1
|
Radeva L, Yoncheva K. Nanogels-Innovative Drug Carriers for Overcoming Biological Membranes. Gels 2025; 11:124. [PMID: 39996667 PMCID: PMC11854394 DOI: 10.3390/gels11020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Nanogels are promising drug delivery systems since they possess undeniable advantages such as high loading capacity for hydrophilic and hydrophobic drugs, stabilization of sensitive drugs, biocompatibility, and biodegradability. The present review summarizes experimental studies related to carriers, drug loading, and membrane transport of nanogels. In particular, the review discusses the properties, advantages, and limitations of polymeric carriers with respect to the behavior of the prepared nanogels in in vivo conditions. The potential of nanogel systems for encapsulation of hydrophilic or hydrophobic drugs and the mechanisms of loading and drug release are also emphasized. Moreover, the challenges related to nanogel transport through the barriers presented in parenteral, oral, ocular, nasal, and dermal routes of administration are also considered.
Collapse
|
2
|
Burgos JM, Vega E, García ML, Pujol M, Sánchez-López E, Souto EB. Biodegradable nanoplatforms for antigen delivery: part II - nanoparticles, hydrogels, and microneedles for cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:1385-1394. [PMID: 39245925 DOI: 10.1080/17425247.2024.2400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved. AREASCOVERED CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial. EXPERT OPINION We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells further.
Collapse
Affiliation(s)
- Jordi Madariaga Burgos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Estefanía Vega
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
3
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
4
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
5
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
7
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
8
|
López-Iglesias C, Klinger D. Rational Design and Development of Polymeric Nanogels as Protein Carriers. Macromol Biosci 2023; 23:e2300256. [PMID: 37551821 DOI: 10.1002/mabi.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, 15782, Spain
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
| |
Collapse
|
9
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Walvekar P, Kumar P, Choonara YE. Long-acting vaccine delivery systems. Adv Drug Deliv Rev 2023; 198:114897. [PMID: 37225091 DOI: 10.1016/j.addr.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Bolus vaccines are often administered multiple times due to rapid clearance and reduced transportation to draining lymph nodes resulting in inadequate activation of T and B lymphocytes. In order to achieve adaptive immunity, prolonged exposure of antigens to these immune cells is crucial. Recent research has been focusing on developing long-acting biomaterial-based vaccine delivery systems, which can modulate the release of encapsulated antigens or epitopes to facilitate enhanced antigen presentation in lymph nodes and subsequently achieve robust T and B cell responses. Over the past few years, various polymers and lipids have been extensively explored to develop effective biomaterial-based vaccine strategies. The article reviews relevant polymer and lipid-based strategies used to prepare long-acting vaccine carriers and discusses their results concerning immune responses.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa.
| |
Collapse
|
11
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
12
|
Viegas JSR, Bentley MVLB, Vicentini FTMDC. Challenges to perform an efficiently gene therapy adopting non-viral vectors: Melanoma landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Upconversion nanoparticle platform for efficient dendritic cell antigen delivery and simultaneous tracking. Mikrochim Acta 2022; 189:368. [PMID: 36057018 PMCID: PMC9440881 DOI: 10.1007/s00604-022-05441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022]
Abstract
Upconversion nanoparticles (UCNPs) represent a group of NPs that can convert near-infrared (NIR) light into ultraviolet and visible light, thus possess deep tissue penetration power with less background fluorescence noise interference, and do not induce damage to biological tissues. Due to their unique optical properties and possibility for surface modification, UCNPs can be exploited for concomitant antigen delivery into dendritic cells (DCs) and monitoring by molecular imaging. In this study, we focus on the development of a nano-delivery platform targeting DCs for immunotherapy and simultaneous imaging. OVA 254–267 (OVA24) peptide antigen, harboring a CD8 T cell epitope, and Pam3CysSerLys4 (Pam3CSK4) adjuvant were chemically linked to the surface of UCNPs by amide condensation to stimulate DC maturation and antigen presentation. The OVA24-Pam3CSK4-UCNPs were thoroughly characterized and showed a homogeneous morphology and surface electronegativity, which promoted a good dispersion of the NPs. In vitro experiments demonstrated that OVA24-Pam3CSK4-UCNPs induced a strong immune response, including DC maturation, T cell activation, and proliferation, as well as interferon gamma (IFN-γ) production. In vivo, highly sensitive upconversion luminescence (UCL) imaging of OVA24-Pam3CSK4-UCNPs allowed tracking of UCNPs from the periphery to lymph nodes. In summary, OVA24-Pam3CSK4-UCNPs represent an effective tool for DC-based immunotherapy.
