1
|
Pan J, Wang Y, Chen Y, Zhang C, Deng H, Lu J, Chen W. Emerging strategies against accelerated blood clearance phenomenon of nanocarrier drug delivery systems. J Nanobiotechnology 2025; 23:138. [PMID: 40001108 PMCID: PMC11853785 DOI: 10.1186/s12951-025-03209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Nanocarrier drug delivery systems (NDDS) have gained momentum in the field of anticancer or nucleic acid drug delivery due to their capacity to aggrandize the targeting efficacy and therapeutic outcomes of encapsulated drugs. A disadvantage of NDDS is that repeated administrations often encounter an obstacle known as the "accelerated blood clearance (ABC) phenomenon". This phenomenon results in the rapid clearance of the secondary dose from the bloodstream and markedly augmented liver accumulation, which substantially undermines the accurate delivery of drugs and the therapeutic effect of NDDS. Nevertheless, the underlying mechanism of this phenomenon has not been elucidated and there is currently no effective method for its eradication. In light of the above, the aim of this review is to provide a comprehensive summary of the underlying mechanism and potential countermeasures of the ABC phenomenon, with a view to rejuvenating both the slow-release property and expectation of NDDS in the clinic. In this paper, we innovatively introduce the pharmacokinetic mechanism of ABC phenomenon to further elucidate its occurrence mechanism after discussing its immunological mechanism, which provides a new direction for expanding the mechanistic study of ABC phenomenon. Whereafter, we conducted a critical conclusion of potential strategies for the suppression or prevention of the ABC phenomenon in terms of the physical and structural properties, PEG-lipid derivatives, dosage regimen and encapsulated substances of nanoformulations, particularly covering some novel high-performance nanomaterials and mixed modification methods. Alternatively, we innovatively propose a promising strategy of applying the characteristics of ABC phenomenon, as the significantly elevated hepatic accumulation and activated CYP3A1 profile associated with the ABC phenomenon are proved to be conducive to enhancing the efficacy of NDDS in the treatment of hepatocellular carcinoma. Collectively, this review is instructive for surmounting or wielding the ABC phenomenon and advancing the clinical applications and translations of NDDS.
Collapse
Affiliation(s)
- Jianquan Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yunna Chen
- Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Cheng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huiya Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinyuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| |
Collapse
|
2
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Guo C, Yuan H, Yu Y, Gao Z, Zhang Y, Yin T, He H, Gou J, Tang X. FRET-based analysis on the structural stability of polymeric micelles: Another key attribute beyond PEG coverage and particle size affecting the blood clearance. J Control Release 2023; 360:734-746. [PMID: 37454913 DOI: 10.1016/j.jconrel.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Various attributes of micelles, such as PEG density and particle size, are considered to be related to blood clearance. The structural stability of micelles is another key attribute that will affect the in vivo fate. This study employed fluorescence resonance energy transfer (FRET) analysis to guide the preparation of polymeric micelles with different structural stability. Micelles prepared using copolymers with longer hydrophobic blocks showed higher structural stability; emulsification was a better method than nanoprecipitation to prepare stable micelles. The fast chain exchange kinetics and the high-water content of micellar cores explained the low structural stability of those micelles. Moreover, this study highlighted the importance of structural stability that affected blood clearance in concert with PEG length and particle size. One-third of the small and stable micelles were detected in the blood 24 h after injection. While unstable micelles would be cleared from the circulation within 4 h. Notably, there would be a threshold of structural stability. Micelles with structural stability below this threshold were quickly cleared even if they possessed a longer PEG length and a smaller size. In contrast, higher structural stability allowed polymeric micelles to maintain higher integrity in vivo and enhance tumor accumulation and anti-tumor efficacy. In conclusion, this study systematically analyzed the importance of the structural stability of micelles on the in vivo fate.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Ying Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Zhencheng Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
