavage and anhydride
interchange. Polyanhydrides were obtained by the activation of ester-diacid
using acetic anhydride followed by melt condensation. The reactions
were monitored by NMR, Fourier transform infrared (FTIR), and gel
permeation chromatography (GPC). The synthesized poly(ester-anhydride)s
with a shorter chain length compared to P(SA-RA) were stable at room
temperature. The hydrolytic degradation studies reveal that the phenyl
moiety present in poly(ricinoleic acid phthalate) (PRAP) and poly(hydroxystearic
acid phthalate) (PHSAP) reduces the hydrolysis of anhydride bonds.
Poly(hydroxyoctanoic acid succinate) (PHOAS) demonstrates the highest
molecular weight of all tested polymers. The results reveal that the
presence of hydrophobic side chains, phenyl moieties, and their distance
from anhydride bonds significantly improves the stability. These stable
polyanhydrides can provide convenience to use in control drug-delivery
applications. The in vitro drug release study using
ibuprofen shows that polymers with aromatic units such as PRAP and
PHSAP establish sustained release, which presents more than 50 and
40% of ibuprofen over a period of 28 days.
Collapse
Affiliation(s)
- Yuvaraj Arun
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Radhakanta Ghosh
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Abraham J Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
15
|
Synthesis of Aliphatic Polyanhydrides with Controllable and Reproducible Molecular Weight. Pharmaceutics 2022; 14:pharmaceutics14071403. [PMID: 35890298 PMCID: PMC9325212 DOI: 10.3390/pharmaceutics14071403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/04/2023] Open
Abstract
Polyanhydrides have been synthesized for decades by melt-polycondensation of diacid monomers and 5 to >10 times mole excess acetic anhydride to diacid monomers to form polymers with a polydispersity ranging from 2.5 to 6 and low reproducibility. Hydrophobic segments in polyanhydrides are beneficial to hinder the characteristic hydrolytic cleavage of an anhydride bond that provides stable polyanhydrides at room temperature. The objective of this work is to synthesize aliphatic polyanhydrides with various hydrophobic segments, controllable and reproducible molecular weight, and low polydispersity that are essential for potential use as drug carriers. A series of polyanhydrides of suberic, azelaic, sebacic, and dodecanedioic acids with controlled molecular weight, reduced polydispersity, and standard deviation of molecular weights, have been synthesized. All synthesized polyanhydrides were thoroughly characterized by NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography. Molecular weights of the synthesized polyanhydrides are highly controllable, depending on the degree of activation of the dicarboxylic acid monomers, i.e., the amount of acetic anhydride used during synthesis. Polyanhydrides have been synthesized in triplicate by melt-polycondensation, using various mole ratios of acetic anhydride to diacids. The standard deviation of the molecular weights of the polyanhydrides is minute when using 1 equivalent of acetic anhydride during the activation of dicarboxylic acids, whereas if excess acetic anhydride is used, the standard deviation is very high. The effect of safe and natural inorganic catalysts, Calcium oxide, Zinc oxide, and Calcium carbonate on polymerization is also studied. As-synthesized poly(sebacic acid) can offer convenience to use in controlled drug delivery applications. In vitro drug release study using Temozolamide (TMZ), a medication used to treat brain tumors such as glioblastoma and anaplastic astrocytoma, shows 14% TMZ release after the first hour and 70% release over one day from the poly(sebacic acid) wafers.
Collapse
|
16
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
17
|
Zuglianello C, Lemos-Senna E. The nanotechnological approach for nasal delivery of peptide drugs: a comprehensive review. J Microencapsul 2022; 39:156-175. [PMID: 35262455 DOI: 10.1080/02652048.2022.2051626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review gathers recent studies, patents, and clinical trials involving the nasal administration of peptide drugs to supply a panorama of developing nanomedicine advances in this field. Peptide drugs have been featured in the pharmaceutical market, due to their high efficacy, biological activity, and low immunogenicity. Pharmaceutical industries need technology to circumvent issues relating to peptide stability and bioavailability. The oral route offers very harsh and unfavourable conditions for peptide administration, while the parenteral route is inconvenient and risky for patients. Nasal administration is an attractive alternative, mainly when associated with nanotechnological approaches. Nanomedicines may improve the nasal administration of peptide drugs by providing protection for the macromolecules from enzymes while also increasing their time of retention and permeability in the nasal mucosa. Nanomedicines for nasal administration containing peptide drugs have been acclaimed for both prevention, and treatment, of infections, including the pandemic COVID-19, cancers, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carine Zuglianello
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| | - Elenara Lemos-Senna
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
18
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
19
|
Hatakawa Y, Tanaka A, Furubayashi T, Nakamura R, Konishi M, Akizawa T, Sakane T. Direct Delivery of ANA-TA9, a Peptide Capable of Aβ Hydrolysis, to the Brain by Intranasal Administration. Pharmaceutics 2021; 13:1673. [PMID: 34683967 PMCID: PMC8538057 DOI: 10.3390/pharmaceutics13101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
We have recently reported Catalytides (Catalytic peptides) JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMI), which are the first Catalytides found to cleave Aβ42. Although the Catalytides must be delivered to the brain parenchyma to treat Alzheimer's disease, the blood-brain barrier (BBB) limits their entry into the brain from the systemic circulation. To avoid the BBB, the direct route from the nasal cavity to the brain was used in this study. The animal studies using rats and mice clarified that the plasma clearance of ANA-TA9 was more rapid than in vitro degradation in the plasma, whole blood, and the cerebrospinal fluid (CSF). The brain concentrations of ANA-TA9 were higher after nasal administration than those after intraperitoneal administration, despite a much lower plasma concentration after nasal administration, suggesting the direct delivery of ANA-TA9 to the brain from the nasal cavity. Similar findings were observed for its transport to CSF after nasal and intravenous administration. The concentration of ANA-TA9 in the olfactory bulb reached the peak at 5 min, whereas those in the frontal and occipital brains was 30 min, suggesting the sequential backward translocation of ANA-TA9 in the brain. In conclusion, ANA-TA9 was efficiently delivered to the brain by nasal application, as compared to other routes.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan;
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Rina Nakamura
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan;
| | - Toshifumi Akizawa
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| |
Collapse
|
20
|
In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13071079. [PMID: 34371770 PMCID: PMC8309016 DOI: 10.3390/pharmaceutics13071079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located at the roof of the nasal cavity and only represents ~5–7% of the epithelial surface area, presenting significant challenges for the deposition of drug molecules for nose to brain drug delivery (NTBDD). Aerosolized particles have the potential to be directed to the olfactory region, but their specific deposition within this area is confounded by a complex combination of factors, which include the properties of the formulation, the delivery device and how it is used, and differences in inter-patient physiology. In this review, an in-depth examination of these different factors is provided in relation to both in vitro and in vivo studies and how advances in the fabrication of nasal cast models and analysis of aerosol deposition can be utilized to predict in vivo outcomes more accurately. The challenges faced in assessing the nasal deposition of aerosolized particles within the paediatric population are specifically considered, representing an unmet need for nasal and NTBDD to treat CNS disorders.
