1
|
Mohaghegh N, Iyer A, Wang E, Balajam NZ, Kang H, Akbari M, Barnhill MS, Khademhosseini A, Pearson RM, Hassani Najafabadi A. Apigenin-loaded nanoparticles for obesity intervention through immunomodulation and adipocyte browning. J Control Release 2025; 382:113670. [PMID: 40187647 DOI: 10.1016/j.jconrel.2025.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Obesity is characterized by a significant imbalance in adipose tissue macrophages (ATMs), shifting from anti-inflammatory M2 to pro-inflammatory M1 phenotypes, contributing to chronic low-grade inflammation and metabolic dysfunction. This study explores the potential of nanoparticle (NP)-mediated immunomodulation to address obesity-related inflammation, adipocyte browning, and metabolic dysfunction. Apigenin (Api), a natural compound with notable anti-inflammatory properties, was encapsulated within poly(lactic-co-glycolic acid) (PLGA) NPs (Api-NPs) for localized delivery to adipose tissues (ATs). Api-NPs demonstrated favorable physicochemical properties and sustained release profiles. In vitro, Api-NPs, increased M2 macrophage (MΦ) polarization, reduced inflammatory markers, and promoted adipocyte browning. In a high-fat diet (HFD)-induced obesity mouse model, Api-NP administration effectively modulated MΦ polarization and enhanced AT browning, leading to marked reductions in body weight and AT mass. Our findings indicate that Api-NP treatment mitigates obesity-related inflammation and promotes beneficial changes in AT composition and function. Importantly, histological evaluations confirmed the absence of toxicity in major organs, reinforcing the safety profile of this approach. These results position Api-NPs as a promising novel therapeutic strategy for obesity management, integrating immune modulation and localized drug delivery to address the complexities of obesity and its associated inflammatory processes.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Anjali Iyer
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ethan Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | | |
Collapse
|
2
|
Zhou H, Song X, Tian Y, Zhao L, Yang J, Ye F, Cao T, Zhang J. Isoliquiritigenin Promotes the Repair of High Uric Acid-Induced Vascular Injuries. SMART MEDICINE 2025; 4:e70000. [PMID: 40303869 PMCID: PMC11970112 DOI: 10.1002/smmd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 05/02/2025]
Abstract
Hyperuricemia (HUA) is a chronic metabolic disease mainly stemming from purine metabolism disorders and strongly correlated with cardiovascular diseases, gout, chronic kidney disease, and other diseases. Elevated levels of uric acid (UA) in serum will lead to vascular endothelial cell injuries directly, subsequently impairing normal functions of human blood vessels. Therefore, investigating endothelial cell injuries resulting from HUA and corresponding drug screening for its treatment are of great significance in the prevention and treatment of vascular diseases. Given the inherent advantages of multiple targets and pathways, we delved into the potential of traditional Chinese medicine in alleviating vascular injuries induced by HUA in detail. Through the establishment of an injury index library and subsequent drug screening process, isoliquiritigenin proved to be a promising candidate for promoting the repair of HUA-induced vascular injuries. It had been identified, validated and its efficiency evaluated using blood vessel-on-a-chip and animal tests. Additionally, network pharmacology and molecular docking were further employed to elucidate the underlying mechanism. This work represents the first demonstration of isoliquiritigenin's capacity to facilitate the repair of vascular injuries triggered by high UA levels, and provides valuable insights for the treatment of HUA using traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyan Zhou
- School of Traditional Chinese MedicineBinzhou Medical UniversityYantaiShandongChina
| | - Xinyu Song
- The Second School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Yingying Tian
- School of Traditional Chinese MedicineBinzhou Medical UniversityYantaiShandongChina
| | - Lili Zhao
- School of Traditional Chinese MedicineBinzhou Medical UniversityYantaiShandongChina
| | - Jingyi Yang
- School of Traditional Chinese MedicineBinzhou Medical UniversityYantaiShandongChina
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Ting Cao
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- Department of Laboratory MedicineThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang ProvinceHangzhouChina
| | - Jiayu Zhang
- School of Traditional Chinese MedicineBinzhou Medical UniversityYantaiShandongChina
| |
Collapse
|
3
|
Bossi AM, Casella S, Stranieri C, Marinangeli A, Bucciarelli A, Fratta Pasini AM, Maniglio D. Protein-based molecular imprinting: gelatin nanotraps for interleukin-6 sequestration in inflammation cell models. Trends Biotechnol 2025; 43:1215-1233. [PMID: 40055097 DOI: 10.1016/j.tibtech.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 05/10/2025]
Abstract
Protein-derived biomaterials are currently underrated as building blocks in molecular imprinting, even though they offer several benefits, such as biocompatibility and safe biodegradability. Gelatin is a biopolymer that can be easily modified with pendant double bonds for polymerization, making it suitable for tissue engineering and biofabrication. In this study, we used gelatin methacryloyl (GelMA) as a building block combined with molecular imprinting technology to create an original class of bioinspired nanotraps specifically capable of sequestering the proinflammatory cytokine interleukin-6 (IL-6). The stability in solution, biocompatibility, and biodegradability of the nanotraps were assessed. The nanotraps were selective and specific for IL-6, showing nanomolar affinity and, when tested in vitro on an inflammation cell model, sequestered IL-6 with a dose-response relationship. Overall, our study shows that protein chemistry-driven molecular imprinting could become more widely used to devise biocompatible functional nanomaterials.
