1
|
Gao X, Yang J, Liu L, Hu Z, Lin R, Tang L, Yu M, Chen Z, Gao C, Zhang M, Li L, Ruan C, Liu Y. An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects. Bioact Mater 2025; 46:1-20. [PMID: 39719966 PMCID: PMC11665476 DOI: 10.1016/j.bioactmat.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL). Benefiting from this strategy, SAB, an unstable and untargetable plant-derived osteogenic compound, was effectively encapsulated in APS@P, demonstrating stable and precise delivery with improved therapeutic efficacy. Owing to SAB-mediated bone homeostasis, APS@P significantly promoted angiogenesis and new bone formation while suppressing bone resorption, resulting in a significant 146 % increase in bone mass and improved microstructure compared to the OBD group. It was confirmed that the encapsulation of SAB into APS@P could promote the osteogenic differentiation of MSCs by stimulating Tph2/Wnt/β-catenin signaling axis, coupled with the stimulation of type H angiogenesis and the suppression of RANKL-mediate bone resorption, thereby enhance OBD repair. This study provides a universal platform for enhancing the bioactivity of tissue-engineered scaffolds, offering an effective solution for the efficient regeneration of osteoporotic bone.
Collapse
Affiliation(s)
- Xiang Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Jirong Yang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Zilong Hu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Rui Lin
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Lan Tang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Yu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Li Li
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| |
Collapse
|
2
|
March A, Hebner TS, Choe R, Benoit DSW. Leveraging the predictive power of a 3D in vitro vascularization screening assay for hydrogel-based tissue-engineered periosteum allograft healing. BIOMATERIALS ADVANCES 2025; 169:214187. [PMID: 39827700 PMCID: PMC11815559 DOI: 10.1016/j.bioadv.2025.214187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs. Since angiogenesis is a critical process orchestrated by the periosteum, this study investigates in vitro 3D cell spheroid vascularization as a predictive tool for TEP-mediated in vivo healing. Spheroids of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) are encapsulated in enzymatically-degradable poly (ethylene glycol)-based hydrogels and sprout formation, network formation, and angiogenic growth factor secretion are quantified. Hydrogels are also evaluated as TEP-modified allografts for in vivo bone healing with graft vascularization, callus formation, and biomechanical strength quantified as healing metrics. Evaluation of hydrogels highlights the importance of degradation, with 24-fold greater day 1 sprouts observed in degradable hydrogels in vitro and 4-fold greater graft-localized vascular volume at 6-weeks in vivo compared to non-degradable hydrogels. Correlations between in vitro and in vivo studies elucidate linear relationships when comparing in vitro sprout formation and angiocrine production with 3- and 6-week in vivo graft vascularization, 3-week cartilage callus, and 6-week bone callus, with a Pearson's R2 value equal to 0.97 for the linear correlation between in vitro sprout formation and 6-week in vivo vascular volume. Non-linear relationships are found between in vitro measures and bone torque strength at week 6. These correlations suggest that the in vitro sprouting assay has predictive power for in vivo vascularization and bone allograft healing.
Collapse
Affiliation(s)
- Alyson March
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Tayler S Hebner
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA; Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Regine Choe
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
3
|
Sheehy EJ, von Diemling C, Ryan E, Widaa A, O' Donnell P, Ryan A, Chen G, Brady RT, López-Noriega A, Zeiter S, Moriarty TF, O' Brien FJ. Antibiotic-eluting scaffolds with responsive dual-release kinetics facilitate bone healing and eliminate S. aureus infection. Biomaterials 2025; 313:122774. [PMID: 39208699 DOI: 10.1016/j.biomaterials.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Osteomyelitis (OM) is a progressive, inflammatory infection of bone caused predominately by Staphylococcus aureus. Herein, we engineered an antibiotic-eluting collagen-hydroxyapatite scaffold capable of eliminating infection and facilitating bone healing. An iterative freeze-drying and chemical crosslinking approach was leveraged to modify antibiotic release kinetics, resulting in a layered dual-release system whereby an initial rapid release of antibiotic to clear infection was followed by a sustained controlled release to prevent reoccurrence of infection. We observed that the presence of microbial collagenase accelerated antibiotic release from the crosslinked layer of the scaffold, indicating that the material is responsive to microbial activity. As exemplar drugs, vancomycin and gentamicin-eluting scaffolds were demonstrated to be bactericidal, and supported osteogenesis in vitro. In a pilot murine model of OM, vancomycin-eluting scaffolds were observed to reduce S. aureus infection within the tibia. Finally, in a rabbit model of chronic OM, gentamicin-eluting scaffolds both facilitated radial bone defect healing and eliminated S. aureus infection. These results show that antibiotic-eluting collagen-hydroxyapatite scaffolds are a one-stage therapy for OM, which when implanted into infected bone defects simultaneously eradicate infection and facilitate bone tissue healing.
