1
|
Song B, Shuang L, Zhang S, Tong C, Chen Q, Li Y, Hao M, Niu W, Jin CH. Research progress of nano drug delivery systems in the anti-tumor treatment of traditional Chinese medicine monomers. PeerJ 2025; 13:e19332. [PMID: 40292112 PMCID: PMC12034246 DOI: 10.7717/peerj.19332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Tumors pose a serious threat to global public health and are usually treated from two aspects: tumor cells and tumor microenvironment. Compared with traditional chemotherapy drugs, traditional Chinese medicine (TCM) monomers have advantages in tumor treatment, such as multiple targets, multiple levels and synergistic intervention. However, most TCM active ingredients have disadvantages such as poor water solubility and stability, which restrict their clinical application. Nano drug delivery systems have the functions of improving the bioavailability of TCM anti-tumor active ingredients, enhancing tissue targeting, achieving controlled drug release, and inhibiting tumor multidrug resistance. Compared with free monomers, they have higher therapeutic effects and fewer side effects. This article summarizes five commonly used anti-tumor TCM monomer nanocarriers, including lipid nanomaterials, exosomes, polymer micelles, carbon nanotubes, and dendrimers, and explains their anti-tumor mechanisms after combining with TCM, such as inhibiting tumor cell proliferation and metastasis, regulating tumor microenvironment, etc. At the same time, the potential of nano drug delivery systems combined with radiotherapy and immunotherapy is discussed, as well as the current problems of potential toxicity, long-term stability, and complex amplification process, as well as future development directions, aiming to provide a reference for promoting the clinical application of nano drug delivery systems for TCM anti-tumor active ingredients.
Collapse
Affiliation(s)
- Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Li Shuang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Comprehensive Service Center, Yongji Economic Development Zone, Jilin, Jilin, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Cheng-Hao Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Technology, College of Life Science and Technology, Daqing, Heilongjiang, China
| |
Collapse
|
2
|
Li Y, Xing L, Zhu M, Li X, Wei F, Sun W, Jia Y. HPMA Copolymers: A Versatile Platform for Targeted Peptide Drug Delivery. Biomolecules 2025; 15:596. [PMID: 40305357 PMCID: PMC12024580 DOI: 10.3390/biom15040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Peptide drugs have been broadly applied in cancer treatment and diagnosis due to their ability to accurately identify biomarkers with good biocompatibility. However, their clinical application is limited by protease degradation, which induces short circulation half-life, low bioavailability, and high renal clearance. In recent years, delivery systems based on nanomaterial technology have become an important strategy to break through the bottleneck of peptide drug delivery. Among them, N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers have attracted much attention due to their good biocompatibility, hydrophilicity, and low immunogenicity. The high molecular weight of HPMA copolymer-peptide can circumvent renal clearance, significantly prolong the circulation time in the body, and achieve drug accumulation and microenvironment-triggered release synergistically with EPR effects and active targeting. This review introduces the basic properties of HPMA copolymers, including solubility, biocompatibility, and tunable chemical structure. The important applications of HPMA copolymer-peptide in tumor diagnosis and treatment are discussed. This review deepens our understanding of the future development of HPMA copolymers and will provide more references for improving peptides by simple copolymers.
Collapse
Affiliation(s)
- Ya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Liangda Xing
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Mingliang Zhu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Fangfang Wei
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Wenyan Sun
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Yinnong Jia
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
- College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
3
|
Fang B, Pan F, Shan T, Chen H, Peng W, Tian W, Huang F, Mao Z, Ding Y. An Integrated Virtual Screening Platform to Identify Potent Co-Assembled Nanodrugs for Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414154. [PMID: 39988868 DOI: 10.1002/adma.202414154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/18/2025] [Indexed: 02/25/2025]
Abstract
Co-assembled nanodrugs provide significant advantages in cancer treatment and drug delivery, yet effective screening methods to identify molecular combinations for co-assembly are lacking. This study presents a screening strategy integrating ligand-based virtual screening (LBVS) and density functional theory (DFT) calculations to explore new molecular combinations with co-assembly capabilities. The accuracy of this screening was validated by synthesizing various co-assembled nanodrugs under mild conditions. Vinpocetine (Vin) and lenvatinib (Len) are representative co-assembly combinations that can directly co-assemble into nanoparticles (NPs) through hydrogen bonding, van der Waals forces, and π-π interactions. These NPs were further functionalized with polyethylene glycol (PEG), resulting in PEG-L/V NPs that exhibited enhanced stability and biocompatibility. In addition, PEG-L/V NPs can respond to acidic conditions and release Vin and Len, working synergistically to induce cell cycle arrest and apoptosis in tumor cells in vitro while also inhibiting xenograft tumor growth in vivo. RNA sequencing (RNA-seq) analysis revealed that the co-assembled nanodrugs exhibited mechanisms that are distinct from those of single drugs. This study demonstrates the feasibility of utilizing a computational approach combining LBVS and DFT to identify small molecules with co-assembly capabilities, leading to innovative anticancer strategies.
Collapse
Affiliation(s)
- Bo Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, China
- Center for Medical Research and Innovation in Digestive System Tumors Ministry of Education, China, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- ZJU-Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, 310058, China
| |
Collapse
|
4
|
Song R, Tan J, Cen J, Li Z, Zhang Y, Hou M, Li R, Tang L, Hu J, Liu S. Optimizing Surface Maleimide/cRGD Ratios Enhances Targeting Efficiency of cRGD-Functionalized Nanomedicines. J Am Chem Soc 2025; 147:2889-2901. [PMID: 39780364 DOI: 10.1021/jacs.4c17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αvβ3, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood. In this study, we investigate how varying MI/cRGD ratios affect the biological fate of cRGD-functionalized nanomedicines. Using a model system of nanomedicines self-assembled from phthalocyanine derivatives and PEG-PLA block copolymers, we demonstrate that an optimized cRGD/MI ratio can markedly alter the protein corona composition, leading to increased albumin adsorption, while MI-free cRGD-functionalized nanomedicines attract immunoglobulins and complement proteins. Our findings reveal that higher cRGD densities, contrary to expectations, do not enhance tumor targeting but instead promote sequestration in the liver and spleen. However, the presence of MI moieties can significantly mitigate this sequestration of cRGD-functionalized nanomedicines by promoting the formation of an albumin-rich protein corona on nanomedicines. These insights highlight the capacity of MI moieties in improving the targeting and therapeutic effects of cRGD-functionalized nanomedicines, providing refined strategies to maximize the efficacy of nanomedicines while minimizing off-target effects.