4
|
Hibino M, Maeki M, Tokeshi M, Ishitsuka Y, Harashima H, Yamada Y. A system that delivers an antioxidant to mitochondria for the treatment of drug-induced liver injury. Sci Rep 2023; 13:6961. [PMID: 37164988 PMCID: PMC10172346 DOI: 10.1038/s41598-023-33893-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Mitochondria, a major source of reactive oxygen species (ROS), are intimately involved in the response to oxidative stress in the body. The production of excessive ROS affects the balance between oxidative responses and antioxidant defense mechanisms thus perturbing mitochondrial function eventually leading to tissue injury. Therefore, antioxidant therapies that target mitochondria can be used to treat such diseases and improve general health. This study reports on an attempt to establish a system for delivering an antioxidant molecule coenzyme Q10 (CoQ10) to mitochondria and the validation of its therapeutic efficacy in a model of acetaminophen (APAP) liver injury caused by oxidative stress in mitochondria. A CoQ10-MITO-Porter, a mitochondrial targeting lipid nanoparticle (LNP) containing encapsulated CoQ10, was prepared using a microfluidic device. It was essential to include polyethylene glycol (PEG) in the lipid composition of this LNP to ensure stability of the CoQ10, since it is relatively insoluble in water. Based on transmission electron microscope (TEM) observations and small angle X-ray scattering (SAXS) measurements, the CoQ10-MITO-Porter was estimated to be a 50 nm spherical particle without a regular layer structure. The use of the CoQ10-MITO-Porter improved liver function and reduced tissue injury, suggesting that it exerted a therapeutic effect on APAP liver injury.
Collapse
Affiliation(s)
- Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Manabu Tokeshi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
- Japan Science and Technology Agency (JST) Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Kawaguchi, Japan.
| |
Collapse
|
5
|
AL Fayez N, Böttger R, Brown J, Rouhollahi E, Li SD. The mechanism of Hepatocyte-Targeting and safety profile of Phospholipid-Free small unilamellar vesicles. Int J Pharm 2022; 628:122269. [DOI: 10.1016/j.ijpharm.2022.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
6
|
Al Fayez N, Rouhollahi E, Ong CY, Wu J, Nguyen A, Böttger R, Cullis PR, Witzigmann D, Li SD. Hepatocyte-targeted delivery of imiquimod reduces hepatitis B virus surface antigen. J Control Release 2022; 350:630-641. [PMID: 36058352 DOI: 10.1016/j.jconrel.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022]
Abstract
Hepatitis B virus (HBV) can rapidly replicate in the hepatocytes after transmission, leading to chronic hepatitis, liver cirrhosis and eventually hepatocellular carcinoma. Interferon-α (IFN-α) is included in the standard treatment for chronic hepatitis B (CHB). However, this therapy causes serious side effects. Delivering IFN-α selectively to the liver may enhance its efficacy and safety. Imiquimod (IMQ), a Toll-Like Receptor (TLR) 7 agonist, stimulates the release of IFN-α that exhibits potent antiviral activity. However, the poor solubility and tissue selectivity of IMQ limits its clinical use. Here, we demonstrated the use of lipid-based nanoparticles (LNPs) to deliver IMQ and increase the production of IFN-α in the liver. We encapsulated IMQ in two liver-targeted LNP formulations: phospholipid-free small unilamellar vesicles (PFSUVs) and DSPG-liposomes targeting the hepatocytes and the Kupffer cells, respectively. In vitro drug release/retention, in vivo pharmacokinetics, intrahepatic distribution, IFN-α production, and suppression of serum HBV surface antigen (HBsAg) were evaluated and compared for these two formulations. PFSUVs provided >95% encapsulation efficiency for IMQ at a drug-to-lipid ratio (D/L) of 1/20 (w/w) and displayed stable drug retention in the presence of serum. DSPG-IMQ showed 79% encapsulation of IMQ at 1/20 (D/L) and exhibited ∼30% burst release when incubated with serum. Within the liver, PFSUVs showed high selectivity for the hepatocytes while DSPG-liposomes targeted the Kupffer cells. Finally, in an experimental HBV mouse model, PFSUVs significantly reduced serum levels of HBsAg by 12-, 6.3- and 2.2-fold compared to the control, IFN-α, and DSPG-IMQ groups, respectively. The results suggest that the hepatocyte-targeted PFSUVs loaded with IMQ exhibit significant potential for enhancing therapy of CHB.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chun Yat Ong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anne Nguyen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
7
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