Collapse
|
14
|
Smart combination of aluminum hydroxide and MF59 to induce strong cellular immune responses. J Control Release 2022; 349:699-711. [PMID: 35907590 DOI: 10.1016/j.jconrel.2022.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/20/2022]
Abstract
As two of the most widely used adjuvants, aluminum hydroxide and the oil-in-water emulsion MF59 have their intrinsic limitations: classical aluminum gel induces only weak cellular immune responses while MF59 cannot be used as an antigen delivery system due to its poor physical interaction with antigen molecules. Herein, we combined these two adjuvants and constructed a novel nano-vaccine delivery system by inserting aluminum hydroxide into the surface of a modified MF59 nano-emulsion (AlNEs). A model antigen ovalbumin (OVA) and an immune potentiator CpG were adsorbed on the surface of AlNEs (hereinafter AlNEs-OVA-CpG) through a facile mixing step. After subcutaneous injection, AlNEs-OVA-CpG effectively drained to lymph nodes, delivered both cargos into lymph node-resident antigen presenting cells (APCs), and escaped from lysosomes into the cytoplasm, resulting in enhanced antigen cross-presentation. Finally, AlNEs-OVA-CpG induced potent antigen-specific humoral and cellular immune responses, which significantly inhibited tumor growth and prolonged mice survival in a EG7-OVA tumor model. In sum, our results suggested that AlNEs have a great prospect to induce CD8+ T cell responses for subunit antigens.
Collapse
|
15
|
Lau CYJ, Benne N, Lou B, Zharkova O, Ting HJ, Ter Braake D, van Kronenburg N, Fens MH, Broere F, Hennink WE, Wang JW, Mastrobattista E. Modulating albumin-mediated transport of peptide-drug conjugates for antigen-specific Treg induction. J Control Release 2022; 348:938-950. [PMID: 35732251 DOI: 10.1016/j.jconrel.2022.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
The therapeutic potential of antigen-specific regulatory T cells (Treg) has been extensively explored, leading to the development of several tolerogenic vaccines. Dexamethasone-antigen conjugates represent a prominent class of tolerogenic vaccines that enable coordinated delivery of antigen and dexamethasone to target immune cells. The importance of nonspecific albumin association towards the biodistribution of antigen-adjuvant conjugates has gained increasing attention, by which hydrophobic and electrostatic interactions govern the association capacity. Using an ensemble of computational and experimental techniques, we evaluate the impact of charged residues adjacent to the drug conjugation site in dexamethasone-antigen conjugates (Dex-K/E4-OVA323, K: lysine, E: glutamate) towards their albumin association capacity and induction of antigen-specific Treg. We find that Dex-K4-OVA323 possesses a higher albumin association capacity than Dex-E4-OVA323, leading to enhanced liver distribution and antigen-presenting cell uptake. Furthermore, using an OVA323-specific adoptive-transfer mouse model, we show that Dex-K4-OVA323 selectively upregulated OVA323-specific Treg cells, whereas Dex-E4-OVA323 exerted no significant effect on Treg cells. Our findings serve as a guide to optimize the functionality of dexamethasone-antigen conjugate amid switching vaccine epitope sequences. Moreover, our study demonstrates that moderating the residues adjacent to the conjugation sites can serve as an engineering approach for future peptide-drug conjugate development.
