1
|
Carbajal C, Rodriguez M, Owens F, Stone N, Veeragoni D, Fan RZ, Tieu K, El-Hage N. Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson's Disease. Pharmaceutics 2025; 17:365. [PMID: 40143028 PMCID: PMC11944340 DOI: 10.3390/pharmaceutics17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or "mitophagy") links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug's inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD.
Collapse
Affiliation(s)
- Candy Carbajal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Myosotys Rodriguez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Florida Owens
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Nicole Stone
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Dileepkumar Veeragoni
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Rebecca Z. Fan
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Nazira El-Hage
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| |
Collapse
|
2
|
Liu J, Wang T, Dong J, Lu Y. The blood-brain barriers: novel nanocarriers for central nervous system diseases. J Nanobiotechnology 2025; 23:146. [PMID: 40011926 DOI: 10.1186/s12951-025-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The central nervous system (CNS) diseases are major contributors to death and disability worldwide. However, the blood-brain barrier (BBB) often prevents drugs intended for CNS diseases from effectively crossing into the brain parenchyma to deliver their therapeutic effects. The blood-brain barrier is a semi-permeable barrier with high selectivity. The BBB primarily manages the transport of substances between the blood and the CNS. To enhance drug delivery for CNS disease treatment, various brain-based drug delivery strategies overcoming the BBB have been developed. Among them, nanoparticles (NPs) have been emphasized due to their multiple excellent properties. This review starts with an overview of the BBB's anatomical structure and physiological roles, and then explores the mechanisms, both endogenous and exogenous, that facilitate the NP passage across the BBB. The text also delves into how nanoparticles' shape, charge, size, and surface ligands affect their ability to cross the BBB and offers an overview of different nanoparticle classifications. This review concludes with an examination of the current challenges in utilizing nanomaterials for brain drug delivery and discusses corresponding directions for solutions. This review aims to propose innovative diagnostic and therapeutic approaches for CNS diseases and enhance drug design for more effective delivery across the BBB.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Wang
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
4
|
Liu W, Cheng G, Cui H, Tian Z, Li B, Han Y, Wu JX, Sun J, Zhao Y, Chen T, Yu G. Theoretical basis, state and challenges of living cell-based drug delivery systems. Theranostics 2024; 14:5152-5183. [PMID: 39267776 PMCID: PMC11388066 DOI: 10.7150/thno.99257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The therapeutic efficacy of drugs is determined, to a certain extent, by the efficiency of drug delivery. The low efficiency of drug delivery systems (DDSs) is frequently associated with serious toxic side effects and can even prove fatal in certain cases. With the rapid development of technology, drug delivery has evolved from using traditional frameworks to using nano DDSs (NDDSs), endogenous biomaterials DDSs (EBDDSs), and living cell DDSs (LCDDSs). LCDDSs are receiving widespread attention from researchers at present owing to the unique advantages of living cells in targeted drug delivery, including their excellent biocompatibility properties, low immunogenicity, unique biological properties and functions, and role in the treatment of diseases. However, the theoretical basis and techniques involved in the application of LCDDSs have not been extensively summarized to date. Therefore, this review comprehensively summarizes the properties and applications of living cells, elaborates the various drug loading approaches and controlled drug release, and discusses the results of clinical trials. The review also discusses the current shortcomings and prospects for the future development of LCDDSs, which will serve as highly valuable insights for the development and clinical transformation of LCDDSs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bowen Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanhua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
5
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Farkhad NK, Khodadoust MA, Tavakol-Afshari J. Evaluation of the Safety and Efficacy of Repeated Mesenchymal Stem Cell Transplantations in ALS Patients by Investigating Patients' Specific Immunological and Biochemical Biomarkers. Diseases 2024; 12:99. [PMID: 38785754 PMCID: PMC11120501 DOI: 10.3390/diseases12050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is an incurable disease. There are vigorous attempts to develop treatments to reduce the effects of this disease, and among these treatments is the transplantation of stem cells. This study aimed to retrospectively evaluate a mesenchymal stem cell (MSC) therapy cohort as a promising novel treatment modality by estimating some additional new parameters, such as immunological and biochemical factors. METHODS This study was designed as an open-label, one-arm cohort retrospective study to evaluate potential diagnostic biomarkers of repeated infusions of autologous-bone marrow-derived mesenchymal stem cells (BM-MSCs) in 15 confirmed patients with ALS, administered at a dose of 1 × 106 cells/kg BW with a one-month interval, in equal amounts in both an intravenous (IV) and intrathecal (IT) capacity simultaneously, via various biochemical (iron (Fe), ferritin, total-iron-binding capacity (TIBC), transferrin, and creatine kinase (CK)) and immunological parameters (tumor necrosis factor-alpha (TNF-α), neurofilament light chain (NFL), and glial-cell-derived neurotrophic factor (GDNF) levels, evaluated during the three-month follow-up period in serum and cerebrospinal fluid (CSF). RESULTS Our study indicated that, in the case of immunological biomarkers, TNF-α levels in the CSF showed a significant decrease at month three after transplantation compared with levels at month zero, and the p-value was p < 0.01. No statistically significant changes were observed for other immunological as well as biochemical parameters and a p-value of p > 0.05. CONCLUSIONS These results can indicate the potential benefit of stem cell transfusion in patients with ALS and suggest some diagnostic biomarkers. Several studies are required to approve these results.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran; (Z.A.-A.); (N.K.F.); (M.A.K.)