Collapse
Affiliation(s)
- Eamon J Sheehy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland; AO Research Institute Davos, Davos, Switzerland
| | | | - Emily Ryan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Amro Widaa
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter O' Donnell
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Alan Ryan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| | - Gang Chen
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert T Brady
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adolfo López-Noriega
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Fergal J O' Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Zhang J, Ren N, Chen S, Liu K, Xiong L, Zheng X. Itga11 promotes osteogenic differentiation, inhibits angiogenesis and proliferation of mesenchymal stem cells under hypoxia. Tissue Cell 2024; 91:102616. [PMID: 39566247 DOI: 10.1016/j.tice.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE This study aimed to explore the role and mechanism of hypoxic environment in rat bone mesenchymal stem cells (rBMSCs) proliferation, osteogenic differentiation and angiogenesis. METHODS Cell proliferation, angiogenesis and osteogenic differentiation were assessed using the CCK-8 assay, tube formation assay and alizarin red staining, respectively. Transcriptomic databases for rBMSCs under hypoxic (1 % O2) and normoxic (18 % O2) conditions were constructed to identify differentially expressed genes (DEGs), which were then subjected to gene function annotation and KEGG pathway analysis. To modulate the expression of Itga11, siRNA targeting Itga11 (si-Itga11) and a negative control (si-con), as well as pcDNA-Itga11 and an empty control plasmid (pcDNA), were employed to induce silencing or overexpression of Itga11. The protein levels were evaluated using Western blot analysis. RESULTS Hypoxia stimulated the proliferation and angiogenesis of rBMSCs but suppressed their osteogenic differentiation. Differential expression analysis identified 541 upregulated and 277 downregulated genes in the hypoxic group compared to the normoxic group. KEGG pathway enrichment analysis suggested that the hypoxic response in rBMSCs is closely associated with the Pi3k /Akt signaling pathway. Itga11 was significantly downregulated in rBMSCs under hypoxic conditions. Overexpression of Itga11 in rBMSCs inhibited their proliferation and angiogenesis and enhanced osteogenic differentiation, while its knockdown had the opposite effect. Itga11 was found to activate the Pi3k /Akt signaling pathway in rBMSCs. CONCLUSION Itga11 facilitates osteogenic differentiation and suppresses angiogenesis and proliferation of MSCs under hypoxia by activating the Pi3k /Akt signaling pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China.
| | - Na Ren
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China
| | - Shujuan Chen
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China
| | - Kun Liu
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Lei Xiong
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Xing Zheng
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, PR China
| |
Collapse
|
5
|
Raftery RM, Gonzalez Vazquez AG, Walsh DP, Chen G, Laiva AL, Keogh MB, O'Brien FJ. Mobilizing Endogenous Progenitor Cells Using pSDF1α-Activated Scaffolds Accelerates Angiogenesis and Bone Repair in Critical-Sized Bone Defects. Adv Healthc Mater 2024; 13:e2401031. [PMID: 38850118 DOI: 10.1002/adhm.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Mobilizing endogenous progenitor cells to repair damaged tissue in situ has the potential to revolutionize the field of regenerative medicine, while the early establishment of a vascular network will ensure survival of newly generated tissue. In this study, a gene-activated scaffold containing a stromal derived factor 1α plasmid (pSDF1α), a pro-angiogenic gene that is also thought to be involved in the recruitment of mesenchymal stromal cells (MSCs) to sites of injury is described. It is shown that over-expression of SDF1α protein enhanced MSC recruitment and induced vessel-like structure formation by endothelial cells in vitro. When implanted subcutaneously, transcriptomic analysis reveals that endogenous MSCs are recruited and significant angiogenesis is stimulated. Just 1-week after implantation into a calvarial critical-sized bone defect, pSDF1α-activated scaffolds are recruited MSCs and rapidly activate angiogenic and osteogenic programs, upregulating Runx2, Dlx5, and Sp7. At the same time-point, pVEGF-activated scaffolds are recruited a variety of cell types, activating endochondral ossification. The early response induced by both scaffolds leads to complete bridging of the critical-sized bone defects within 4-weeks. The versatile cell-free gene-activated scaffold described in this study is capable of harnessing and enhancing the body's own regenerative capacity and has immense potential in a myriad of applications.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- iEd Hub and Department of Anatomy and Neuroscience, College of Medicine and Health, University College Cork, Cork, T12 CY82, Ireland
| | - Arlyng G Gonzalez Vazquez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| | - David P Walsh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- Translational Research in Nanomedical Devices, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ashang L Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Michael B Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| |