Collapse
Affiliation(s)
- Rundi Song
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Ziwei Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Mingxuan Hou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Runjie Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| |
Collapse
|
5
|
Liang N, Zhao W, Li S, Li X, Liu Z, Jiang K, Sun S. Tumor targeting pH-triggered fluorescence-switchable hyaluronic acid-based micelles with aggregation-induced emission activity for tracing drug release and intelligent drug delivery. Int J Biol Macromol 2024; 277:134386. [PMID: 39111498 DOI: 10.1016/j.ijbiomac.2024.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
In this study, an amphiphilic polymer (Bio-HA(TPE-CN)-mPEG) was designed and synthesized, which was fabricated by introducing hydrophobic aggregation-induced emission (AIE) fluorophore, acid-labile imine bond, methoxy poly (ethylene glycol) (mPEG) and tumor targeting ligand biotin to the backbone of hyaluronic acid. The polymer could self-assemble into micelles and solubilize hydrophobic anticancer drugs. In vitro drug release study indicated that the micelles could disassemble rapidly under acidic environment. The involvement of biotin and HA could enhance the cellular uptake of micelles by tumor cells. Modification of micelles by mPEG could minimize non-specific protein adsorption. Fluorescence studies indicated that the micelles exhibited excellent AIE features and emitted intense long-wavelength fluorescence. More excitingly, the micelles were red emissive in the normal physiological environment, but switched to blue fluorescence in the acidic tumor environment, which could be further applied for real-time monitoring and quantification of the drug release. The in vivo antitumor efficacy study demonstrated the superior antitumor activity of the PTX-loaded micelles. The Bio-HA(TPE-CN)-mPEG micelles were promising drug carriers for chemotherapy and bioimaging.
Collapse
Affiliation(s)
- Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Wei Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Siyi Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoxin Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Zhenrong Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Kun Jiang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
6
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Bag S, Gadpayle MP, Ghosh D, Maiti S, De P. Biotinylated Theranostic Amphiphilic Polyurethane for Targeted Drug Delivery. Biomacromolecules 2024; 25:4233-4245. [PMID: 38838045 DOI: 10.1021/acs.biomac.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In the area of drug delivery aided by stimuli-responsive polymers, the biodegradability of nanocarriers is one of the major challenges that needs to be addressed with the utmost sincerity. Herein, a hydrogen sulfide (H2S) responsive hydrophobic dansyl-based trigger molecule is custom designed and successfully incorporated into the water-soluble polyurethane backbone, which is made of esterase enzyme susceptible urethane bonds. The amphiphilic polyurethanes, PUx (x = 2 and 3) with a biotin chain end, formed self-assembled nanoaggregates. A hemolysis and cytotoxicity profile of doxorubicin (DOX)-loaded biotinylated PU3 nanocarriers revealed that it is nonhemolytic and has excellent selectivity toward HeLa cells (biotin receptor-positive cell lines) causing ∼60% cell death while maintaining almost 100% cell viability for HEK 293T cells (biotin receptor-negative cell lines). Furthermore, better cellular internalization of DOX-loaded fluorescent nanocarriers in HeLa cells than in HEK 293T cells confirmed receptor-mediated endocytosis. Thus, this work ensures that the synthesized polymers serve as biodegradable nanocarriers for anticancer therapeutics.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| |
Collapse
|
8
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
9
|
Chen X, Xia D, Zeng X, Meng L, Wang Y, Li H, Zhang J, Zhao Z, Zhuang R, Fang J, Zhang X, Guo Z. Rational Design and Pharmacomodulation of 18F-Labeled Biotin/FAPI-Conjugated Heterodimers. J Med Chem 2024; 67:8361-8371. [PMID: 38726551 DOI: 10.1021/acs.jmedchem.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Due to the complex heterogeneity in different cancer types, the heterodimeric strategy has been intensively practiced to improve the effectiveness of tumor diagnostics. In this study, we developed a series of novel 18F-labeled biotin/FAPI-conjugated heterobivalent radioligands ([18F]AlF-NSFB, [18F]AlF-NSFBP2, and [18F]AlF-NSFBP4), synergistically targeting both fibroblast activation protein (FAP) and biotin receptor (BR), to enhance specific tumor uptake and retention. The in vitro and in vivo biological properties of these dual-targeting tracers were evaluated, with a particular focus on positron emission tomography imaging in A549 and HT1080-FAP tumor-bearing mice. Notably, in comparison to the corresponding FAP-targeted monomer [18F]AlF-NSF, biotin/FAPI-conjugated heterodimers exhibited a high uptake in tumor and prolong retention. In conclusion, as a proof-of-concept study, the findings validated the superiority of biotin/FAPI-conjugated heterodimers and the positive influence of biotin and linker on pharmacokinetics of radioligands. Within them, the bispecific [18F]AlF-NSFBP4 holds significant promise as a candidate for further clinical translational studies.