Collapse
Affiliation(s)
- Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, LaStMolCAL Lab, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Sofia Casella
- Department of Biotechnology, University of Verona, LaStMolCAL Lab, Strada Le Grazie 15, 37134 Verona, Italy
| | - Chiara Stranieri
- Department of Medicine, University of Verona, A.O.U.I. Verona, Policlinico GB Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Alice Marinangeli
- Department of Biotechnology, University of Verona, LaStMolCAL Lab, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alessio Bucciarelli
- Laboratorio RAMSES; IRCCS Istituto Ortopedico Rizzoli; Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Anna Maria Fratta Pasini
- Department of Medicine, University of Verona, A.O.U.I. Verona, Policlinico GB Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, University of Trento, BIOtech Research Center, Via delle Regole 101, Mattarello, 38123, Trento, Italy.
| |
Collapse
|
4
|
Jain S, Dilbaghi N, Marrazza G, Hassan AA, Kaushik A, Kim KH, Kumar S. Nanoarchitectonics in colloidal hydrogels: Design and applications in the environmental and biomedical fields. Adv Colloid Interface Sci 2025; 342:103529. [PMID: 40328071 DOI: 10.1016/j.cis.2025.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/06/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
The concept of nanoarchitectonics, derived from the science of nanoarchitecture, has driven the development of advanced colloidal hydrogels with enhanced functionalities for a wide range of applications. This review explores technological perspectives of nanoarchitectonics, especially in regard to colloidal hydrogels. Nanoarchitectonics applied to colloidal hydrogels allows nanoscale control over the structure and functionality of hydrogels to impart dynamic properties such as stimuli-responsiveness, controlled release, and enhanced mechanical strength. Furthermore, the integration with nanoparticles and polymers permits the synthesis of multifunctional nanogel platforms through chemical or physical cross-linking of nanoparticles, polymers, and small molecules. Their synergistic properties are largely controlled by the combined effects of the properties of nanoparticles, such as composition, size, shape, architecture, bonding mechanism, and molecular cross-linkers. Nanoarchitectonics-driven colloidal hydrogels are demonstrated to have great potential in environmental remediation and biomedical applications (e.g., drug delivery, wound dressings, and theragnostics). Nonetheless, challenges related to scalability, biocompatibility, and long-term stability need to be addressed to broaden their applicability. This review highlights the growing impact of nanoarchitectonics in colloidal hydrogels to offer innovative solutions for pressing global challenges in healthcare and environmental sustainability.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio-nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar-Haryana 125004, India
| | - Neeraj Dilbaghi
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry, "Ugo Schiff," University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ashraf Aly Hassan
- Department of Civil & Environmental Engineering, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
5
|
Abid F, Saleem M, Jamshaid T, Jamshaid U, Youssef FS, Diri RM, Elhady SS, Ashour ML. Opuntia monacantha: Validation of the anti-inflammatory and anti-arthritic activity of its polyphenolic rich extract in silico and in vivo via assessment of pro- and anti-inflammatory cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117884. [PMID: 38350502 DOI: 10.1016/j.jep.2024.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κβ and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.