Collapse
|
6
|
Sadowska JM, Power RN, Genoud KJ, Matheson A, González-Vázquez A, Costard L, Eichholz K, Pitacco P, Hallegouet T, Chen G, Curtin CM, Murphy CM, Cavanagh B, Zhang H, Kelly DJ, Boccaccini AR, O'Brien FJ. A Multifunctional Scaffold for Bone Infection Treatment by Delivery of microRNA Therapeutics Combined With Antimicrobial Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307639. [PMID: 38009631 DOI: 10.1002/adma.202307639] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Rachael N Power
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Katelyn J Genoud
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Austyn Matheson
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Lara Costard
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Kian Eichholz
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Pierluca Pitacco
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Tanguy Hallegouet
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- University of Strasbourg, Strasbourg, 67412, France
| | - Gang Chen
- Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Huijun Zhang
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Daniel J Kelly
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| |
Collapse
|
7
|
Aleynik DY, Bokov AE, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Functionalization of Osteoplastic Material with Human Placental Growth Factor and Assessment of Biocompatibility of the Resulting Material In Vitro. Pharmaceutics 2024; 16:85. [PMID: 38258096 PMCID: PMC10819287 DOI: 10.3390/pharmaceutics16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (A.E.B.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
8
|
Sadowska JM, Ziminska M, Ferreira C, Matheson A, Balouch A, Bogle J, Wojda S, Redmond J, Elkashif A, Dunne N, McCarthy HO, Donahue S, O'Brien FJ. Development of miR-26a-activated scaffold to promote healing of critical-sized bone defects through angiogenic and osteogenic mechanisms. Biomaterials 2023; 303:122398. [PMID: 37979514 DOI: 10.1016/j.biomaterials.2023.122398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Very large bone defects significantly diminish the vascular, blood, and nutrient supply to the injured site, reducing the bone's ability to self-regenerate and complicating treatment. Delivering nanomedicines from biomaterial scaffolds that induce host cells to produce bone-healing proteins is emerging as an appealing solution for treating these challenging defects. In this context, microRNA-26a mimics (miR-26a) are particularly interesting as they target the two most relevant processes in bone regeneration-angiogenesis and osteogenesis. However, the main limitation of microRNAs is their poor stability and issues with cytosolic delivery. Thus, utilising a collagen-nanohydroxyapatite (coll-nHA) scaffold in combination with cell-penetrating peptide (RALA) nanoparticles, we aimed to develop an effective system to deliver miR-26a nanoparticles to regenerate bone defects in vivo. The microRNA-26a complexed RALA nanoparticles, which showed the highest transfection efficiency, were incorporated into collagen-nanohydroxyapatite scaffolds and in vitro assessment demonstrated the miR-26a-activated scaffolds effectively transfected human mesenchymal stem cells (hMSCs) resulting in enhanced production of vascular endothelial growth factor, increased alkaline phosphatase activity, and greater mineralisation. After implantation in critical-sized rat calvarial defects, micro CT and histomorphological analysis revealed that the miR-26a-activated scaffolds improved bone repair in vivo, producing new bone of superior quality, which was highly mineralised and vascularised compared to a miR-free scaffold. This innovative combination of osteogenic collagen-nanohydroxyapatite scaffolds with multifunctional microRNA-26a complexed nanoparticles provides an effective carrier delivering nanoparticles locally with high efficacy and minimal off-target effects and demonstrates the potential of targeting osteogenic-angiogenic coupling using scaffold-based nanomedicine delivery as a new "off-the-shelf" product capable of healing complex bone injuries.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Austyn Matheson
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Samantha Wojda
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - John Redmond
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Nicholas Dunne
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Seth Donahue
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland; Department of Biomedical Engineering, University of Massachusetts Amherst, USA; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
9
|
Aghagolzadeh P, Plaisance I, Bernasconi R, Treibel TA, Pulido Quetglas C, Wyss T, Wigger L, Nemir M, Sarre A, Chouvardas P, Johnson R, González A, Pedrazzini T. Assessment of the Cardiac Noncoding Transcriptome by Single-Cell RNA Sequencing Identifies FIXER, a Conserved Profibrogenic Long Noncoding RNA. Circulation 2023; 148:778-797. [PMID: 37427428 DOI: 10.1161/circulationaha.122.062601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Parisa Aghagolzadeh
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Riccardo Bernasconi
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, United Kingdom (T.A.T.)