Collapse
Affiliation(s)
- Xuedong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Dongsheng Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xueyuan Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yanjie Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Huifeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jingru Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
10
|
Morrow JP, Mazrad ZAI, Warne NM, Ayton S, Bush AI, Kempe K. Schiff-Base Cross-Linked Poly(2-oxazoline) Micelle Drug Conjugates Possess Antiferroptosis Activity in Numerous In Vitro Cell Models. Biomacromolecules 2024; 25:1068-1083. [PMID: 38178625 DOI: 10.1021/acs.biomac.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h. CCM Fer-1 conjugates demonstrated excellent ferroptosis rescue by their antilipid peroxidation activity in a diverse set of cell lines in vitro. Additionally, CCMs showed tunable cell association in SH-SY5Y and translocation across an in vitro blood-brain barrier (BBB) model, highlighting potential brain disease applications. Overall, here, we present a polymeric Fer-1 delivery system to enhance Fer-1 action, which could help in improving Fer-1 action in the treatment of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zihnil A I Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicole M Warne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
11
|
Shalmani AA, Ahmed Z, Sheybanifard M, Wang A, Weiler M, Buhl EM, Klinkenberg G, Schmid R, Hennink W, Kiessling F, Metselaar JM, Lammers T, Peña Q, Shi Y. Effect of Radical Polymerization Method on Pharmaceutical Properties of Π Electron-Stabilized HPMA-Based Polymeric Micelles. Biomacromolecules 2023; 24:4444-4453. [PMID: 36753733 DOI: 10.1021/acs.biomac.2c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Polymeric micelles are among the most extensively used drug delivery systems. Key properties of micelles, such as size, size distribution, drug loading, and drug release kinetics, are crucial for proper therapeutic performance. Whether polymers from more controlled polymerization methods produce micelles with more favorable properties remains elusive. To address this question, we synthesized methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers of three different comparable molecular weights (∼9, 13, and 20 kDa), via both conventional free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were subsequently employed to prepare empty and paclitaxel-loaded micelles. While FR polymers had relatively high dispersities (Đ ∼ 1.5-1.7) compared to their RAFT counterparts (Đ ∼ 1.1-1.3), they formed micelles with similar pharmaceutical properties (e.g., size, size distribution, critical micelle concentration, cytotoxicity, and drug loading and retention). Our findings suggest that pharmaceutical properties of mPEG-b-p(HPMAm-Bz) micelles do not depend on the synthesis route of their constituent polymers.
Collapse
Affiliation(s)
- Armin Azadkhah Shalmani
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Zaheer Ahmed
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Maryam Sheybanifard
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital, 52074 Aachen, Germany
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034, Trondheim, Norway
| | - Ruth Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034, Trondheim, Norway
| | - Wim Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Josbert M Metselaar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
12
|
de Morais FAP, Balbinot RB, Bakoshi ABK, Lazarin-Bidoia D, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Ueda-Nakamura T, de Oliveira Silva S, Caetano W, Nakamura CV. Advanced theranostic nanoplatforms for hypericin delivery in the cancer treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112782. [PMID: 37660488 DOI: 10.1016/j.jphotobiol.2023.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Biomodified coated-lipid vesicles were obtained using the DPPC lipid (L) and F127 copolymer linked covalently with spermine (SN), biotin (BT), and folic acid (FA), resulting in LF127-SN, LF127-BT, and LF127-FA nanoplatforms. The photosensitizer hypericin (HY) was incorporated into the nanosystem by a thin-film method and characterized by dynamic light scattering, zeta potential, encapsulation efficiency, and transmission electronic microscopy. The results provided a good level of stability for all nanoplatforms for at least 5 days as an aqueous dispersion. The in vitro serum stability showed that the HY-loaded LF127-SN has a lower tendency to form complexes with BSA protein than with its analogs. LF127-SN was the most stable HY formulation, followed by LF127-BT and LF127-FA, confirmed by the association constant (Kd) values: 600 μmol L-1, 1100 μmol L-1, 515 μmol L-1, and 378 μmol L-1 for LF127, LF127 FA, LF127-BT, and LF127-SN, respectively. The photodynamic potential of HY was accessed by cytotoxicity assays using Caco-2, B16-F10, L-929, and HaCat cells. HY-loaded LF127-SN revealed a significant increase in the selectivity compared to other nanoplatforms. HY-loaded in LF127-BT and LF127-SN showed distinct uptake and biodistribution after 2 h of intravenous application. All biomodified coated-lipids showed satisfactory metabolism within 72 h after application, without significant accumulation or residue in any vital organ. These results suggest that incorporating HY-loaded in these nanosystems may be a promising strategy for future applications, even with a small amount of binders to the coating copolymer (0.02% w/v). Furthermore, these results indicate that the LF127-SN showed remarkable superiority compared to other evaluated systems, being the most distinct for future photodynamic therapy and theranostic applications.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil.
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
13
|
Rani S, Sahoo RK, Mahale A, Panchal K, Chaurasiya A, Kulkarni O, Kuche K, Jain S, Nakhate KT, Ajazuddin, Gupta U. Sialic Acid Engineered Prodrug Nanoparticles for Codelivery of Bortezomib and Selenium in Tumor Bearing Mice. Bioconjug Chem 2023; 34:1528-1552. [PMID: 37603704 DOI: 10.1021/acs.bioconjchem.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Most cancer patients rarely benefit from monodrug therapy because of both cancer complexity and tumor environment. One of the main reasons for this failure is insufficient accumulation of the optimal dose at the tumorous site. Our investigation implies a promising strategy to engineer prodrug nanoparticles (NPs) of bortezomib (BTZ) and selenium (Se) using sialic acid (SAL) as a ligand to improve breast cancer therapy. BTZ was conjugated with SAL and HPMA (N-2-hydroxypropyl methacrylamide) to prepare a prodrug conjugate; BTZ-SAL-HPMA (BSAL-HP) and then fabricated into prodrug NPs with Se (Se_BSAL-HP prodrug NPs). The self-assembly of prodrug NPs functionalized with Se showed size (204.13 ± 0.02 nm) and zeta potential (-31.0 ± 0.11 mV) in dynamic light scattering (DLS) experiments and spherical shape in TEM and SEM analysis. Good stability and low pH drug release profile were characterized by Se_BSAL-HP prodrug NPs. The tumor-selective boronate-ester-based prodrug NPs of BTZ in combination with Se endowed a synergistic effect against cancer cells. Compared to prodrug conjugate, Se_BSAL-HP prodrug NPs exhibited higher cell cytotoxicity and enhanced cellular internalization with significant changes in mitochondria membrane potential (MMP). Elevated apoptosis was observed in the (G2/M) phase of the cell cycle for Se_BSAL-HP prodrug NPs (2.7-fold) higher than BTZ. In vivo studies were performed on Sprague-Dawley rats and resulted in positive trends. The increased therapeutic activity of Se_BSAL-HP prodrug NPs inhibited primary tumor growth and showed 43.05 fold decrease in tumor volume than the control in 4T1 tumor bearing mice. The surprising and remarkable outcomes for Se_BSAL-HP prodrug NPs were probably due to the ROS triggering effect of boronate ester and selenium given together.