Collapse
Affiliation(s)
- Chun Yin Jerry Lau
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Naomi Benne
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Bo Lou
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, 119228 Singapore, Singapore
| | - Olga Zharkova
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Daniëlle Ter Braake
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Nicky van Kronenburg
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Marcel H Fens
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Wim E Hennink
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore; Department of Physiology, National University of Singapore, 2 Medical Drive, 117593 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 30 Medical Drive, 117609 Singapore, Singapore.
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
16
|
Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev 2022; 51:5136-5174. [PMID: 35666131 DOI: 10.1039/d2cs00247g] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.
Collapse
Affiliation(s)
- Xianbin Ma
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Tian Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
18
|
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Ran Mo
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| |
Collapse
|
19
|
Mammadova A, Gyarmati B, Sárdi K, Paudics A, Varga Z, Szilágyi A. Thiolated cationic poly(aspartamides) with side group dependent gelation properties for the delivery of anionic polyelectrolytes. J Mater Chem B 2022; 10:5946-5957. [DOI: 10.1039/d2tb00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ gellable polymers have potential applications as injectable formulations in drug delivery and regenerative medicine. Herein, thiolated cationic polyaspartamides were synthesized with two different approaches to correlate side group...
Collapse
|
20
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
21
|
Carmona-Ribeiro AM. Supramolecular Nanostructures for Vaccines. Biomimetics (Basel) 2021; 7:6. [PMID: 35076466 PMCID: PMC8788484 DOI: 10.3390/biomimetics7010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
Although this is an era of pandemics and many devastating diseases, this is also a time when bionanotechnology flourishes, illuminating a multidisciplinary field where vaccines are quickly becoming a balsam and a prevention against insidious plagues. In this work, we tried to gain and also give a deeper understanding on nanovaccines and their way of acting to prevent or cure cancer, infectious diseases, and diseases caused by parasites. Major nanoadjuvants and nanovaccines are temptatively exemplified trying to contextualize our own work and its relative importance to the field. The main properties for novel adjuvants seem to be the nanosize, the cationic character, and the biocompatibility, even if it is achieved in a low dose-dependent manner.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo CEP 05508-000, SP, Brazil
| |
Collapse
|
22
|
Deng S, Gigliobianco MR, Mijit E, Minicucci M, Cortese M, Campisi B, Voinovich D, Battistelli M, Salucci S, Gobbi P, Lupidi G, Zambito G, Mezzanotte L, Censi R, Di Martino P. Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox-Responsive Degradability for Intracellular Delivery. Pharmaceutics 2021; 13:pharmaceutics13122048. [PMID: 34959330 PMCID: PMC8708258 DOI: 10.3390/pharmaceutics13122048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.
Collapse
Affiliation(s)
- Siyuan Deng
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | | | - Emin Mijit
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (E.M.); (M.M.)
| | - Marco Minicucci
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (E.M.); (M.M.)
| | - Manuela Cortese
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | - Barbara Campisi
- Department of Economic, Business, Mathematic and Statistical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Science, University of Trieste, P. le Europa 1, 34127 Trieste, Italy;
| | - Michela Battistelli
- Institute of Morphological Sciences, University of Urbino, Via Ca’ le Suore 2, 61029 Urbino, Italy; (M.B.); (P.G.)
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Pietro Gobbi
- Institute of Morphological Sciences, University of Urbino, Via Ca’ le Suore 2, 61029 Urbino, Italy; (M.B.); (P.G.)
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (L.M.)
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (L.M.)