| | - Carlos Pulido Quetglas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Tania Wyss
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland (T.W.)
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Leonore Wigger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland (T.W., L.W.)
| | - Mohamed Nemir
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Switzerland (A.S.)
| | - Panagiotis Chouvardas
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Rory Johnson
- Department for BioMedical Research, University of Bern, Switzerland (C.P.Q., P.C., R.J.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain (A.G.)
- CIBERCV, Madrid, Spain (A.G.)
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Switzerland (P.A., I.P., R.B., M.N., T.P.)
| |
Collapse
|
10
|
McGrath M, Zimkowska K, Genoud KJ, Maughan J, Gutierrez Gonzalez J, Browne S, O’Brien FJ. A Biomimetic, Bilayered Antimicrobial Collagen-Based Scaffold for Enhanced Healing of Complex Wound Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17444-17458. [PMID: 37001059 PMCID: PMC10103052 DOI: 10.1021/acsami.2c18837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Chronic, nonhealing wounds in the form of diabetic foot ulcers (DFUs) are a major complication for diabetic patients. The inability of a DFU to heal appropriately leads to an open wound with a high risk of infection. Current standards of care fail to fully address either the underlying defective wound repair mechanism or the risk of microbial infection. Thus, it is clear that novel approaches are needed. One such approach is the use of multifunctional biomaterials as platforms to direct and promote wound healing. In this study, a biomimetic, bilayered antimicrobial collagen-based scaffold was developed to deal with the etiology of DFUs. An epidermal, antimicrobial collagen/chitosan film for the prevention of wound infection was combined with a dermal collagen-glycosaminoglycan scaffold, which serves to support angiogenesis in the wound environment and ultimately accelerate wound healing. Biophysical and biological characterization identified an 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide cross-linked bilayered scaffold to have the highest structural stability with similar mechanical properties to products on the market, exhibiting a similar structure to native skin, successfully inhibiting the growth and infiltration of Staphylococcus aureus and supporting the proliferation of epidermal cells on its surface. This bilayered scaffold also demonstrated the ability to support the proliferation of key cell types involved in vascularization, namely, induced pluripotent stem cell derived endothelial cells and supporting stromal cells, with early signs of organization of these cells into vascular structures, showing great promise for the promotion of angiogenesis. Taken together, the results indicate that the bilayered scaffold is an excellent candidate for enhancement of diabetic wound healing by preventing wound infection and supporting angiogenesis.
Collapse
Affiliation(s)
- Matthew McGrath
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
| | - Karolina Zimkowska
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Regenerative
Medicine Institute, University of Galway, Galway H91 TK33, Ireland
| | - Katelyn J. Genoud
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin
2 D02 PN40, Ireland
| | - Jack Maughan
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- School
of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Javier Gutierrez Gonzalez
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- School
of Chemistry, University of Dublin, Trinity
College Dublin, Dublin 2 D02 W085, Ireland
| | - Shane Browne
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Fergal J. O’Brien
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland
(RCSI), 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, RCSI and TCD, Dublin D02 PN40, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin
2 D02 PN40, Ireland
| |
Collapse
|
11
|
Development of L-Lysine-Loaded PLGA Microparticles as a Controlled Release System for Angiogenesis Enhancement. Pharmaceutics 2023; 15:pharmaceutics15020479. [PMID: 36839801 PMCID: PMC9961840 DOI: 10.3390/pharmaceutics15020479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.