Collapse
Affiliation(s)
- Sarita Rani
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rakesh K Sahoo
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Telangana 500078, India
| | - Kaushik Kuche
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar Campus, Sector-67, Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar Campus, Sector-67, Punjab 160062, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
14
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Pereira L, Ferreira FC, Pires F, Portugal CAM. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules-An Insight into the Release Kinetics. MEMBRANES 2023; 13:674. [PMID: 37505040 PMCID: PMC10385637 DOI: 10.3390/membranes13070674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e., DPPC:FA liposomes, into gelatin hydrogel membranes containing dispersed iron oxide nanoparticles (MNPs), i.e., magnetic-responsive gelatin. The FA release mechanisms and kinetics from magnetic-responsive liposomal gelatin were studied and compared with those obtained with conventional drug delivery systems, e.g., free liposomal suspensions and hydrogel matrices, to access the effect of liposome entrapment and magnetic field on FA delivery. FA release from liposomal gelatin membranes was well described by the Korsmeyer-Peppas model, indicating that FA release occurred under a controlled diffusional regime, with or without magnetic stimulation. DPPC:FA liposomal gelatin systems provided smoother controlled FA release, relative to that obtained with the liposome suspensions and with the hydrogel platforms, suggesting the promising application of liposomal hydrogel systems in longer-term therapeutics. The magnetic field, with low intensity (0.08 T), was found to stimulate the FA release from magnetic-responsive liposomal gelatin systems, increasing the release rates while shifting the FA release to a quasi-Fickian mechanism. The magnetic-responsive liposomal hydrogels developed in this work offer the possibility to magnetically activate drug release from these liposomal platforms based on a non-thermal related delivery strategy, paving the way for the development of novel and more efficient applications of MLVs and liposomal delivery systems in biomedicine.
Collapse
Affiliation(s)
- Luís Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipa Pires
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla A M Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
16
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
17
|
Zhang Y, Zhou J, Chen X, Li Z, Gu L, Pan D, Zheng X, Zhang Q, Chen R, Zhang H, Gong Q, Gu Z, Luo K. Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy. J Control Release 2023; 356:525-541. [PMID: 36918084 DOI: 10.1016/j.jconrel.2023.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Interaction between carcinoma-associated fibroblasts (CAFs) and tumor cells leads to the invasion and metastasis of breast cancer. Herein, we prepared a redox-responsive chondroitin sulfate (CS)-based nanomedicine, in which hydrophobic cabazitaxel (CTX) was conjugated to the backbone of CS via glutathione (GSH)-sensitive dithiomaleimide (DTM) to form an amphipathic CS-DTM-CTX (CDC) conjugate, and dasatinib (DAS) co-assembled with the CDC conjugate to obtain DAS@CDC. After CD44 receptor-mediated internalization by CAFs, the nanomedicine could reverse CAFs to normal fibroblasts, blocking their crosstalk with tumor cells and reducing synthesis of major tumor extracellular matrix proteins, including collagen and fibronectin. Meanwhile, the nanomedicine internalized by tumor cells could effectively inhibit tumor proliferation and metastasis, leading to shrinkage of the tumor volume and inhibition of lung metastasis in a subcutaneous 4T1 tumor model with low side effects. Collectively, the nanomedicine showed a remarkably synergistic therapy effect against breast cancer by modulating tumor-stromal crosstalk.
Collapse
Affiliation(s)
- Yuxin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianfeng Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
18
|
Song X, Feng Z, Peng Y, Yu S, Du X, Huang P, Wang W, Xing J. Nanogels co-loading paclitaxel and curcumin prepared in situ through photopolymerization at 532 nm for synergistically suppressing breast tumors. J Mater Chem B 2023; 11:1798-1807. [PMID: 36727624 DOI: 10.1039/d2tb02254k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) in situ by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.2) presents a controlled and cumulative release of PTX and Cur within 90 h. Moreover, NG-PC displays a remarkable killing effect against 4T1 and MCF-7 cells. In vivo antitumor evaluation on 4T1 tumor-bearing mice demonstrates that NG-PC has significantly higher ability to inhibit tumor growth, inducing necrosis, apoptosis and suppression of proliferation than that of a single drug. Our research provides a facile method to prepare a nano-drug delivery platform with excellent drug co-loading ability and synergistic antitumor effect.