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran; (S.S.-N.); (A.R.B.)
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1708310, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran; (S.S.-N.); (A.R.B.)
| | - Najmeh Kaffash Farkhad
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran; (Z.A.-A.); (N.K.F.); (M.A.K.)
| | - Mohammad Ali Khodadoust
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran; (Z.A.-A.); (N.K.F.); (M.A.K.)
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948959, Iran; (Z.A.-A.); (N.K.F.); (M.A.K.)
| |
Collapse
|
6
|
Ge G, Sivasubramanian BP, Geng BD, Zhao S, Zhou Q, Huang G, O'Connor JC, Clark RA, Li S. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson's disease. Gene Ther 2024; 31:324-334. [PMID: 38627469 PMCID: PMC11245959 DOI: 10.1038/s41434-024-00451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.
Collapse
Affiliation(s)
- Guo Ge
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, Guizhou, 550025, China
| | | | - Bill D Geng
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Shujie Zhao
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Qing Zhou
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jason C O'Connor
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert A Clark
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Senlin Li
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Zhang SS, Li RQ, Chen Z, Wang XY, Dumont AS, Fan X. Immune cells: potential carriers or agents for drug delivery to the central nervous system. Mil Med Res 2024; 11:19. [PMID: 38549161 PMCID: PMC10979586 DOI: 10.1186/s40779-024-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Drug delivery systems (DDS) have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery. However, the access of nanoparticles/drugs to the central nervous system (CNS) remains a challenge mainly due to the obstruction from brain barriers. Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery. Herein, we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood-brain barrier. We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS, as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases. Finally, we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Ruo-Qi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Zhong Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiao-Ying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
8
|
Serag I, Abouzid M, Elmoghazy A, Sarhan K, Alsaad SA, Mohamed RG. An updated systematic review of neuroprotective agents in the treatment of spinal cord injury. Neurosurg Rev 2024; 47:132. [PMID: 38546884 DOI: 10.1007/s10143-024-02372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/03/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This systematic review aims to summarize the findings from all clinical randomized trials assessing the efficacy of potential neuroprotective agents in influencing the outcomes of acute spinal cord injuries (SCI). Following the PRISMA guidelines, we conducted comprehensive searches in four electronic databases (PubMed, Scopus, Cochrane Library, and Web of Science) up to September 5th, 2023. Our analysis included a total of 30 studies. We examined the effects of 15 substances/drugs: methylprednisolone, tirilazad mesylate, erythropoietin, nimodipine, naloxone, Sygen, Rho protein antagonist, granulocyte colony-stimulating factor, autologous macrophages, autologous bone marrow cells, vitamin D, progesterone, riluzole, minocycline, and blood alcohol concentration. Notable improvements in neurological outcomes were observed with progesterone plus vitamin D and granulocyte colony-stimulating factor. In contrast, results for methylprednisolone, erythropoietin, Sygen, Rho Protein, and Riluzole were inconclusive, primarily due to insufficient sample size or outdated evidence. No significant differences were found in the remaining evaluated drugs. Progesterone plus vitamin D, granulocyte colony-stimulating factor, methylprednisolone, Sygen, Rho Protein, and Riluzole may enhance neurological outcomes in acute SCI cases. It is worth noting that different endpoints or additional subgroup analyses may potentially alter the conclusions of individual trials. Therefore, certain SCI grades may benefit more from these treatments than others, while the overall results may remain inconclusive.