Collapse
Affiliation(s)
- Farah Abid
- Department of Pharmacology, Faculty of Pharmacy, University of South Asia, Lahore, Pakistan.
| | - Mohammad Saleem
- Department of Pharmacology, Faculty of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Talha Jamshaid
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Usama Jamshaid
- Faculty of Pharmacy, University of Strasbourg, Strasbourg, France.
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt.
| | - Reem M Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt; Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah, 21442, Saudi Arabia.
| |
Collapse
|
6
|
Jin X, Shang B, Wang J, Sun J, Li J, Liang B, Wang X, Su L, You W, Jiang S. Farnesoid X receptor promotes non-small cell lung cancer metastasis by activating Jak2/STAT3 signaling via transactivation of IL-6ST and IL-6 genes. Cell Death Dis 2024; 15:148. [PMID: 38360812 PMCID: PMC10869786 DOI: 10.1038/s41419-024-06495-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Metastasis accounts for the majority of cases of cancer recurrence and death in patients with advanced non-small cell lung cancer (NSCLC). Farnesoid X Receptor (FXR) is a bile acid nuclear receptor that was recently found to be upregulated in NSCLC tissues. However, whether and how FXR regulates NSCLC metastasis remains unclear. In the present study, it was found that FXR promoted the migration, invasion, and angiogenic ability of NSCLC cells in vitro, and increased NSCLC metastasis in a mouse model in vivo. Mechanistic investigation demonstrated that FXR specifically bound to the promoters of IL-6ST and IL-6 genes to upregulate their transcription, thereby leading to activation of the Jak2/STAT3 signaling pathway, which facilitated tumor migration, invasion, and angiogenesis in NSCLC. Notably, Z-guggulsterone, a natural FXR inhibitor, significantly reduced FXRhigh NSCLC metastasis, and decreased the expression of FXR, IL-6, IL-6ST, and p-STAT3 in the mouse model. Clinical analysis verified that FXR was positively correlated with IL-6, IL-6ST and p-STAT3 expression in NSCLC patients, and was indicative of a poor prognosis. Collectively, these results highlight a novel FXR-induced IL-6/IL-6ST/Jak2/STAT3 axis in NSCLC metastasis, and a promising therapeutic means for treating FXRhigh metastatic NSCLC.
Collapse
Affiliation(s)
- Xiuye Jin
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Shanxi, 710100, China
| | - Bin Shang
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Junren Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Public Health Clinical Center, Jinan, Shandong, 250013, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xingguang Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| |
Collapse
|
7
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
8
|
Novel Bile Salt Stabilized Vesicles-Mediated Effective Topical Delivery of Diclofenac Sodium: A New Therapeutic Approach for Pain and Inflammation. Pharmaceuticals (Basel) 2022; 15:ph15091106. [PMID: 36145327 PMCID: PMC9506322 DOI: 10.3390/ph15091106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from −23.8 ± 2.65 to −82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.
Collapse
|
9
|
Olival A, Vieira SF, Gonçalves VMF, Cunha C, Tiritan ME, Carvalho A, Reis RL, Ferreira H, Neves NM. Erythrocyte-derived liposomes for the treatment of inflammatory diseases. J Drug Target 2022; 30:873-883. [PMID: 35414285 DOI: 10.1080/1061186x.2022.2066107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effective and safe therapies to counteract persistent inflammation are necessary. We developed erythrocyte-derived liposomes (EDLs) with intrinsic anti-inflammatory activity. The EDLs were prepared using lipids extracted from erythrocyte membranes, which are rich in omega-3 fatty acids with several health benefits. Diclofenac, a widely used anti-inflammatory drug, was incorporated into EDLs in relevant therapeutic concentrations. The EDLs were also functionalized with folic acid to allow their active targeting of M1 macrophages, which are key players in inflammatory processes. In the presence of lipopolysaccharide (LPS)-stimulated macrophages, empty EDLs and EDLs incorporating diclofenac were able to reduce the levels of important pro-inflammatory cytokines, namely interleukin-6 (IL-6; ≈85% and 77%, respectively) and tumor necrosis factor-alpha (TNF-α; ≈64% and 72%, respectively). Strikingly, cytocompatible concentrations of EDLs presented similar effects to dexamethasone, a potent anti-inflammatory drug, in reducing IL-6 and TNF-α concentrations, demonstrating the EDLs potential to be used as bioactive carriers in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- A Olival
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - V M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Paredes, Portugal
| | - C Cunha
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M E Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Paredes, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - A Carvalho