Collapse
Affiliation(s)
- Xiaoyan Song
- Tiangong University, School of Material Science and Engineering, Tianjin 300387, P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
19
|
de Morais FAP, De Oliveira ACV, Balbinot RB, Lazarin-Bidóia D, Ueda-Nakamura T, de Oliveira Silva S, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Caetano W, Nakamura CV. Multifunctional Nanoparticles as High-Efficient Targeted Hypericin System for Theranostic Melanoma. Polymers (Basel) 2022; 15:polym15010179. [PMID: 36616529 PMCID: PMC9824163 DOI: 10.3390/polym15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Biotin, spermine, and folic acid were covalently linked to the F127 copolymer to obtain a new drug delivery system designed for HY-loaded PDT treatment against B16F10 cells. Chemical structures and binders quantification were performed by spectroscopy and spectrophotometric techniques (1NMR, HABA/Avidin reagent, fluorescamine assay). Critical micelle concentration, critical micelle temperature, size, polydispersity, and zeta potential indicate the hydrophobicity of the binders can influence the physicochemical parameters. Spermine-modified micelles showed fewer changes in their physical and chemical parameters than the F127 micelles without modification. Furthermore, zeta potential measurements suggest an increase in the physical stability of these carrier systems. The phototherapeutic potential was demonstrated using hypericin-loaded formulation against B16F10 cells, which shows that the combination of the binders on F127 copolymer micelles enhances the photosensitizer uptake and potentializes the photodynamic activity.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| | | | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| |
Collapse
|
20
|
Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Annala A, Ilochonwu BC, Wilbie D, Sadeghi A, Hennink WE, Vermonden T. Self-Healing Thermosensitive Hydrogel for Sustained Release of Dexamethasone for Ocular Therapy. ACS POLYMERS AU 2022; 3:118-131. [PMID: 36785837 PMCID: PMC9912331 DOI: 10.1021/acspolymersau.2c00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to develop an injectable hydrogel delivery system for sustained ocular delivery of dexamethasone. To this end, a self-healing hydrogel consisting of a thermosensitive ABA triblock copolymer was designed. The drug was covalently linked to the polymer by copolymerization of methacrylated dexamethasone with N-isopropylacrylamide (NIPAM) and N-acryloxysuccinimide (NAS) through reversible addition-fragmentation chain transfer (RAFT) polymerization, using poly(ethylene glycol) (PEG) functionalized at both ends with a chain transfer agent (CTA). Hydrogel formation was achieved by mixing aqueous solutions of the formed thermosensitive polymer (with a cloud point of 23 °C) with cystamine at 37 °C, to result in covalent cross-linking due to the reaction of the N-hydroxysuccimide (NHS) functionality of the polymer and the primary amines of cystamine. Rheological analysis showed both thermogelation and covalent cross-linking at 37 °C, as well as the self-healing properties of the formed network, which was attributed to the presence of disulfide bonds in the cystamine cross-links, making the system injectable. The release of dexamethasone from the hydrogel occurred through ester hydrolysis following first-order kinetics in an aqueous medium at pH 7.4 over 430 days at 37 °C. Based on simulations, administration of 100 mg of hydrogel would be sufficient for maintaining therapeutic levels of dexamethasone in the vitreous for at least 500 days. Importantly, dexamethasone was released from the hydrogel in its native form as determined by LC-MS analysis. Cytocompatibility studies showed that at clinically relevant concentrations, both the polymer and the cross-linker were well tolerated by adult retinal pigment epithelium (ARPE-19) cells. Moreover, the hydrogel did not show any toxicity to ARPE-19 cells. The injectability of the hydrogel, together with the long-lasting release of dexamethasone and good cytocompatibility with a retinal cell line, makes this delivery system an attractive candidate for treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Ada Annala
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Blessing C. Ilochonwu
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Danny Wilbie
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Amir Sadeghi
- School
of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands,
| |
Collapse
|
22
|
Wang C, Li Y, Tian Y, Ma W, Sun Y. Effects of polymer carriers on the occurrence and development of autophagy in drug delivery. NANOSCALE ADVANCES 2022; 4:3676-3688. [PMID: 36133340 PMCID: PMC9470016 DOI: 10.1039/d2na00355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Autophagy is an evolutionarily conserved catabolic process that can degrade cytoplasmic materials and recycle energy to maintain metabolite homeostasis in cells. Autophagy is closely related to various physiological or pathological processes. Macromolecular materials are widely used in drug delivery systems and disease treatments due to their intrinsic effects, such as altered pharmacokinetics and biodistribution. Interaction of autophagic flux or the signal pathway with macromolecules may cause autophagy inhibition or autophagy cell death. This review covers autophagy regulation pathways and macromolecular materials (including functional micelles, biodegradable and pH-sensitive polymers, biomacromolecules, dendrimers, coordination polymers, and hybrid nanoparticles) mediated autophagy modulation.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Yang Li
- Department of Pharmacy, Qingdao Municipal Hospital Qingdao 266000 China
| | - Yu Tian
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Wenyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| |
Collapse
|
23
|