Collapse
Affiliation(s)
- Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St, 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | | | - Khalid Sarhan
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Rashad G Mohamed
- Mansoura Manchester Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Hu M, Zheng M, Wang C, Li Q, Li J, Zhou X, Ying X, Quan S, Gu L, Zhang X. Andrographolide derivative Andro-III modulates neuroinflammation and attenuates neuropathological changes of Alzheimer's disease via GSK-3β/NF-κB/CREB pathway. Eur J Pharmacol 2024; 965:176305. [PMID: 38160932 DOI: 10.1016/j.ejphar.2023.176305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Andrographolide has anti-inflammatory and neuroprotective effects, making it a potential therapeutic option for Alzheimer's disease (AD). Our research group optimized its structure in a previous study to minimize the risk of renal toxicity, which would beneficial for future clinical research. This study aims to examine the impact of Andro-III on enhancing cognitive learning ability in 3xTg-AD mice, as well as the mechanisms involved. Andro-III improved spatial learning ability, prevented the loss of Nysted's vesicles, reduced the accumulation of β-amyloid (Aβ) and tau proteins, and suppressed microglial activation. Further research found that the expression of nuclear factor kappa-B RelA (NF-κB p65) expression and glycogen synthase kinase-3β (GSK-3β) activity were inhibited, while CREB was upregulated in brain tissue treated with Andro-III. Moreover, Andro-III downregulated the expression of IBA1 and inflammatory factors in microglial cells of mice induced by Aβ. The regulation of the GSK-3β/NF-κB/CREB pathway was similar to that observed in 3xTg-AD mice. Therefore, Andro-III modulates neuroinflammation and attenuates neuropathological changes of AD via the GSK-3β/NF-κB/CREB pathway.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Jinhua Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Xuebin Zhou
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - XinYi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Shengli Quan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
10
|
Nong J, Glassman PM, Myerson JW, Zuluaga-Ramirez V, Rodriguez-Garcia A, Mukalel A, Omo-Lamai S, Walsh LR, Zamora ME, Gong X, Wang Z, Bhamidipati K, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-Contreras OA. Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain. ACS NANO 2023; 17:13121-13136. [PMID: 37432926 PMCID: PMC10373654 DOI: 10.1021/acsnano.2c08275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.
Collapse
Affiliation(s)
- Jia Nong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick M. Glassman
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Pharmaceutical Sciences, Temple University
School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Jacob W. Myerson
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Viviana Zuluaga-Ramirez
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Alba Rodriguez-Garcia
- Department
of Pathology and Laboratory Medicine, Ovarian Cancer Research Center,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Cellular Immunotherapies, Abramson Cancer Center, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvin Mukalel
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Landis R. Walsh
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco E. Zamora
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Xijing Gong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y. Kiseleva
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carlos H. Villa
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Fred Greineder
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Scott E. Kasner
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Division
of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular
Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
- Institute of Catalonia for Research and
Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute
for Bioscience and Biotechnology (IBBR), College Park, Maryland 20850, United States
| | - Yuri Persidsky
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jacob Samuel Brenner
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Zhang F, Xu Z, Jolly KJ. Myeloid cell-mediated drug delivery: from nanomedicine to cell therapy. Adv Drug Deliv Rev 2023; 197:114827. [PMID: 37068659 DOI: 10.1016/j.addr.2023.114827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In the presence of tissue inflammation, injury, or cancer, myeloid cells are recruited to disease regions through a multi-step process involving myelopoiesis, chemotaxis, cell migration, and diapedesis. As an emerging drug delivery approach, cell-mediated drug delivery takes advantage of the cell recruitment process to enhance the active transport of therapeutic cargo to disease regions. In the past few decades, a variety of nano-engineering methods have emerged to enhance interactions of nanoparticles with cells of interest, which can be adapted for cell-mediated drug delivery. Moreover, the drug delivery field can benefit from the recent clinical success of cell-based therapies, which created cell-engineering methods to engineer circulating leukocytes as 'living drug delivery vehicles' to target diseased tissues. In this review, we first provide an overview of myeloid cell recruitment and discuss how various factors within this process may affect cell-mediated delivery. In the second part of this review article, we summarize the status quo of nano-engineering and cell-engineering approaches and discuss how these engineering approaches can be adapted for cell-mediated delivery. Finally, we discuss future directions of this field, pointing out key challenges in the clinical translation of cell-mediated drug delivery.