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - H Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Lima AC, Reis RL, Ferreira H, Neves NM. Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Mol Pharm 2021; 18:3235-3246. [PMID: 34387081 DOI: 10.1021/acs.molpharmaceut.1c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have wide potential applications in the biomedical field. To promote targeted and controlled delivery of encapsulated drugs, it is fundamentally important to understand the factors regulating NP uptake by different cells. Thus, the goal of the present study is to assess the internalization rates of different NPs under normal and proinflammatory states in primary human articular chondrocytes (hACs), human umbilical vein endothelial cells (EA), and human monocytes (THP-1). Here, we compared chitosan-hyaluronic acid (Ch-HA) polymeric NPs, methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) micelles, and cholesterol/l-α-phosphatidylcholine/DSPE-PEG-Mal (Chol/EPC/DSPE-PEG-Mal) unilamellar liposomes (LUVs). Our results reveal the importance of surface charge and chemistry in determining the levels of NP internalization. Under normal conditions, the cellular uptake was ≈30% for Ch-HA NPs and ≈100% for mPEG-GSHn-PA micelles and Chol/EPC/DSPE-PEG-Mal LUVs. A proinflammatory cell state promoted a higher uptake of the Ch-HA NPs by EA cells (93% after 24 h). Since the therapeutic efficacy of the NP-loaded cargo is dependent on trafficking routes after cellular internalization, we tested their internalization pathways. Accordingly, caveolae-mediated endocytosis or energy-independent non-endocytic pathways, which circumvent lysosomal degradation, were accomplished in hACs and EA by LUVs and in M1 polarized macrophages by micelles. The present outcomes highlight the importance of considering cellular uptake and internalization pathways by the target cell when designing functional NPs for therapeutic applications.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
11
|
Lima AC, Reis RL, Ferreira H, Neves NM. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater Sci Eng 2021; 7:3229-3241. [PMID: 34161062 DOI: 10.1021/acsbiomaterials.1c00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation plays an essential role in arthritis development and progression. Despite the advances in the pharmaceutical field, current treatments still present low efficacy and severe side effects. Considering the high activity of the glutathione reductase (GR) enzyme in inflamed joints, a distinctive drug delivery system sensitive to the GR enzyme was designed for efficient drug delivery on arthritic diseases. A linear amphiphilic polymer composed of methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) was synthesized and the intermolecular oxidation of the thiol groups from GSHs retain the drug inside the resulting micelles. Stable polymeric micelles of 100 nm of size presented a loading capacity of dexamethasone (Dex) up to 65%. Although in physiological conditions the Dex release presented slow and sustained kinetics, in the presence of the GR enzyme, there was a burst release (stimuli-responsive properties). Biological assays demonstrated their cytocompatibility in contact with human articular chondrocytes, macrophages, and endothelial cells as well as their hemocompatibility. Importantly, in an in vitro model of inflammation, the polymeric micelles promoted a controlled drug release in the presence of GR, exhibiting a higher efficacy than the free Dex while reducing the negative effects of the drug into normal cells. In conclusion, this formulation is a promising approach to treat arthritic diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
12
|
Balança B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz AC. DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview. Int J Mol Sci 2021; 22:ijms22052439. [PMID: 33670976 PMCID: PMC7957733 DOI: 10.3390/ijms22052439] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products (RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs and RAGE at the acute phase of brain injury. We searched the MEDLINE database for “DAMPs” or “RAGE” or “S100B” and “traumatic brain injury” or “subarachnoid hemorrhage” or “stroke”. We selected original articles reporting data on acute brain injury pathophysiology, from which we describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in the development of brain injury. We will also discuss the clinical strategies that emerge from this overview in terms of biomarkers and therapeutic perspectives
Collapse
Affiliation(s)
- Baptiste Balança
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
- Correspondence: ; Tel.: +33-6-2391-0594
| | - Laurent Desmurs
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
| | - Jérémy Grelier
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
| | - Armand Perret-Liaudet
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
- Team BIORAN, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
| | - Anne-Claire Lukaszewicz
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France;
| |
Collapse
|