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
- Correspondence: ; Tel.: +39-0737-40-2231
| | - Piera Di Martino
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, Via dei Vestini, 1, 66100 Chieti, Italy;
| |
Collapse
|
23
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
24
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
25
|
Stephens AJ, Burgess-Brown NA, Jiang S. Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Front Immunol 2021; 12:696791. [PMID: 34276688 PMCID: PMC8279810 DOI: 10.3389/fimmu.2021.696791] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide-based cancer vaccines rely upon the strong activation of the adaptive immune response to elicit its effector function. They have shown to be highly specific and safe, but have yet to prove themselves as an efficacious treatment for cancer in the clinic. This is for a variety of reasons, including tumour heterogeneity, self-tolerance, and immune suppression. Importance has been placed on the overall design of peptide-based cancer vaccines, which have evolved from simple peptide derivatives of a cancer antigen, to complex drugs; incorporating overlapping regions, conjugates, and delivery systems to target and stimulate different components of antigen presenting cells, and to bolster antigen cross-presentation. Peptide-based cancer vaccines are increasingly becoming more personalised to an individual's tumour antigen repertoire and are often combined with existing cancer treatments. This strategy ultimately aids in combating the shortcomings of a more generalised vaccine strategy and provides a comprehensive treatment, taking into consideration cancer cell variability and its ability to avoid immune interrogation.
Collapse
Affiliation(s)
- Alexander J Stephens
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Shisong Jiang
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Salah A, Wang H, Li Y, Ji M, Ou WB, Qi N, Wu Y. Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Front Cell Dev Biol 2021; 9:686544. [PMID: 34262904 PMCID: PMC8273339 DOI: 10.3389/fcell.2021.686544] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yanqin Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Ji
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nianmin Qi
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
27
|
Han L, Peng K, Qiu LY, Li M, Ruan JH, He LL, Yuan ZX. Hitchhiking on Controlled-Release Drug Delivery Systems: Opportunities and Challenges for Cancer Vaccines. Front Pharmacol 2021; 12:679602. [PMID: 34040536 PMCID: PMC8141731 DOI: 10.3389/fphar.2021.679602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines represent among the most promising strategies in the battle against cancers. However, the clinical efficacy of current cancer vaccines is largely limited by the lack of optimized delivery systems to generate strong and persistent antitumor immune responses. Moreover, most cancer vaccines require multiple injections to boost the immune responses, leading to poor patient compliance. Controlled-release drug delivery systems are able to address these issues by presenting drugs in a controlled spatiotemporal manner, which allows co-delivery of multiple drugs, reduction of dosing frequency and avoidance of significant systemic toxicities. In this review, we outline the recent progress in cancer vaccines including subunit vaccines, genetic vaccines, dendritic cell-based vaccines, tumor cell-based vaccines and in situ vaccines. Furthermore, we highlight the efforts and challenges of controlled or sustained release drug delivery systems (e.g., microparticles, scaffolds, injectable gels, and microneedles) in ameliorating the safety, effectiveness and operability of cancer vaccines. Finally, we briefly discuss the correlations of vaccine release kinetics and the immune responses to enlighten the rational design of the next-generation platforms for cancer therapy.
Collapse
Affiliation(s)
- Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Ke Peng
- School of pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Li-Ying Qiu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Meng Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jing-Hua Ruan
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li-Li He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
28
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
29
|
Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics 2021; 13:pharmaceutics13050596. [PMID: 33919378 PMCID: PMC8143365 DOI: 10.3390/pharmaceutics13050596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic nanoparticles have been shown to be surprisingly effective as cancer vaccine vehicles in preclinical and clinical studies. Cationic nanoparticles deliver tumor-associated antigens to dendritic cells and induce immune activation, resulting in strong antigen-specific cellular immune responses, as shown for a wide variety of vaccine candidates. In this review, we discuss the relation between the cationic nature of nanoparticles and the efficacy of cancer immunotherapy. Multiple types of lipid- and polymer-based cationic nanoparticulate cancer vaccines with various antigen types (e.g., mRNA, DNA, peptides and proteins) and adjuvants are described. Furthermore, we focus on the types of cationic nanoparticles used for T-cell induction, especially in the context of therapeutic cancer vaccination. We discuss different cationic nanoparticulate vaccines, molecular mechanisms of adjuvanticity and biodistribution profiles upon administration via different routes. Finally, we discuss the perspectives of cationic nanoparticulate vaccines for improving immunotherapy of cancer.