Collapse
|
12
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
13
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
14
|
Kolliopoulos V, Dewey MJ, Polanek M, Xu H, Harley BAC. Amnion and chorion matrix maintain hMSC osteogenic response and enhance immunomodulatory and angiogenic potential in a mineralized collagen scaffold. Front Bioeng Biotechnol 2022; 10:1034701. [PMID: 36466348 PMCID: PMC9714677 DOI: 10.3389/fbioe.2022.1034701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Craniomaxillofacial (CMF) bone injuries present a major surgical challenge and cannot heal naturally due to their large size and complex topography. We are developing a mineralized collagen scaffold that mimics extracellular matrix (ECM) features of bone. These scaffolds induce in vitro human mesenchymal stem cell (hMSC) osteogenic differentiation and in vivo bone formation without the need for exogenous osteogenic supplements. Here, we seek to enhance pro-regenerative potential via inclusion of placental-derived products in the scaffold architecture. The amnion and chorion membranes are distinct components of the placenta that each have displayed anti-inflammatory, immunomodulatory, and osteogenic properties. While potentially a powerful modification to our mineralized collagen scaffolds, the route of inclusion (matrix-immobilized or soluble) is not well understood. Here we compare the effect of introducing amnion and chorion membrane matrix versus soluble extracts derived from these membranes into the collagen scaffolds on scaffold biophysical features and resultant hMSC osteogenic activity. While inclusion of amnion and chorion matrix into the scaffold microarchitecture during fabrication does not influence their porosity, it does influence compression properties. Incorporating soluble extracts from the amnion membrane into the scaffold post-fabrication induces the highest levels of hMSC metabolic activity and equivalent mineral deposition and elution of the osteoclast inhibitor osteoprotegerin (OPG) compared to the conventional mineralized collagen scaffolds. Mineralized collagen-amnion composite scaffolds elicited enhanced early stage osteogenic gene expression (BGLAP, BMP2), increased immunomodulatory gene expression (CCL2, HGF, and MCSF) and increased angiogenic gene expression (ANGPT1, VEGFA) in hMSCs. Mineralized collagen-chorion composite scaffolds promoted immunomodulatory gene expression in hMSCs (CCL2, HGF, and IL6) while unaffecting osteogenic gene expression. Together, these findings suggest that mineralized collagen scaffolds modified using matrix derived from amnion and chorion membranes represent a promising environment conducive to craniomaxillofacial bone repair.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL, United States
| | - Marley J. Dewey
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL, United States
| | - Maxwell Polanek
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL, United States
| | - Hui Xu
- Tumor Engineering and Phenotyping (TEP) Shared Resource, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Brendan A. C. Harley
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL, United States
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States
| |
Collapse
|
15
|
Analysis of Causes and Results of Fetal Growth in Utero Caused by Genetic Factors Detected by Ultrasound. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3703132. [PMID: 36105440 PMCID: PMC9452974 DOI: 10.1155/2022/3703132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
In order to investigate the value of the ultrasonic monitoring of maternal and fetal vascular parameters, serum vitamin D, and placental growth factor (PLGF) in predicting fetal growth restriction (FGR), a method of ultrasonic detection of genetic factors causing fetal growth in utero was proposed. 125 pregnant women with FGR diagnosed in our hospital from June 2018 to June 2021 (the FGR group) and 125 pregnant women with a normal prenatal examination (the control group) were collected retrospectively. The systolic/diastolic blood flow ratio (S/D), pulsatile index (PI), and resistance index (RI) of the fetal umbilical artery (UA), middle cerebral artery (MCA), and maternal uterine artery (UtA) were monitored by ultrasound at 20 to 24 weeks of gestation, and the levels of serum vitamin D and PLGF were detected. The receiver operating characteristic curve (ROC curve) was used to evaluate the predictive value of FGR. The results showed that the S/D, PI, and RI of UA in the FGR group were higher than those in the control group, the areas under the curve (AUC) were 0.866, 0.817, and 0.849, and the sensitivity and specificity were (72.8%, 91.2%), (50.4%, 100%), and (72.8%, 91.2%), respectively. The S/D, PI, and RI of MCA were lower than those of the control group. The AUC was 0.882, 0.869, and 0.834, respectively; the sensitivity and specificity were (92.0%, 74.4%), (88.8%, 81.6%), and (90.4%, 72%), respectively. The S/D, PI, and RI of UtA were higher than those of the control group; the AUC was 0.768, 0.729, and 0.732; the sensitivity and specificity were (91.2%, 52%), (48%, 90.4%), and (48.8%, 90.4%), respectively. The serum levels of vitamin D and PLGF were lower than those of the control group (AUC 0.784 and 0.807), and the sensitivity and specificity were (54.4%, 91.2%) and (99.2%, 52%), respectively. It was concluded that the ultrasound monitoring of UA, MCA, and UtA in pregnant women in the middle of pregnancy and detection of serum vitamin D and PLGF levels had a certain predictive value for FGR. Moreover, the comprehensive evaluation could reduce the occurrence of FGR in high-risk pregnant women.