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Zijing Xu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Li H, Wei J, Zhang Z, Li J, Ma Y, Zhang P, Lin J. Menstrual blood-derived endometrial stem cells alleviate neuroinflammation by modulating M1/M2 polarization in cell and rat Parkinson's disease models. Stem Cell Res Ther 2023; 14:85. [PMID: 37055866 PMCID: PMC10099022 DOI: 10.1186/s13287-023-03330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Neuroinflammation is closely related to the development of Parkinson's disease (PD). Because of the extensive sources, non-invasive and periodical collection method, human menstrual blood-derived endometrial stem cells (MenSCs) have been explored as a promising tool for treatment of PD. This study aimed to investigate if MenSCs could inhibit neuroinflammation in PD rats by regulating M1/M2 polarization and to excavate the underlying mechanisms. METHODS MenSCs were co-cultured with 6-OHDA-exposed microglia cell lines. Then the morphology of microglia cells and the level of inflammatory factors were assessed by immunofluorescence and qRT-PCR. After MenSCs were transplanted into the brain of PD rats, animal motor function, the expression of tyrosine hydroxylase, and the level of inflammatory factors in the cerebrospinal fluid (CSF) and serum were detected to evaluate the therapeutic potential of MenSCs. Meanwhile, the expression of M1/M2 phenotype related genes was detected by qRT-PCR. One protein array kit containing 1000 kinds of factors was used to detect the protein components in the conditioned medium of MenSCs. Finally, bioinformatic analysis was performed to analyze the function of factors secreted by MenSCs and the signal pathways involved in. RESULTS MenSCs could suppress 6-OHDA-induced microglia cell activation and significantly decrease inflammation in vitro. After transplantation into the brain of PD rats, MenSCs improved animal motor function, which was indicated by the increased movement distance, ambulatory episodes, exercise time on the rotarod, and less contralateral rotation. Additionally, MenSCs reduced the loss of dopaminergic neurons and down-regulated the level of pro-inflammatory factors in the CSF and serum. Moreover, q-PCR and WB results showed the transplantation of MenSCs significantly down-regulated the expression of M1 phenotype cell markers and meanwhile up-regulated the expression of M2 phenotype cell markers in the brain of PD rats. 176 biological processes including inflammatory response, negative regulation of apoptotic process, and microglial cell activation were enriched by GO-BP analysis. 58 signal pathways including PI3K/Akt and MAPK were enriched by KEGG analysis. CONCLUSIONS In conclusion, our results provide preliminary evidence for the anti-inflammation capacity of MenSCs by regulating M1/M2 polarization. We firstly demonstrated the biological process of factors secreted by MenSCs and the signal pathways involved in using protein array and bioinformatic analysis.
Collapse
Affiliation(s)
- Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinghui Wei
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhigang Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 45003, China
| | - Junyao Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yaokai Ma
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 45003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
13
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
14
|
Zhang H, Xie X, Shi J, Zhao Q, Luo D, Hao J, Zhou Y, Han G, Pang X. 3, 14, 19-Triacetyl Andrographolide alleviates the cognitive dysfunction of 3 × Tg-AD mice by inducing initiation and promoting degradation process of autophagy. Phytother Res 2023; 37:410-423. [PMID: 36114804 DOI: 10.1002/ptr.7619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/24/2022] [Accepted: 08/20/2022] [Indexed: 11/07/2022]
Abstract
The present study aims to investigate the cognition-enhancing effect of 3, 14, 19-Triacetyl andrographolide (ADA) on learning and memory deficits in 3 × Tg-AD mice and to explore its underlying mechanism. Eight-month-old 3 × Tg-AD mice and C57BL/6J mice were randomly divided into three groups, namely wild-type group, 3 × Tg-AD group, and 3 × Tg-AD+ADA group (5 mg/kg, for 21 days, i.p.). We found that ADA significantly improved learning and cognition impairment, inhibited the loss of Nissl body, and reduced Aβ load in the brains of 3 × Tg-AD mice. In addition, ADA enhanced the levels of PSD95 and SYP, which were closely associated with synaptic plasticity. Accumulated autophagosomes, LC3II, and P62 in hippocampus and cortex of 3 × Tg-AD mice were decreased by ADA treatment. Furthermore, ADA administration further down-regulated the expressions of p-AKT and p-mTOR, reduced the level of CTSB, and increased the co-localization of LC3 and LAMP1 in the brains of 3 × Tg-AD mice, implying that ADA-induced autophagy initiation and also promoted the degradation process. In Aβ25-35 -induced HT22 cells, ADA displayed similar effects on autophagy flux as observed in 3 × Tg-AD mice. Our finding verified that ADA could improve synaptic plasticity and cognitive function, which is mainly attributed to the key roles of ADA in autophagy induction and degradation.