Collapse
|
30
|
Brouillard A, Deshpande N, Kulkarni AA. Engineered Multifunctional Nano- and Biological Materials for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2001680. [PMID: 33448159 DOI: 10.1002/adhm.202001680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy is set to emerge as the future of cancer therapy. However, recent immunotherapy trials in different cancers have yielded sub-optimal results, with durable responses seen in only a small fraction of patients. Engineered multifunctional nanomaterials and biological materials are versatile platforms that can elicit strong immune responses and improve anti-cancer efficacy when applied to cancer immunotherapy. While there are traditional systems such as polymer- and lipid-based nanoparticles, there is a wide variety of other materials with inherent and additive properties that can allow for more potent activation of the immune system. By synthesizing and applying multifunctional strategies, it allows for a more extensive and more effective repertoire of tools to use in the wide variety of situations that cancer presents itself. Here, several types of nanoscale and biological material strategies and platforms that provide their inherent benefits for targeting and activating multiple aspects of the immune system are discussed. Overall, this review aims to provide a comprehensive understanding of recent advances in the field of multifunctional cancer immunotherapy and trends that pave the way for more diverse and tactical regression of tumors through soliciting responses by either the adaptive or innate immune system, and even both simultaneously.
Collapse
Affiliation(s)
- Anthony Brouillard
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Nilesh Deshpande
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
31
|
Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2020; 268:120597. [PMID: 33360074 PMCID: PMC7834201 DOI: 10.1016/j.biomaterials.2020.120597] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles’ delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.
Collapse
Affiliation(s)
- David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| | - Sytze H T Jorritsma
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Benjamin Evert
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| |
Collapse
|
32
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
33
|
Koch PD, Pittet MJ, Weissleder R. The chemical biology of IL-12 production via the non-canonical NFkB pathway. RSC Chem Biol 2020; 1:166-176. [PMID: 34458756 PMCID: PMC8341911 DOI: 10.1039/d0cb00022a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Interleukin-12 (IL-12) has emerged as an attractive cytokine for cancer therapy because it has direct anti-cancer effects and additionally plays a critical role in enhancing checkpoint inhibitors. Given these multiple modes of actions, identifying means to pharmacologically induce IL-12 production in the tumor microenvironment has become important. In this review, we highlight therapeutics that promote IL-12 induction in tumor-associated myeloid cells through the non-canonical NFkB pathway. We discuss existing clinical trials and briefly examine the additional pathway targets that warrant further exploration for drug discovery.
Collapse
Affiliation(s)
- Peter D Koch
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| |
Collapse
|
34
|
Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. “Nanogels as drug carriers – Introduction, chemical aspects, release mechanisms and potential applications”. Int J Pharm 2020; 581:119268. [DOI: 10.1016/j.ijpharm.2020.119268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
|
35
|
Tornesello AL, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Nanoparticles to Improve the Efficacy of Peptide-Based Cancer Vaccines. Cancers (Basel) 2020; 12:1049. [PMID: 32340356 PMCID: PMC7226445 DOI: 10.3390/cancers12041049] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles represent a potent antigen presentation and delivery system to elicit an optimal immune response by effector cells targeting tumor-associated antigens expressed by cancer cells. Many types of nanoparticles have been developed, such as polymeric complexes, liposomes, micelles and protein-based structures such as virus like particles. All of them show promising results for immunotherapy approaches. In particular, the immunogenicity of peptide-based cancer vaccines can be significantly potentiated by nanoparticles. Indeed, nanoparticles are able to enhance the targeting of antigen-presenting cells (APCs) and trigger cytokine production for optimal T cell response. The present review summarizes the categories of nanoparticles and peptide cancer vaccines which are currently under pre-clinical evaluation.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.L.T.); (F.M.B.)
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.L.T.); (F.M.B.)
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.L.T.); (F.M.B.)
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy;
| |
Collapse
|