Collapse
|
21
|
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2020; 18:169-185. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Epilepsy, a major neurological disorder affects about 1% of the Indian population. The discovery of noninvasive strategies for epilepsy presents a challenge for the scientists. Different types of nose-to-brain dosage-forms have been studied for epilepsy management. It aims to give new perspectives for developing new and existing anti-epileptic drugs. Combining nanotechnology with nose-to-brain approach can help in promoting the treatment efficacy by site-specific delivery. Also, it will minimize the side-effects and patient noncompliance observed in conventional administration routes. Peptide delivery can be an interesting approach for the management of epilepsy. Drug-loaded intranasal nanoformulations exhibit diverse prospective potentials in the management of epilepsy. Considering that, nanotherapy using nose-to-brain delivery as a prospective technique for the efficient management of epilepsy is reviewed. AREAS COVERED The authors have compiled all recently available data pertaining to the nose-to-brain delivery of therapeutics using nanotechnological strategies. The fundamental mechanism of nose-to-brain delivery, claims for intranasal delivery and medical devices for epilepsy are discussed. EXPERT OPINION Drug-loaded intranasal nanoformulations exhibit different prospective potentials in the management of epilepsy. Considering the foregoing research done in the field of nanotechnology, globally, authors propose nose-to-brain delivery of nanoformulations as a potential technique for the efficient management of epilepsy.
Collapse
Affiliation(s)
- Mihika Shringarpure
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.,SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
22
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Bahmanpour AH, Ghaffari M, Ashraf S, Mozafari M. Nanotechnology for pulmonary and nasal drug delivery. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:561-579. [DOI: 10.1016/b978-0-08-102985-5.00023-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Tanaka A, Takayama K, Furubayashi T, Mori K, Takemura Y, Amano M, Maeda C, Inoue D, Kimura S, Kiriyama A, Katsumi H, Miyazato M, Kangawa K, Sakane T, Hayashi Y, Yamamoto A. Transnasal Delivery of the Peptide Agonist Specific to Neuromedin-U Receptor 2 to the Brain for the Treatment of Obesity. Mol Pharm 2019; 17:32-39. [PMID: 31765157 DOI: 10.1021/acs.molpharmaceut.9b00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obesity and metabolic syndrome are threats to the health of large population worldwide as they are associated with high mortality, mainly linked to cardiovascular diseases. Recently, CPN-116 (CPN), which is an agonist peptide specific to neuromedin-U receptor 2 (NMUR2) that is expressed predominantly in the brain, has been developed as a new therapeutic candidate for the treatment of obesity and metabolic syndrome. However, treatment with CPN poses a challenge due to the limited delivery of CPN to the brain. Recent studies have clarified that the direct anatomical connection of the nasal cavity with brain allows delivery of several drugs to the brain. In this study, we confirm the nasal cavity as a promising CPN delivery route to the brain for the treatment of obesity and metabolic syndrome. According to the pharmacokinetic study, the clearance of CPN from the blood was very rapid with a half-life of 3 min. In vitro study on its stability in the serum and cerebrospinal fluid (CSF) indicates that CPN was more stable in the CSF than in the blood. The concentration of CPN in the brain was higher after nasal administration, despite its lower concentrations in the plasma than that after intravenous administration. The study on its pharmacological potency suggests the effective suppression of increased body weight in mice in a dose-dependent manner due to the direct activation of NMUR2 by CPN. This results from the higher concentration of corticosterone in blood after nasal administration of CPN as compared to nasal application of saline. In conclusion, the above findings indicate that the nasal cavity is a promising CPN delivery route to the brain to treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Akiko Tanaka
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan.,Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Kenji Mori
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Yuki Takemura
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Mayumi Amano
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Chiaki Maeda
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Daisuke Inoue
- College of Pharmaceutical Sciences , Ritsumeikan University , 1-1-1 Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | - Shunsuke Kimura
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe , Kyoto 610-0395 , Japan
| | - Akiko Kiriyama
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe , Kyoto 610-0395 , Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Mikiya Miyazato
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Kenji Kangawa
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| |
Collapse
|