Collapse
Affiliation(s)
- Haiyu Zhang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Junzhuo Shi
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Qian Zhao
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Dongmei Luo
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Jiaojiao Hao
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Yunfeng Zhou
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Guang Han
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China.,Kaifeng Key Lab for Application of Local Dendranthema morifolium in Food & Drug, Kaifeng, China
| | - Xiaobin Pang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China.,Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
16
|
Zhang C, Chen S, Li X, Xu Q, Lin Y, Lin F, Yuan M, Zi Y, Cai J. Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomed Pharmacother 2022; 155:113768. [DOI: 10.1016/j.biopha.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
17
|
Zhao Y, Haney MJ, Fallon JK, Rodriguez M, Swain CJ, Arzt CJ, Smith PC, Loop MS, Harrison EB, El-Hage N, Batrakova EV. Using Extracellular Vesicles Released by GDNF-Transfected Macrophages for Therapy of Parkinson Disease. Cells 2022; 11:1933. [PMID: 35741061 PMCID: PMC9222008 DOI: 10.3390/cells11121933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles that facilitate transport of proteins, lipids, and genetic material, playing important roles in intracellular communication. They have remarkable potential as non-toxic and non-immunogenic nanocarriers for drug delivery to unreachable organs and tissues, in particular, the central nervous system (CNS). Herein, we developed a novel platform based on macrophage-derived EVs to treat Parkinson disease (PD). Specifically, we evaluated the therapeutic potential of EVs secreted by autologous macrophages that were transfected ex vivo to express glial-cell-line-derived neurotrophic factor (GDNF). EV-GDNF were collected from conditioned media of GDNF-transfected macrophages and characterized for GDNF content, size, charge, and expression of EV-specific proteins. The data revealed that, along with the encoded neurotrophic factor, EVs released by pre-transfected macrophages carry GDNF-encoding DNA. Four-month-old transgenic Parkin Q311(X)A mice were treated with EV-GDNF via intranasal administration, and the effect of this therapeutic intervention on locomotor functions was assessed over a year. Significant improvements in mobility, increases in neuronal survival, and decreases in neuroinflammation were found in PD mice treated with EV-GDNF. No offsite toxicity caused by EV-GDNF administration was detected. Overall, an EV-based approach can provide a versatile and potent therapeutic intervention for PD.
Collapse
Affiliation(s)
- Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (M.J.H.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (M.J.H.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - John K. Fallon
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Myosotys Rodriguez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (N.E.-H.)
| | - Carson J. Swain
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Camryn J. Arzt
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Philip C. Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Matthew Shane Loop
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Emily B. Harrison
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| | - Nazira El-Hage
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (N.E.-H.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (M.J.H.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.K.F.); (C.J.S.); (C.J.A.); (P.C.S.); (M.S.L.); (E.B.H.)