Questionable micelle formation of the double hydrophilic block copolymer PEG-pHPMA. Int J Pharm 2022; 626:122147. [PMID: 36058772 DOI: 10.1016/j.ijpharm.2022.122147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Zhang D, Liu L, Wang J, Zhang H, Zhang Z, Xing G, Wang X, Liu M. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front Pharmacol 2022; 13:990505. [PMID: 36059964 PMCID: PMC9437283 DOI: 10.3389/fphar.2022.990505] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Nanoparticles based on single-component synthetic polymers, such as poly (lactic acid-co-glycolic acid) (PLGA), have been extensively studied for antitumor drug delivery and adjuvant therapy due to their ability to encapsulate and release drugs, as well as passively target tumors. Amphiphilic block co-polymers, such as polyethylene glycol (PEG)-PLGA, have also been used to prepare multifunctional nanodrug delivery systems with prolonged circulation time and greater bioavailability that can encapsulate a wider variety of drugs, including small molecules, gene-targeting drugs, traditional Chinese medicine (TCM) and multi-target enzyme inhibitors, enhancing their antitumor effect and safety. In addition, the surface of PEG-PLGA nanoparticles has been modified with various ligands to achieve active targeting and selective accumulation of antitumor drugs in tumor cells. Modification with two ligands has also been applied with good antitumor effects, while the use of imaging agents and pH-responsive or magnetic materials has paved the way for the application of such nanoparticles in clinical diagnosis. In this work, we provide an overview of the synthesis and application of PEG-PLGA nanoparticles in cancer treatment and we discuss the recent advances in ligand modification for active tumor targeting.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Pharmaceutical Department of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hong Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Gang Xing
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuan Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Xuan Wang, ; Minghua Liu,
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Xuan Wang, ; Minghua Liu,
| |
Collapse
|
25
|
Xu Y, Liang N, Liu J, Gong X, Yan P, Sun S. Design and fabrication of chitosan-based AIE active micelles for bioimaging and intelligent delivery of paclitaxel. Carbohydr Polym 2022; 290:119509. [PMID: 35550783 DOI: 10.1016/j.carbpol.2022.119509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
In this study, cetyl 4-formylbenzoate alkyl and 4-(2-hydroxyethoxy) benzophenonesalicylaldazide modified biotinylated chitosan (CS-BT-HBS-CB) featured with aggregation-induced emission (AIE) characteristic, active tumor-targeting ability and pH-responsive drug release property was designed and synthesized. The polymer was fabricated by introducing hydrophobic segment, tumor targeting ligand, acid-sensitive bond and AIE fluorophore to the backbone of chitosan. Due to its amphiphilicity, the polymer could self-assemble into micelles and encapsulate paclitaxel (PTX) to form PTX-loaded CS-BT-HBS-CB micelles. The mean size of the micelles was 167 nm, which was beneficial to the EPR effect. Moreover, with the help of above functional groups, the micelles exhibited excellent AIE effect, triggered drug release behavior by acidic condition, selective internalization by MCF-7 cells and excellent cellular imaging capability. In vivo studies revealed that the PTX-loaded CS-BT-HBS-CB micelles could enhance the antitumor efficacy with low systemic toxicity. This micellar system would be a potential candidate for cancer therapy and bioimaging.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Jiyang Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xianfeng Gong
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
26
|
Wang Y, Fens MH, van Kronenburg NCH, Shi Y, Lammers T, Heger M, van Nostrum CF, Hennink WE. Magnetic beads for the evaluation of drug release from biotinylated polymeric micelles in biological media. J Control Release 2022; 349:954-962. [PMID: 35931210 DOI: 10.1016/j.jconrel.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
To improve the reliability of in vitro release studies of drug delivery systems, we developed a novel in vitro method for the evaluation of drug release from polymeric micelles in complex biological media. Polymeric micelles based on poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) of which 10% of the chains was functionalized with biotin at the p(HPMAm) terminus were prepared using a solvent extraction method. The size of the micelles when loaded with a hydrophobic agent, namely paclitaxel (a clinically used cytostatic drug) or curcumin (a compound with multiple pharmacological activities), was around 65 nm. The biotin decoration allowed the binding of the micelles to streptavidin-coated magnetic beads which occurred within 10 min and reached a binding efficiency of 90 ± 6%. Drug release in different media was studied after the magnetic separation of micelles bound to the streptavidin-coated beads, by determination of the released drug in the media as well as the retained drug in the micellar fraction bound to the beads. The in vitro release of paclitaxel and curcumin at 37 °C in PBS, PBS containing 2% v/v Tween 80, PBS containing 4.5% w/v bovine serum albumin, mouse plasma, and whole mouse blood was highly medium-dependent. In all media studied, paclitaxel showed superior micellar retention compared to curcumin. Importantly, the presence of serum proteins accelerated the release of both paclitaxel and curcumin. The results presented in this study show great potential for predicting drug release from nanomedicines in biological media which in turn is crucial for their further pharmaceutical development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, 52074 Aachen, Germany
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands; Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
27
|
Biomanufacturing Biotinylated Magnetic Nanomaterial via Construction and Fermentation of Genetically Engineered Magnetotactic Bacteria. Bioengineering (Basel) 2022; 9:bioengineering9080356. [PMID: 36004881 PMCID: PMC9404834 DOI: 10.3390/bioengineering9080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Biosynthesis provides a critical way to deal with global sustainability issues and has recently drawn increased attention. However, modifying biosynthesized magnetic nanoparticles by extraction is challenging, limiting its applications. Magnetotactic bacteria (MTB) synthesize single-domain magnetite nanocrystals in their organelles, magnetosomes (BMPs), which are excellent biomaterials that can be biologically modified by genetic engineering. Therefore, this study successfully constructed in vivo biotinylated BMPs in the MTB Magnetospirillum gryphiswaldense by fusing biotin carboxyl carrier protein (BCCP) with membrane protein MamF of BMPs. The engineered strain (MSR−∆F−BF) grew well and synthesized small-sized (20 ± 4.5 nm) BMPs and were cultured in a 42 L fermenter; the yield (dry weight) of cells and BMPs reached 8.14 g/L and 134.44 mg/L, respectively, approximately three-fold more than previously reported engineered strains and BMPs. The genetically engineered BMPs (BMP−∆F−BF) were successfully linked with streptavidin or streptavidin-labelled horseradish peroxidase and displayed better storage stability compared with chemically constructed biotinylated BMPs. This study systematically demonstrated the biosynthesis of engineered magnetic nanoparticles, including its construction, characterization, and production and detection based on MTB. Our findings provide insights into biomanufacturing multiple functional magnetic nanomaterials.