Collapse
|
16
|
Cui J, Yu X, Yu B, Yang X, Fu Z, Wan J, Zhu M, Wang X, Lin K. Coaxially Fabricated Dual-Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration. Adv Healthc Mater 2022; 11:e2200571. [PMID: 35668705 DOI: 10.1002/adhm.202200571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Indexed: 01/24/2023]
Abstract
In clinical treatment, the bone regeneration of critical-size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical-size bone regeneration. Herein, a novel dual-drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)-loaded shell layer and a dexamethasone (DEX)-loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β-catenin signaling pathway, and the dual-drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low-cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension.
Collapse
Affiliation(s)
- Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xingge Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Bin Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xiuyi Yang
- Department of Orthodontics, Affiliated Stomatological Hospital of Soochow University, Suzhou, 215005, China
| | - Zeyu Fu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jianyu Wan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Min Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| |
Collapse
|
17
|
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCollagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.
Graphical abstract
Collapse
|
18
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
19
|
Naumenko EY, Shchetinskey MI, Bobrova OM, Narozhnyi SV, Nardid ОА, Ulianytska AY, Kalashnykova ММ, Shchetinskaya II. Efficacy of extracts from cryopreserved placenta on third-degree burns in rats. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Human placenta extracts have anti-inflammatory, antioxidant and wound-healing properties, so they are promising drugs for the treatment of wounds of various origins, including burns. Cryopreservation methods are widely used to preserve the biological activity of placental drugs for a long time. The aim of this work was to study the effect of low-temperature storage of the placenta on the regenerative properties of its extracts. Fragments of freshly obtained placentas were cooled by immersion in liquid nitrogen and stored at –196 °C for 6 months. The placenta was warmed in a water bath at 37 °C. The effect of low-temperature preservation of the placenta on the ability of its extracts to positively affect the wound healing process was studied in a model of thermal burn of III B degree in rats. The effectiveness of wound treatment with extracts from cryopreserved placenta was evaluated by planimetric and histological methods at 3, 7, 14, 21 and 28 days after the burn. The activity of antioxidant enzymes in the serum of animals was also determined. superoxide dismutase activity was assessed by inhibition of adrenaline autooxidation in carbonate buffer, catalase activity was assessed by the degree of inhibition of ammonium peroxide formation. It has been shown that the treatment of burns with extracts from cryopreserved placenta helped to accelerate the regeneration processes and the rate of wound healing. The formation of granulation tissue was detected on the 7th day of treatment with extracts, and on the 14th day in the control. The area of burn wounds during treatment with extracts probably differed from the control starting from 14 days after application of the burn. It was found that the dynamics of recovery of catalase activity after burns is probably higher on the 7th day of treatment with extracts. The obtained data testify to the high efficiency of application of placenta stored at low-temperature for the purpose of obtaining extracts from it with preservation of regenerative properties.
Collapse
|
20
|
González Vázquez AG, Blokpoel Ferreras LA, Bennett KE, Casey SM, Brama PAJ, O'Brien FJ. Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Adv Healthc Mater 2021; 10:e2100878. [PMID: 34405587 PMCID: PMC11468758 DOI: 10.1002/adhm.202100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.
Collapse
Affiliation(s)
- Arlyng G. González Vázquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Lia A. Blokpoel Ferreras
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | | | - Sarah M. Casey
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Pieter AJ Brama
- School of Veterinary MedicineUniversity College Dublin (UCD)Dublin4 D04 V1W8Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin (TCD)Dublin2 D02 PN40Ireland
| |
Collapse
|