8
|
Böttger R, Chao PH, Al Fayez N, Pauli G, Nguyen A, Hohenwarter L, Bilal N, Mohammed GK, Knappe D, Hoffmann R, Li SD. Simultaneous Chromatographic Quantitation of Drug Substance and Excipients in Nanoformulations Using a Combination of Evaporative Light Scattering and Absorbance Detectors. Mol Pharm 2022; 19:1882-1891. [PMID: 35506592 DOI: 10.1021/acs.molpharmaceut.2c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanomedicines including lipid- and polymer-based nanoparticles and polymer-drug conjugates enable targeted drug delivery for the treatment of numerous diseases. Quantitative analysis of components in nanomedicines is routinely performed to characterize the products to ensure quality and property consistency but has been mainly focused on the active pharmaceutical ingredients (APIs) in academic publications. It has been increasingly recognized that excipients in nanomedicines are critical in determining the product quality, stability, consistency, and safety. APIs are often analyzed by high-performance liquid chromatography (HPLC), and it would be convenient if the same method can be applied to excipients to robustly quantify all components in nanomedicines. Here, we report the development of a HPLC method that combined an evaporative light scattering (ELS) detector with an UV-vis detector to simultaneously analyze drugs and excipients in nanomedicines. This method was tested on diverse nanodrug delivery systems, including a niosomal nanoparticle encapsulating a phytotherapeutic, a liposome encapsulating an immune boosting agent, and a PEGylated peptide. This method can be utilized for a variety of applications, such as monitoring drug loading, studying drug release, and storage stability. The information obtained from the analyses is of importance for nanomedicine formulation development.
Collapse
Affiliation(s)
- Roland Böttger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nojoud Al Fayez
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Griffin Pauli
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anne Nguyen
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nida Bilal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Gubran Khalil Mohammed
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig 04103, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig 04103, Germany
| | - Daniel Knappe
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig 04103, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig 04103, Germany.,EnBiotix GmbH, Leipzig 04103, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig 04103, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig 04103, Germany
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
9
|
Al Fayez N, Böttger R, Rouhollahi E, Cullis PR, Witzigmann D, Li SD. Improved Liver Delivery of Primaquine by Phospholipid-Free Small Unilamellar Vesicles with Reduced Hemolytic Toxicity. Mol Pharm 2021; 19:1778-1785. [PMID: 34546758 DOI: 10.1021/acs.molpharmaceut.1c00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemolytic toxicity caused by primaquine (PQ) is a high-risk condition that hampers the wide use of PQ to treat liver-stage malaria. This study demonstrated that phospholipid-free small unilamellar vesicles (PFSUVs) composed of Tween80 and cholesterol could encapsulate and deliver PQ to the hepatocytes with reduced exposure to the red blood cells (RBCs). Nonionic surfactant (Tween80) and cholesterol-forming SUVs with a mean diameter of 50 nm were fabricated for delivering PQ. Drug release/retention, drug uptake by RBCs, pharmacokinetics, and liver uptake of PFSUVs-PQ were evaluated in in vitro and in vivo models in comparison to free drugs. Additionally, the stress effect on RBCs induced by free PQ and PFSUVs-PQ was evaluated by examining RBC morphology. PFSUVs provided >95% encapsulation efficiency for PQ at a drug-to-lipid ratio of 1:20 (w/w) and stably retained the drug in the presence of serum. When incubated with RBCs, PQ uptake in the PFSUVs group was reduced by 4- to 8-folds compared to free PQ. As a result, free PQ induced significant RBC morphology changes, while PFSUVs-PQ showed no such adverse effect. Intravenously (i.v.) delivered PFSUVs-PQ produced a comparable plasma profile as free PQ, given i.v. and orally, while the liver uptake was increased by 4.8 and 1.6-folds, respectively, in mice. Within the liver, PFSUVs selectively targeted the hepatocytes, with no significant blood or liver toxicity in mice. PFSUVs effectively targeted PQ to the liver and reduced RBC uptake compared to free PQ, leading to reduced RBC toxicity. PFSUVs exhibited potential in improving the efficacy of PQ for treating liver-stage malaria.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|