| |
Collapse
|
18
|
Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood-Brain Barrier and Nano-Biological Effects of Nanomaterials. NANO-MICRO LETTERS 2022; 14:105. [PMID: 35426525 PMCID: PMC9012800 DOI: 10.1007/s40820-022-00847-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disease that shows a high incidence in older individuals, is becoming increasingly prevalent. Unfortunately, there is no clinical cure for PD, and novel anti-PD drugs are therefore urgently required. However, the selective permeability of the blood-brain barrier (BBB) poses a huge challenge in the development of such drugs. Fortunately, through strategies based on the physiological characteristics of the BBB and other modifications, including enhancement of BBB permeability, nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB. Although nanomaterials are often used as carriers for PD treatment, their biological activity is ignored. Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects. In this review, we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment. Subsequently, we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects. Finally, we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field. Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People's Republic of China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
19
|
Haney MJ, Yuan H, Shipley ST, Wu Z, Zhao Y, Pate K, Frank JE, Massoud N, Stewart PW, Perlmutter JS, Batrakova EV. Biodistribution of Biomimetic Drug Carriers, Mononuclear Cells, and Extracellular Vesicles, in Nonhuman Primates. Adv Biol (Weinh) 2022; 6:e2101293. [PMID: 34939369 PMCID: PMC8825682 DOI: 10.1002/adbi.202101293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte-based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte-derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. 64 Cu-labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of 64 Cu-labeled drug carriers, and standardized uptake values (SUVmean and SUVmax ) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven T. Shipley
- Division of Comparative Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuling Zhao
- Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Pate
- Division of Comparative Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan E. Frank
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicole Massoud
- Division of Comparative Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul W. Stewart
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S. Perlmutter
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elena V. Batrakova
- Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Correspondence should be addressed to E.V.B. (), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7362, Phone: 919-537-3712
| |
Collapse
|
20
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Haney MJ, Zhao Y, Fallon JK, Yue W, Li SM, Lentz EE, Erie D, Smith PC, Batrakova EV. Extracellular Vesicles as Drug Delivery System for Treatment of Neurodegenerative Disorders: Optimization of the Cell Source. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100064. [PMID: 34927169 PMCID: PMC8680291 DOI: 10.1002/anbr.202100064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) represent a next generation drug delivery system that combines nanoparticle size with extraordinary ability to cross biological barriers, reduced immunogenicity, and low offsite toxicity profiles. A successful application of this natural way of delivering biological compounds requires deep understanding EVs intrinsic properties inherited from their parent cells. Herein, we evaluated EVs released by cells of different origin, with respect to drug delivery to the brain for treatment of neurodegenerative disorders. The morphology, size, and zeta potential of EVs secreted by primary macrophages (mEVs), neurons (nEVs), and astrocytes (aEVs) were examined by nanoparticle NTA, DLS, cryoTEM, and AFM. Spherical nanoparticles with average size 110-130 nm and zeta potential around -20 mV were identified for all EVs types. mEVs showed the highest levels of tetraspanins and integrins compared to nEVs and aEVs, suggesting superior adhesion and targeting to the inflamed tissues by mEVs. Strikingly, aEVs were preferentially taken up by neuronal cells in vitro, followed by mEVs and nEVs. Nevertheless, the brain accumulation levels of mEVs in a transgenic mouse model of Parkinson's disease were significantly higher than those of nEVs or aEVs. Therefore, mEVs were suggested as the most promising nanocarrier system for drug delivery to the brain.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John K. Fallon
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wang Yue
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel M. Li
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily E. Lentz
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorothy Erie
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philip C. Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J Clin Invest 2021; 131:e141964. [PMID: 34491913 DOI: 10.1172/jci141964] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
23
|
Mechanistic Insight from Preclinical Models of Parkinson's Disease Could Help Redirect Clinical Trial Efforts in GDNF Therapy. Int J Mol Sci 2021; 22:ijms222111702. [PMID: 34769132 PMCID: PMC8583859 DOI: 10.3390/ijms222111702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by four pathognomonic hallmarks: (1) motor and non-motor deficits; (2) neuroinflammation and oxidative stress; (3) pathological aggregates of the α-synuclein (α-syn) protein; (4) neurodegeneration of the nigrostriatal system. Recent evidence sustains that the aggregation of pathological α-syn occurs in the early stages of the disease, becoming the first trigger of neuroinflammation and subsequent neurodegeneration. Thus, a therapeutic line aims at striking back α-synucleinopathy and neuroinflammation to impede neurodegeneration. Another therapeutic line is restoring the compromised dopaminergic system using neurotrophic factors, particularly the glial cell-derived neurotrophic factor (GDNF). Preclinical studies with GDNF have provided encouraging results but often lack evaluation of anti-α-syn and anti-inflammatory effects. In contrast, clinical trials have yielded imprecise results and have reported the emergence of severe side effects. Here, we analyze the discrepancy between preclinical and clinical outcomes, review the mechanisms of the aggregation of pathological α-syn, including neuroinflammation, and evaluate the neurorestorative properties of GDNF, emphasizing its anti-α-syn and anti-inflammatory effects in preclinical and clinical trials.