Collapse
|
28
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
29
|
Peng Y, Yu S, Wang Z, Huang P, Wang W, Xing J. Nanogels loading curcumin in situ through microemulsion photopolymerization for enhancement of antitumor effects. J Mater Chem B 2022; 10:3293-3302. [PMID: 35380157 DOI: 10.1039/d2tb00035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Drug-loaded nanogels for cancer treatment can limit the free diffusion and distribution of drug molecules in the whole body to reduce undesirable side effects and improve the drug absorption efficiency of the tumor. In this study, curcumin as a model drug was encapsulated into nanogels in situ through microemulsion photopolymerization at 532 nm. Nanogels loaded with curcumin (NG-C) displayed a diameter of around 150 nm with good stability and a low polydispersity index of around 0.1. NG-C had a drug-loading capacity of 8.96 ± 1.16 wt%. The cumulative release of curcumin from NG-C was around 25%, 34% and 55% within 90 h in pH 7.4, 6.8 and 5.0 PBS buffer, respectively. NG-C presented prominent cytotoxicity toward Hep G2 and HeLa cancer cells in vitro. Moreover, NG-C exhibited much a stronger inhibition of tumor growth, necrosis, apoptosis, and the suppression of proliferation compared with curcumin on Hep G2 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Zhen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
30
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
31
|
Ameli H, Alizadeh N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Adv 2022; 12:4681-4691. [PMID: 35425510 PMCID: PMC8981441 DOI: 10.1039/d1ra07791k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Nano polymeric micelles (nano PMs) help to increase accessibility to tumor sites, decrease side effects and allow controlled drug dissemination over a long period of time. The aim of this study was to optimize the delivery of the anticancer drug capecitabine (CAP) using nano PMs and cyclodextrin (CD) to allow the treatment of colon cancer. A pH-responsive copolymer was prepared and the variables of loading time, loading temperature, the amount of copolymer and also the ratio of acrylic/maleic copolymer to beta CD and the effect that these variables have on drug loading were investigated, with variable optimization studies carried out following a definitive screening design (DSD). The morphology and structure of the particles were determined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. In vitro drug release exemplified that the micelles were pH-sensitive, this action was shown that firstly the drug release was done perfectly targeted and under control and secondly the drug has been released above 80% inside the colon. Nano polymeric micelles (nano PMs) help to increase accessibility to tumor sites, decrease side effects and allow controlled drug dissemination over a long period of time.![]()
Collapse
Affiliation(s)
- Hossein Ameli
- Department of Chemistry, Faculty of Science, University of Guilan P.B. 41335-1914 Rasht Iran
| | - Nina Alizadeh
- Department of Chemistry, Faculty of Science, University of Guilan P.B. 41335-1914 Rasht Iran
| |
Collapse
|
32
|
Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022; 342:280-294. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Malignant tumor is still a leading threat to human health. Despite the rapid development of targeted therapeutic strategies, any treatment specifically acting on single target would inevitably suffer from tumor resistance, largely due to the genetic instability and variability of tumor cells. Thus, traditional therapies such as broad-spectrum chemotherapy would certainly occupy an important position in clinical cancer therapy. Nevertheless, most chemotherapeutic drugs have long been criticized for unsatisfactory therapeutic efficacy with severe off-target toxicity. Although several chemotherapeutic nanomedicines with improved therapeutic safety have been applied in clinics, the therapeutic outcomes still do not fulfill expectation. To address this challenge, enormous efforts have been devoted to developing novel nano-formulations for efficient delivery of chemotherapeutic drugs. Herein, we aim to outline the latest progression in the emerging nanomedicines of paclitaxel (PTX), with special attention to the functional nanocarriers, self-delivering prodrug-nanoassemblies and combination nanotherapeutics of PTX. Finally, the challenges and opportunities of these functional PTX nanomedicines in clinical translation are spotlighted.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China.
| | - Shu Xu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Shuo Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Yue Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| |
Collapse
|
33
|
Wang Y, Thies-Weesie DM, Bosman ED, van Steenbergen MJ, van den Dikkenberg J, Shi Y, Lammers T, van Nostrum CF, Hennink WE. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343:338-346. [DOI: 10.1016/j.jconrel.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
34
|
Preparation of Cationic Amphiphilic Nanoparticles with Modified Chitosan Derivatives for Doxorubicin Delivery. MATERIALS 2021; 14:ma14227010. [PMID: 34832408 PMCID: PMC8623570 DOI: 10.3390/ma14227010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Polymeric micelle-like nanoparticles have demonstrated effectiveness for the delivery of some poorly soluble or hydrophobic anticancer drugs. In this study, a hydrophobic moiety, deoxycholic acid (DCA) was first bonded on a polysaccharide, chitosan (CS), for the preparation of amphiphilic chitosan (CS-DCA), which was further modified with a cationic glycidyltrimethylammounium chloride (GTMAC) to form a novel soluble chitosan derivative (HT-CS-DCA). The cationic amphiphilic HT-CS-DCA was easily self-assembled to micelle-like nanoparticles about 200 nm with narrow size distribution (PDI 0.08–0.18). The zeta potential of nanoparticles was in the range of 14 to 24 mV, indicating higher positive charges. Then, doxorubicin (DOX), an anticancer drug with poor solubility, was entrapped into HT-CS-DCA nanoparticles. The DOX release test was performed in PBS (pH 7.4) at 37 °C, and the results showed that there was no significant burst release in the first two hours, and the cumulative release increased steadily and slowly in the following hours. HT-CS-DCA nanoparticles loaded with DOX could easily enter into MCF-7 cells, as observed by a confocal microscope. As a result, DOX-loaded HT-CS-DCA nanoparticles demonstrated a significant inhibition activity on MCF-7 growth without obvious cellular toxicity in comparison with blank nanoparticles. Therefore, the anticancer efficacy of these cationic HT-CS-DCA nanoparticles showed great promise for the delivery of DOX in cancer therapy.
Collapse
|
35
|
Zhou Y, Lin B, Li K, Zhao Y, Sun Z, He C, Jha RK. Preparation of Near-Infrared/Photoacoustic Dual-Mode Imaging and Photothermal/Chemo Synergistic Theranostic Nanoparticles and Their Imaging and Treating of Hepatic Carcinoma. Front Oncol 2021; 11:750807. [PMID: 34604095 PMCID: PMC8485585 DOI: 10.3389/fonc.2021.750807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 01/27/2023] Open
Abstract
At present, the clinical diagnosis of and treatment methods for hepatic carcinoma still fail to fully meet the needs of patients. The integrated theranostic system, in which functional materials are used to load different active molecules, created a new developmental direction for the combination treatment of hepatic carcinoma, realizing the synchronization of diagnosis and treatment. In this study, polydopamine (PDA), which has the functions of self-assembly, encapsulation, photothermal conversion, and photoacoustic interaction, was used as the carrier material. The IR780, a near-infrared fluorescence imaging (NIFI), photoacoustic imaging (PAI), and photothermal therapy (PTT) agent, and paclitaxel (PTX), a broad-spectrum chemotherapy drug, were selected to build the NIF/PA dual-mode imaging and PTT/chemo synergistic theranostic nanoparticles (DIST NPs). The DIST NPs have a 103.4 ± 13.3 nm particle size, a weak negative charge on the surface, good colloidal stability, slow and controlled drug release, and high photothermal conversion ability. The experiments results showed that the DIST NPs have a long circulation in vivo, high bioavailability, high biocompatibility, and low effective dose. DIST NPs showed an excellent NIFI/PAI dual-mode imaging and significant synergistic antitumor effect in hepatic carcinoma models. DIST NPs met the initial design requirements. A set of fast and low-cost preparation methods was established. This study provides an experimental basis for the development of new clinical theranostic methods for hepatic carcinoma.
Collapse
Affiliation(s)
- Yun Zhou
- College of Clinical Medicine, Xi'an Medical University, Xi’an, China
| | - Bixia Lin
- College of Pharmacy, Xi'an Medical University, Xi’an, China
| | - Kai Li
- College of Clinical Medicine, Xi'an Medical University, Xi’an, China
| | - Yufeng Zhao
- Department of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Zhuo Sun
- Department of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Chenchen He
- Department of Radiation Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rajiv Kumar Jha
- College of Clinical Medicine, Xi'an Medical University, Xi’an, China
| |
Collapse
|
36
|
Biotinylated chitosan macromolecule based nanosystems: A review from chemical design to biological targets. Int J Biol Macromol 2021; 188:82-93. [PMID: 34363823 DOI: 10.1016/j.ijbiomac.2021.07.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
World Health Organization estimates that 30-50% of cancers are preventable by healthy lifestyle choices, early detection and adequate therapy. When the conventional therapeutic strategies are still regulated by the lack of selectivity, multidrug resistance and severe toxic side effects, nanotechnology grants a new frontier for cancer management since it targets cancer cells and spares healthy tissues. This review highlights recent studies using biotin molecule combined with functional nanomaterials used in biomedical applications, with a particular attention on biotinylated chitosan-based nanosystems. Succinctly, this review focuses on five areas of recent advances in biotin engineering: (a) biotin features, (b) biotinylation approaches, (c) biotin functionalized chitosan based nanosystems for drug and gene delivery functions, (d) diagnostic and theranostic perspectives, and (e) author's inputs to the biotin-chitosan based tumour-targeting drug delivery structures. Precisely engineered biotinylated-chitosan macromolecules shaped into nanosystems are anticipated to emerge as next-generation platforms for treatment and molecular imaging modalities applications.
Collapse
|
37
|
Ursachi VC, Dodi G, Rusu AG, Mihai CT, Verestiuc L, Balan V. Paclitaxel-Loaded Magnetic Nanoparticles Based on Biotinylated N-Palmitoyl Chitosan: Synthesis, Characterization and Preliminary In Vitro Studies. Molecules 2021; 26:molecules26113467. [PMID: 34200350 PMCID: PMC8201305 DOI: 10.3390/molecules26113467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
A considerable interest in cancer research is represented by the development of magnetic nanoparticles based on biofunctionalized polymers for controlled-release systems of hydrophobic chemotherapeutic drugs targeted only to the tumor sites, without affecting normal cells. The objective of the paper is to present the synthesis and in vitro evaluation of the nanocomposites that include a magnetic core able to direct the systems to the target, a polymeric surface shell that provides stabilization and multi-functionality, a chemotherapeutic agent, Paclitaxel (PTX), and a biotin tumor recognition layer. To our best knowledge, there are no studies concerning development of magnetic nanoparticles obtained by partial oxidation, based on biotinylated N-palmitoyl chitosan loaded with PTX. The structure, external morphology, size distribution, colloidal and magnetic properties analyses confirmed the formation of well-defined crystalline magnetite conjugates, with broad distribution, relatively high saturation magnetization and irregular shape. Even if the ability of the nanoparticles to release the drug in 72 h was demonstrated, further complex in vitro and in vivo studies will be performed in order to validate the magnetic nanoparticles as PTX delivery system.
Collapse
Affiliation(s)
- Vlad Constantin Ursachi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (V.C.U.); (L.V.)
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (G.D.); (C.T.M.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (G.D.); (C.T.M.)
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Cosmin Teodor Mihai
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (G.D.); (C.T.M.)
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (V.C.U.); (L.V.)
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (V.C.U.); (L.V.)
- Correspondence: ; Tel.: +40-232-213573
| |
Collapse
|
38
|
Mthimkhulu NP, Mosiane KS, Nweke EE, Balogun M, Fru P. Prospects of Delivering Natural Compounds by Polymer-Drug Conjugates in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:1699-1713. [PMID: 33874874 DOI: 10.2174/1871520621666210419094623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Synthetic chemotherapeutics have played a crucial role in minimizing mostly palliative symptoms associated with cancer; however, they have also created other problems such as system toxicity due to a lack of specificity. This has led to the development of polymer-drug conjugates amongst other novel drug delivery systems. Most of the formulations designed using delivery systems consist of synthetic drugs and face issues such as drug resistance, which has already rendered drugs such as antibiotics ineffective. This is further exacerbated by toxicity due to long term use. Given these problems and the fact that conjugation of synthetic compounds to polymers has been relatively slow with no formulation on the market after a decade of extensive studies, the focus has shifted to using this platform with medicinal plant extracts to improve solubility, specificity and increase drug release of medicinal and herbal bioactives. In recent years, various plant extracts such as flavonoids, tannins and terpenoids have been studied extensively using this approach. The success of formulations developed using novel drug-delivery systems is highly dependent on the tumour microenvironment especially on the enhanced permeability and retention effect. As a result, the compromised lymphatic network and 'leaky' vasculature exhibited by tumour cells act as a guiding principle in the delivering of these formulations. This review focuses on the state of the polymer-drug conjugates and their exploration with natural compounds, the progress and difficulties thus far, and future directions concerning cancer treatment.
Collapse
Affiliation(s)
- Nompumelelo P Mthimkhulu
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Karabo S Mosiane
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Ekene E Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Lab, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001. South Africa
| | - Pascaline Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| |
Collapse
|
39
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
40
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 473] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|