Collapse
|
24
|
Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Abedelahi A, Karimipour M. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci 2021; 11:181. [PMID: 34641969 PMCID: PMC8507154 DOI: 10.1186/s13578-021-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Sharma A, Bazylianska V, Moszczynska A. Parkin-deficient rats are resistant to neurotoxicity of chronic high-dose methamphetamine. Exp Neurol 2021; 345:113811. [PMID: 34298012 DOI: 10.1016/j.expneurol.2021.113811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/18/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Methamphetamine (METH) is a highly addictive and powerful central nervous system psychostimulant with no FDA-approved pharmacotherapy. Parkin is a neuroprotective protein and its loss of function contributes to Parkinson's disease. This study used 3-month-old homozygous parkin knockout (PKO) rats to determine whether loss of parkin protein potentiates neurotoxicity of chronic METH to the nigrostriatal dopamine pathway. PKO rats were chronically treated with 10 mg/kg METH for 10 consecutive days and assessed for neurotoxicity markers in the striatum on the 5th and 10th day of withdrawal from METH. The PKO rats showed higher METH-induced hyperthermia; however, they did not display augmented deficits in dopaminergic and serotonergic neurotoxicity markers, astrocyte activation or decreased mitochondrial enzyme levels as compared to wild-type (WT) rats. Interestingly, saline-treated PKO rats had lower levels of dopamine (DA) as well as mitochondrial complex I and II levels while having increased basal levels of glial fibrillary acidic protein (GFAP), a marker of gliosis. These results indicate PKO display a certain resistance to METH neurotoxicity, possibly mediated by lowered DA levels and downregulated mitochondria.
Collapse
Affiliation(s)
- Akhil Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Jarrin S, Hakami A, Newland B, Dowd E. Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. JOURNAL OF PARKINSON'S DISEASE 2021; 11:S229-S236. [PMID: 33896851 PMCID: PMC8543245 DOI: 10.3233/jpd-212662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson's disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches-direct infusion of the growth factor protein into the target brain region and in vivo gene therapy-have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
28
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
29
|
Haney MJ, Zhao Y, Fay J, Duhyeong H, Wang M, Wang H, Li Z, Lee YZ, Karuppan MK, El-Hage N, Kabanov AV, Batrakova EV. Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: importance of administration routes. Sci Rep 2020; 10:11818. [PMID: 32678262 PMCID: PMC7366622 DOI: 10.1038/s41598-020-68874-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-based drug delivery systems have generated an increasing interest in recent years. We previously demonstrated that systemically administered macrophages deliver therapeutics to CNS, including glial cell line-derived neurotrophic factor (GDNF), and produce potent effects in Parkinson’s disease (PD) mouse models. Herein, we report fundamental changes in biodistribution and brain bioavailability of macrophage-based formulations upon different routes of administration: intravenous, intraperitoneal, or intrathecal injections. The brain accumulation of adoptively transferred macrophages was evaluated by various imaging methods in transgenic Parkin Q311(X)A mice and compared with those in healthy wild type littermates. Neuroinflammation manifested in PD mice warranted targeting macrophages to the brain for each route of administration. The maximum amount of cell-carriers in the brain, up to 8.1% ID/g, was recorded followed a single intrathecal injection. GDNF-transfected macrophages administered through intrathecal route provided significant increases of GDNF levels in different brain sub-regions, including midbrain, cerebellum, frontal cortex, and pons. No significant offsite toxicity of the cell-based formulations in mouse brain and peripheral organs was observed. Overall, intrathecal injection appeared to be the optimal administration route for genetically modified macrophages, which accomplished targeted gene delivery, and significant expression of reporter and therapeutic genes in the brain.
Collapse
Affiliation(s)
- Matthew J Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - James Fay
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Hwang Duhyeong
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Mengzhe Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yueh Z Lee
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohan K Karuppan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA.
| |
Collapse
|